Some results on the Baire Rado's Conjecture

Jing Zhang
Department of Mathematical Sciences
Carnegie Mellon University

SETTOP 2018

Introduction

Definition

A partial order $(T,<T)$ is a tree if for each $t \in T$, $\left\{s \in T: s<_{T} t\right\}$ is well ordered under the tree order.

Introduction

Definition

A partial order $(T,<T)$ is a tree if for each $t \in T$, $\left\{s \in T: s<_{T} t\right\}$ is well ordered under the tree order.
A tree T
1 is non-trivial if each $t \in T$ has two incompatible extensions;

Introduction

Definition

A partial order $(T,<T)$ is a tree if for each $t \in T$, $\left\{s \in T: s<_{T} t\right\}$ is well ordered under the tree order.
A tree T
1 is non-trivial if each $t \in T$ has two incompatible extensions;
2 does not split on the limit levels if for each limit α and $s, s^{\prime} \in T$ such that $h t_{T}(s)=h t_{T}\left(s^{\prime}\right)=\alpha$, if $\{t \in T: t<s\}=\left\{t \in T: t<s^{\prime}\right\}$, then $s=s^{\prime}$.
In this talk, we will focus on trees of height ω_{1} that are non-trivial and do not split on the limit levels.

Introduction

Definition

A tree T is special if there exists $g: T \rightarrow \omega$ such that g is injective on chains.

Introduction

Definition

A tree T is special if there exists $g: T \rightarrow \omega$ such that g is injective on chains.

Definition
A tree T is Baire if for any countable collection of open dense sets $\left\{U_{n} \subset T: n \in \omega\right\}, \bigcap_{n} U_{n}$ is dense.

Introduction

Definition

A tree T is special if there exists $g: T \rightarrow \omega$ such that g is injective on chains.

Definition

A tree T is Baire if for any countable collection of open dense sets $\left\{U_{n} \subset T: n \in \omega\right\}, \bigcap_{n} U_{n}$ is dense.

Remark
Note that a tree is Baire iff it is countably distributive as a forcing notion, i.e. it does not add any new countable sequence of ordinals.

Introduction

Definition (Rado, Todorcevic)

RC (Rado's Conjecture) abbreviates the following: any nonspecial tree has a nonspecial subtree of size $\leq \aleph_{1}$.

Introduction

Definition (Rado, Todorcevic)

RC (Rado's Conjecture) abbreviates the following: any nonspecial tree has a nonspecial subtree of size $\leq \aleph_{1}$.

Definition (Todorcevic)
$R C^{b}$ (Baire Rado's Conjecture) abbreviates the following: any Baire tree has a nonspecial subtree of size $\leq \aleph_{1}$.

Introduction

Definition (Rado, Todorcevic)

RC (Rado's Conjecture) abbreviates the following: any nonspecial tree has a nonspecial subtree of size $\leq \aleph_{1}$.

Definition (Todorcevic)
$R C^{b}$ (Baire Rado's Conjecture) abbreviates the following: any Baire tree has a nonspecial subtree of size $\leq \aleph_{1}$.
$R C \rightarrow R C^{b}$.

Introduction

The strength and limitations of $R C^{b}$:
Theorem
$R C^{b}$ implies:
1 WRP $\left(\left[\omega_{2}\right]^{\omega}\right)$ (hence $2^{\omega} \leq \omega_{2}$) (Todorcevic) but not

Introduction

The strength and limitations of $R C^{b}$:
Theorem
$R C^{b}$ implies:
1 WRP $\left(\left[\omega_{2}\right]^{\omega}\right)$ (hence $2^{\omega} \leq \omega_{2}$) (Todorcevic) but not WRP $\left(\left[\omega_{3}\right]^{\omega}\right)$ (Sakai)

Introduction

The strength and limitations of $R C^{b}$:
Theorem
$R C^{b}$ implies:
1 WRP $\left(\left[\omega_{2}\right]^{\omega}\right)$ (hence $2^{\omega} \leq \omega_{2}$) (Todorcevic) but not WRP $\left(\left[\omega_{3}\right]^{\omega}\right)$ (Sakai)
2 For any regular $\lambda \geq \omega_{2}$, every stationary subset of $\lambda \cap \operatorname{cof}(\omega)$ reflects (Todorcevic) but not

Introduction

The strength and limitations of $R C^{b}$:

Theorem

$R C^{b}$ implies:
1 WRP $\left(\left[\omega_{2}\right]^{\omega}\right)$ (hence $2^{\omega} \leq \omega_{2}$) (Todorcevic) but not WRP $\left(\left[\omega_{3}\right]^{\omega}\right)$ (Sakai)
2 For any regular $\lambda \geq \omega_{2}$, every stationary subset of $\lambda \cap \operatorname{cof}(\omega)$ reflects (Todorcevic) but not that any two stationary subsets of $\omega_{2} \cap \operatorname{cof}(\omega)$ reflect simultaneously (Z.) and not that

Introduction

The strength and limitations of $R C^{b}$:

Theorem

$R C^{b}$ implies:
$1 \operatorname{WRP}\left(\left[\omega_{2}\right]^{\omega}\right)$ (hence $2^{\omega} \leq \omega_{2}$) (Todorcevic) but not $\operatorname{WRP}\left(\left[\omega_{3}\right]^{\omega}\right)$ (Sakai)
2 For any regular $\lambda \geq \omega_{2}$, every stationary subset of $\lambda \cap \operatorname{cof}(\omega)$ reflects (Todorcevic) but not that any two stationary subsets of $\omega_{2} \cap \operatorname{cof}(\omega)$ reflect simultaneously (Z.) and not that any stationary subset of $\omega_{3} \cap \operatorname{cof}(\omega)$ reflects at an ordinal of cofinality $>\omega_{1}$ (essentially Foreman-Magidor).

Introduction

The strength and limitations of $R C^{b}$:
Theorem
$R C^{b}$ implies:
$1 \operatorname{WRP}\left(\left[\omega_{2}\right]^{\omega}\right)$ (hence $2^{\omega} \leq \omega_{2}$) (Todorcevic) but not $\operatorname{WRP}\left(\left[\omega_{3}\right]^{\omega}\right)$ (Sakai)
2 For any regular $\lambda \geq \omega_{2}$, every stationary subset of $\lambda \cap \operatorname{cof}(\omega)$ reflects (Todorcevic) but not that any two stationary subsets of $\omega_{2} \cap \operatorname{cof}(\omega)$ reflect simultaneously (Z.) and not that any stationary subset of $\omega_{3} \cap \operatorname{cof}(\omega)$ reflects at an ordinal of cofinality $>\omega_{1}$ (essentially Foreman-Magidor).
3 the Singular Cardinal Hypothesis (Todorcevic).

Introduction

The strength and limitations of $R C^{b}$:

Theorem

$R C^{b}$ implies:
$1 \operatorname{WRP}\left(\left[\omega_{2}\right]^{\omega}\right)$ (hence $2^{\omega} \leq \omega_{2}$) (Todorcevic) but not $\operatorname{WRP}\left(\left[\omega_{3}\right]^{\omega}\right)$ (Sakai)
2 For any regular $\lambda \geq \omega_{2}$, every stationary subset of $\lambda \cap \operatorname{cof}(\omega)$ reflects (Todorcevic) but not that any two stationary subsets of $\omega_{2} \cap \operatorname{cof}(\omega)$ reflect simultaneously (Z.) and not that any stationary subset of $\omega_{3} \cap \operatorname{cof}(\omega)$ reflects at an ordinal of cofinality $>\omega_{1}$ (essentially Foreman-Magidor).
3 the Singular Cardinal Hypothesis (Todorcevic).
$4 \square(\lambda)$ fails for all regular $\lambda \geq \omega_{2}$ (Todorcevic) and in fact

Introduction

The strength and limitations of $R C^{b}$:

Theorem

$R C^{b}$ implies:
$1 \operatorname{WRP}\left(\left[\omega_{2}\right]^{\omega}\right)$ (hence $2^{\omega} \leq \omega_{2}$) (Todorcevic) but not $\operatorname{WRP}\left(\left[\omega_{3}\right]^{\omega}\right)$ (Sakai)
2 For any regular $\lambda \geq \omega_{2}$, every stationary subset of $\lambda \cap \operatorname{cof}(\omega)$ reflects (Todorcevic) but not that any two stationary subsets of $\omega_{2} \cap \operatorname{cof}(\omega)$ reflect simultaneously (Z.) and not that any stationary subset of $\omega_{3} \cap \operatorname{cof}(\omega)$ reflects at an ordinal of cofinality $>\omega_{1}$ (essentially Foreman-Magidor).
3 the Singular Cardinal Hypothesis (Todorcevic).
$4 \square(\lambda)$ fails for all regular $\lambda \geq \omega_{2}$ (Todorcevic) and in fact $\neg \square(\lambda, \omega)$ (Torres-Perez and Wu) and

Introduction

The strength and limitations of $R C^{b}$:

Theorem

$R C^{b}$ implies:
$1 \operatorname{WRP}\left(\left[\omega_{2}\right]^{\omega}\right)$ (hence $2^{\omega} \leq \omega_{2}$) (Todorcevic) but not $\operatorname{WRP}\left(\left[\omega_{3}\right]^{\omega}\right)$ (Sakai)
2 For any regular $\lambda \geq \omega_{2}$, every stationary subset of $\lambda \cap \operatorname{cof}(\omega)$ reflects (Todorcevic) but not that any two stationary subsets of $\omega_{2} \cap \operatorname{cof}(\omega)$ reflect simultaneously (Z.) and not that any stationary subset of $\omega_{3} \cap \operatorname{cof}(\omega)$ reflects at an ordinal of cofinality $>\omega_{1}$ (essentially Foreman-Magidor).
3 the Singular Cardinal Hypothesis (Todorcevic).
$4 \square(\lambda)$ fails for all regular $\lambda \geq \omega_{2}$ (Todorcevic) and in fact $\neg \square(\lambda, \omega)$ (Torres-Perez and Wu) and along with $\neg \mathrm{CH}$, $\neg \square\left(\lambda, \omega_{1}\right)$ (Weiss) but not $\neg \square\left(\lambda, \omega_{2}\right)$ (Folklore).

Introduction

Theorem (ctd)
$R C^{b}$ implies:
5 the Strong Chang's Conjecture (Todorcevic).

Introduction

Theorem (ctd)
$R C^{b}$ implies:
5 the Strong Chang's Conjecture (Todorcevic).
6 the failure of MA (Todorcevic).

Introduction

Theorem (ctd)
$R C^{b}$ implies:
5 the Strong Chang's Conjecture (Todorcevic).
6 the failure of MA (Todorcevic).
$7 N S_{\omega_{1}}$ is presaturated (Feng).

Introduction

Theorem (ctd)
$R C^{b}$ implies:
5 the Strong Chang's Conjecture (Todorcevic).
6 the failure of MA (Todorcevic).
$7 N S_{\omega_{1}}$ is presaturated (Feng).
$8\binom{\omega_{2}}{\omega_{1}} \rightarrow\binom{\omega}{\omega}_{\omega}^{1,1}$ and $\binom{\omega_{2}}{\omega_{1}} \rightarrow\binom{k}{\omega_{1}}_{\omega}^{1,1}$ for any $k \in \omega$, namely $\forall f: \omega_{2} \times \omega_{1} \rightarrow \omega$, there exist $\boldsymbol{A} \in\left[\omega_{2}\right]^{\omega}, \boldsymbol{B} \in\left[\omega_{1}\right]^{\omega}$ such that $f \upharpoonright A \times B$ is constant (Todorcevic from CC, or Z. from the existence of a presaturated ideal) but not

Introduction

Theorem (ctd)
$R C^{b}$ implies:
5 the Strong Chang's Conjecture (Todorcevic).
6 the failure of MA (Todorcevic).
$7 N S_{\omega_{1}}$ is presaturated (Feng).
$8\binom{\omega_{2}}{\omega_{1}} \rightarrow\binom{\omega}{\omega}_{\omega}^{1,1}$ and $\binom{\omega_{2}}{\omega_{1}} \rightarrow\binom{k}{\omega_{1}}_{\omega}^{1,1}$ for any $k \in \omega$, namely $\forall f: \omega_{2} \times \omega_{1} \rightarrow \omega$, there exist $\boldsymbol{A} \in\left[\omega_{2}\right]^{\omega}, \boldsymbol{B} \in\left[\omega_{1}\right]^{\omega}$ such that $f \upharpoonright A \times B$ is constant (Todorcevic from CC, or Z. from the existence of a presaturated ideal) but not

$$
\begin{aligned}
& \binom{\omega_{2}}{\omega_{1}} \rightarrow\left[\begin{array}{c}
\omega \\
\omega_{1}
\end{array}\right]_{\omega_{1}}^{1,1} \text {, aka for all } f: \omega_{2} \times \omega_{1} \rightarrow \omega_{1} \text { there exist } \\
& A \in\left[\omega_{2}\right]^{\omega} \text { and } B \in\left[\omega_{1}\right]^{\omega_{1}} \text { such that } f^{\prime \prime} A \times B \neq \omega_{1} \text { (Z.). }
\end{aligned}
$$

Introduction

9 Along with $\neg C H$, implies ω_{2} has the strong tree property (Torres-Pérez and Wu)

Introduction

9 Along with $\neg C H$, implies ω_{2} has the strong tree property (Torres-Pérez and Wu) but not ω_{2} has the super tree property (essentially Todorcevic and Viale-Weiss).

Introduction

9 Along with $\neg C H$, implies ω_{2} has the strong tree property (Torres-Pérez and Wu) but not ω_{2} has the super tree property (essentially Todorcevic and Viale-Weiss).
10 and more ...
Torres-Pérez asked: How much fragment of $M A$ is compatible with $R C$?

Introduction

9 Along with $\neg C H$, implies ω_{2} has the strong tree property (Torres-Pérez and Wu) but not ω_{2} has the super tree property (essentially Todorcevic and Viale-Weiss).
10 and more ...
Torres-Pérez asked: How much fragment of $M A$ is compatible with $R C$?
We are motivated by the second question with $R C$ replaced by $R C^{b}$ and $M A$ replaced by PFA.

Known models of $R C^{b}$

$R C^{b}$ is known to be consistent with CH and $\neg \mathrm{CH}$. The following (due to Todorcevic) are models of $R C^{b}$ (in fact $R C$):
$1 \operatorname{Coll}\left(\omega_{1},<\kappa\right)$ where κ is a strongly compact cardinal.
$2 \mathbb{M}\left(\omega_{1},<\kappa\right)$ where κ is a strongly compact cardinal and the forcing is the Mitchell forcing (mixed support iteration) to get the tree property at ω_{2}.

Known models of $R C^{b}$

$R C^{b}$ is known to be consistent with CH and $\neg \mathrm{CH}$. The following (due to Todorcevic) are models of $R C^{b}$ (in fact $R C$):
$1 \operatorname{Coll}\left(\omega_{1},<\kappa\right)$ where κ is a strongly compact cardinal.
$2 \mathbb{M}\left(\omega_{1},<\kappa\right)$ where κ is a strongly compact cardinal and the forcing is the Mitchell forcing (mixed support iteration) to get the tree property at ω_{2}.
To show $R C^{b}$ holds in these models, it is crucial to prove appropriate versions of "Baire preservation theorems".

Baire preservation lemma

Definition

A poset \mathbb{P} is countably capturing if for any $p \in \mathbb{P}$, any \mathbb{P}-name of a countable sequence of ordinals $\dot{\tau}$, there exists another \mathbb{P}-name $\dot{\sigma}$ such that $|\dot{\sigma}| \leq \aleph_{0}$, and $q \leq p$ such that $q \Vdash_{\mathbb{P}} \dot{\tau}=\dot{\sigma}$.

Remark

Here we think of each \mathbb{P}-name $\dot{\tau}$ for a countable sequence of ordinals as represented by a function f_{τ} whose domain is ω such that for each $n \in \omega, f_{\tau}(n)=\left\{\left(\alpha_{p}, p\right): p \in A_{n}\right\}$ where A_{n} is some antichain chain of \mathbb{P} such that for each $p \in A_{n}$, $p \Vdash_{\mathbb{P}} \dot{\tau}=\alpha_{\rho}$. By saying $|\dot{\sigma}| \leq \aleph_{0}$, we really mean $\left|f_{\tilde{\sigma}}\right| \leq \aleph_{0}$.

Remark

Any proper forcing is countably capturing.

Baire preservation lemma

Lemma

Let \mathbb{P} be countably capturing and \mathbb{Q} be countably distributive. Then TFAE:
$1 \Vdash_{\mathbb{P}} \check{\mathbb{Q}}$ is countably distributive
$2 \Vdash_{\mathbb{Q}} \check{\mathbb{P}}$ is countably capturing.
Sketch of one direction.
2) implies 1): Let $G \times H$ be generic for $\mathbb{P} \times \mathbb{Q}$ and let $\dot{\tau}$ be a
$(\mathbb{P} \times \mathbb{Q})$-name of a countable sequence of ordinals. We need to show $(\dot{\tau})^{G \times H}$ is in $V[G]$. Since $\vdash_{\mathbb{Q}} \mathbb{P}$ is countably capturing, in $V[H]$ (view $(\dot{\tau})^{H}$ as a \mathbb{P}-name), there exists a nice \mathbb{P}-name $\dot{\sigma}$ with $|\dot{\sigma}| \leq \aleph_{0}$ such that in $V[H][G],(\dot{\tau})^{H \times G}=(\dot{\sigma})^{G}$. Since Q is countably distributive, $\dot{\sigma} \in V$. But then $(\dot{\tau})^{H \times G}=(\dot{\sigma})^{G} \in V[G]$.

First try: Separate $R C^{b}$ from $R C$

Definition

Let $\sigma \mathbb{R}$ denote the tree consisting of bounded subsets of \mathbb{R} well ordered by the natural order on \mathbb{R}. The tree is ordered by end-extension.

Observation
$1 \sigma \mathbb{R}$ is nonspecial (Kurepa);
$2 \sigma \mathbb{R}$ is not Baire;

First try: Separate $R C^{b}$ from $R C$

Definition

Let $\sigma \mathbb{R}$ denote the tree consisting of bounded subsets of \mathbb{R} well ordered by the natural order on \mathbb{R}. The tree is ordered by end-extension.

Observation
$1 \sigma \mathbb{R}$ is nonspecial (Kurepa);
$2 \sigma \mathbb{R}$ is not Baire;
Given a tree T, let $S(T)$ denote the Baumgartner specializing poset of T. More precisely, it contains finite functions $s: T \rightarrow \omega$ that are injective on chains.
Theorem (Baumgartner)
$S(T)$ is c.c.c iff T does not contain an uncountable branch.

First try: Separate $R C^{b}$ from $R C$

Let κ be a strongly compact cardinal. Let $\left\langle P_{i}, \dot{Q}_{j}: i \leq \kappa, j<\kappa\right\rangle$ be finite support iteration of c.c.c forcing of length κ such that $\vdash_{P_{i}} \dot{Q}_{i}=S(\sigma \mathbb{R})$.

First try: Separate $R C^{b}$ from $R C$

Let κ be a strongly compact cardinal. Let $\left\langle P_{i}, \dot{Q}_{j}: i \leq \kappa, j<\kappa\right\rangle$ be finite support iteration of c.c.c forcing of length κ such that $\Vdash_{P_{i}} \dot{Q}_{i}=S(\sigma \mathbb{R})$.
Remark
This iteration is Baire preserving. The reason is $S(\sigma \mathbb{R})$ is Baire indestructibly c.c.c.

First try: Separate $R C^{b}$ from $R C$

Let κ be a strongly compact cardinal. Let $\left\langle P_{i}, \dot{Q}_{j}: i \leq \kappa, j<\kappa\right\rangle$ be finite support iteration of c.c.c forcing of length κ such that $\vdash_{p_{i}} \dot{Q}_{i}=S(\sigma \mathbb{R})$.
Remark
This iteration is Baire preserving. The reason is $S(\sigma \mathbb{R})$ is Baire indestructibly c.c.c.
In $V^{\mathbb{P}_{\kappa}}$, all $<\kappa$-sized subset of $\sigma \mathbb{R}$ is special and any Baire tree
T, there exists a nonspecial subtree of size $<\kappa$.

First try: Separate $R C^{b}$ from $R C$

Let κ be a strongly compact cardinal. Let $\left\langle P_{i}, \dot{Q}_{j}: i \leq \kappa, j<\kappa\right\rangle$ be finite support iteration of c.c.c forcing of length κ such that $\Vdash_{P_{i}} \dot{Q}_{i}=S(\sigma \mathbb{R})$.
Remark
This iteration is Baire preserving. The reason is $S(\sigma \mathbb{R})$ is Baire indestructibly c.c.c.
In $V^{\mathbb{P}_{\kappa}}$, all $<\kappa$-sized subset of $\sigma \mathbb{R}$ is special and any Baire tree
T, there exists a nonspecial subtree of size $<\kappa$.
But we need to collapse κ to \aleph_{2} !

First try: Separate $R C^{b}$ from $R C$

Let κ be a strongly compact cardinal. Let $\left\langle P_{i}, \dot{Q}_{j}: i \leq \kappa, j<\kappa\right\rangle$ be finite support iteration of c.c.c forcing of length κ such that $\Vdash_{P_{i}} \dot{Q}_{i}=S(\sigma \mathbb{R})$.
Remark
This iteration is Baire preserving. The reason is $S(\sigma \mathbb{R})$ is Baire indestructibly c.c.c.
In $V^{\mathbb{P}_{\kappa}}$, all $<\kappa$-sized subset of $\sigma \mathbb{R}$ is special and any Baire tree
T, there exists a nonspecial subtree of size $<\kappa$.
But we need to collapse κ to \aleph_{2} ! No problem! We can do a mixed support iteration in the style of Mitchell.
Corollary (Z.)
$R C^{b}$ does not imply RC.

Enlarge the fragment

The model presented above is not satisfactory: it only contains a small fragment of MA. There are a lot more forcings that preserve Baire trees that are not included.

Enlarge the fragment

The model presented above is not satisfactory: it only contains a small fragment of MA. There are a lot more forcings that preserve Baire trees that are not included.
Recall for a Suslin tree S, the Suslinity of S is preserved under CS-iteration.

Enlarge the fragment

The model presented above is not satisfactory: it only contains a small fragment of MA. There are a lot more forcings that preserve Baire trees that are not included.
Recall for a Suslin tree S, the Suslinity of S is preserved under CS-iteration.
Ambitious: For a fixed Baire tree T, what if we try to iterate proper forcings that preserve the Baireness of T ? Is the property preserved under CS-iteration?

For any Aronszajn tree T and any stationary subset $S \subset \omega_{1}$, the S-specializing poset $Q(T, S)$, due to Shelah, is a proper forcing that adds a regressive function on S, namely in $V^{Q(T, S)}$, there exists $S_{1} \subset S$ such that $S-S_{1}$ is nonstationary and a function f defined on $T \upharpoonright S_{1}$ such that $f(t)<h t_{T}(t)$ and any $t<_{T} t^{\prime} \in \operatorname{dom}(f), f(t) \neq f\left(t^{\prime}\right)$.

No. :-(

For any Aronszajn tree T and any stationary subset $S \subset \omega_{1}$, the S-specializing poset $Q(T, S)$, due to Shelah, is a proper forcing that adds a regressive function on S, namely in $V^{Q(T, S)}$, there exists $S_{1} \subset S$ such that $S-S_{1}$ is nonstationary and a function f defined on $T \upharpoonright S_{1}$ such that $f(t)<h t_{T}(t)$ and any
$t<_{T} t^{\prime} \in \operatorname{dom}(f), f(t) \neq f\left(t^{\prime}\right)$.

Example

Let T be a Suslin tree. Let $\sqcup_{n} S_{n}=\omega_{1}$ be a decomposition of ω_{1} into stationary subsets. The CS-iteration of proper forcings $\left\langle P_{i}, \dot{Q}_{j}: i \leq \omega, j<\omega\right\rangle$ such that $\Vdash_{P_{i}} \dot{Q}_{i}=Q\left(T, S_{i}\right)$ satisfies the property that $\Vdash_{P_{i}} T$ is Baire for $i<\omega$ but $\Vdash_{P_{\omega}} T$ is special.

Semi-strongly proper forcings

Definition (Shelah)

A poset P is semi-strongly proper if for sufficiently large regular λ, for any $M \prec H(\lambda)$ containing P, for any countable sequence of dense subsets $\left\langle D_{n}: n \in \omega\right\rangle$ of $P \cap M$ and any $p \in P \cap M$, there exists $q \leq p$, such that for all $n \in \omega, q \Vdash D_{n} \cap G \neq \emptyset$. We say such q is semi-strongly generic for M and $\left\langle D_{n}: n \in \omega\right\rangle$ (or just $\left\langle D_{n}: n \in \omega\right\rangle$ if M is clear from the context). Note that we don't require $D_{n}=D \cap M$ for some $D \in M$.

Lemma
Semi-strongly proper forcings preserve Baire trees.

Lemma

Semi-strongly proper forcings preserve Baire trees.
There are at least two proofs. Here is the "cheesy" one: for any Baire tree T and any semi-strongly proper $P, \Vdash_{T} P$ is semi-strongly proper, hence by the Baire preservation lemma, $\Vdash_{P} T$ is Baire.

Lemma

Semi-strongly proper forcings preserve Baire trees.
There are at least two proofs. Here is the "cheesy" one: for any Baire tree T and any semi-strongly proper $P, \Vdash_{T} P$ is semi-strongly proper, hence by the Baire preservation lemma, $\Vdash_{P} T$ is Baire.
Theorem (Shelah)
CS-iteration of s.s.p forcings is s.s.p.
Hence we get $\operatorname{CON}\left(R C^{b}+M A_{\omega_{1}}(s . s . p)\right)$ for free.

Still not good enough

Many natural Baire preserving forcings are not s.s.p: Laver forcing, $S(\sigma \mathbb{R})$ (we hope that the fragment is strong enough to falsify $R C$) etc.

Still not good enough

Many natural Baire preserving forcings are not s.s.p: Laver forcing, $S(\sigma \mathbb{R})$ (we hope that the fragment is strong enough to falsify $R C$) etc.
Definition
A proper poset P is Baire indestructible if for any Baire tree T, $\vdash_{T} \check{P}$ is proper. We call this class Baire Indestructibly Proper (BIP).
Remark
It is possible to have an improper P and a Baire tree T such that $\Vdash_{T} P$ is proper. However, the latter implies that in V for sufficiently large regular λ, $\left\{M \in[H(\lambda)]^{\omega}: P\right.$ is proper with respect to $\left.M\right\}$ is stationary.

Preservation theorem for BIP forcings

Lemma
Let T be a Baire tree and $\left\langle P_{i}, \dot{Q}_{j}: i \leq \alpha, j<\alpha\right\rangle$ be a countable support iteration of proper forcings such that for each $i<\alpha$, $\Vdash_{T \times P_{i}} \dot{Q}_{i}$ is proper. Then $\Vdash_{T} P_{\alpha}$ is proper.

Preservation theorem for BIP forcings

Lemma
Let T be a Baire tree and $\left\langle P_{i}, \dot{Q}_{j}: i \leq \alpha, j<\alpha\right\rangle$ be a countable support iteration of proper forcings such that for each $i<\alpha$, $\Vdash_{T \times P_{i}} \dot{Q}_{i}$ is proper. Then $\Vdash_{T} P_{\alpha}$ is proper.

Corollary
CS iteration of BIP forcings is BIP. Thus CS iteration of BIP preserves Baire trees.

Preservation theorem for BIP forcings

Illustration of the main idea of the proof of the Key Lemma using two-step iteration (there is an easier argument for this case, but this idea also works in the limit case).

Preservation theorem for BIP forcings

Illustration of the main idea of the proof of the Key Lemma using two-step iteration (there is an easier argument for this case, but this idea also works in the limit case).
Fix $R=P * \dot{Q}, M \prec H(\lambda)$ containing R and a countable collection C of dense subsets of either $R \cap M$ or $P \cap M$.

Definition (Shelah)
We say C is closed under operations if for any $D \in C$ such that
D is a dense subset of $R \cap M$ and any $(p, \dot{q}) \in M \cap R$, $A_{D,(p, \dot{q})}=\left\{r \in P \cap M: r \perp p \vee \exists \dot{q}^{\prime} r^{\prime}=\operatorname{def}\left(r, \dot{q}^{\prime}\right) \in D, r^{\prime} \leq(p, \dot{q})\right\}$
is also in the collection.

Preservation theorem for BIP forcings

Illustration of the main idea of the proof of the Key Lemma using two-step iteration (there is an easier argument for this case, but this idea also works in the limit case).
Fix $R=P * \dot{Q}, M \prec H(\lambda)$ containing R and a countable collection C of dense subsets of either $R \cap M$ or $P \cap M$.

Definition (Shelah)

We say C is closed under operations if for any $D \in C$ such that
D is a dense subset of $R \cap M$ and any $(p, \dot{q}) \in M \cap R$,
$A_{D,(p, \dot{q})}=\left\{r \in P \cap M: r \perp p \vee \exists \dot{q}^{\prime} r^{\prime}={ }_{\text {def }}\left(r, \dot{q}^{\prime}\right) \in D, r^{\prime} \leq(p, \dot{q})\right\}$
is also in the collection.
Let $C_{0} \subset C$ be the collection of dense subsets of $P \cap M, C_{1} \subset C$ be the corresponding one for $R \cap M$. For any generic $G \subset P$ and any $D \in C_{1}$, let $(D)^{G}$ denote $\left\{(\dot{q})^{G}: \exists p \in G(p, \dot{q}) \in D\right\}$.

Preservation theorem for BIP forcings

Assume C is closed under operations.
Lemma (Shelah)
Fix some $q \in P$ that is semi-strongly generic for M and C_{0},
$q \Vdash_{P_{\gamma}} \dot{Q}$ is semi-strongly proper for $M[\dot{G}]$ and
$\left(C_{1}\right)^{\dot{G}}={ }_{\text {def }}\left\{(D)^{\dot{G}}: D \in C_{1}\right\}$.
Then there exists \dot{r} such that (q, \dot{r}) is semi-strongly generic for M and C_{1}.

Key lemma in the simplified scenario

Sketch of the Key Lemma:

Let $H \subset T$ be generic over V. Let λ be a sufficiently large regular cardinal containing $R=P * \dot{Q}$ and other relevant objects such that $M^{\prime}=M \cap H(\lambda)^{V} \prec H(\lambda)^{V}$.

Key lemma in the simplified scenario

Sketch of the Key Lemma:

Let $H \subset T$ be generic over V. Let λ be a sufficiently large regular cardinal containing $R=P * \dot{Q}$ and other relevant objects such that $M^{\prime}=M \cap H(\lambda)^{V} \prec H(\lambda)^{V}$. Let C_{0} be the collection of $D \cap M=D \cap M^{\prime}$ where $D \in M$ is a dense subset of P, and C_{1} be the collection of $D \cap M=D \cap M^{\prime}$ where $D \in M$ is a dense subset of R. Notice $C_{0}, C_{1} \in V$ and $C_{0} \cup C_{1}$ is closed under operations.

Claim
$\ln V, P$ is semi-strongly generic with respect to M^{\prime} and C_{0}.

Claim

In V, P is semi-strongly generic with respect to M^{\prime} and C_{0}.
Sketch.
Use the fact that $\Vdash_{T} P$ is proper.

Claim

In V, P is semi-strongly generic with respect to M^{\prime} and C_{0}.
Sketch.
Use the fact that $\Vdash_{T} P$ is proper.
Claim
In V, for any $q \in P$ that is semi-strongly generic for M^{\prime} and C_{0}, $q \Vdash_{P} \dot{Q}$ is semi-strongly proper for $M^{\prime}[\dot{G}]$ and $\left(C_{1}\right)^{\dot{G}}$.

Sketch.
Use the fact that in $V[H], \Vdash_{P} \dot{Q}$ is proper for $M[\dot{G}]$.

Claim

In V, P is semi-strongly generic with respect to M^{\prime} and C_{0}.
Sketch.
Use the fact that $\Vdash_{T} P$ is proper.
Claim
In V, for any $q \in P$ that is semi-strongly generic for M^{\prime} and C_{0}, $q \Vdash_{P} \dot{Q}$ is semi-strongly proper for $M^{\prime}[\dot{G}]$ and $\left(C_{1}\right)^{\dot{G}}$.

Sketch.
Use the fact that in $V[H], \Vdash_{P} \dot{Q}$ is proper for $M[\dot{G}]$.
Finally, we use Shelah's lemma in V to see that $R=P * \dot{Q}$ is semi-strongly proper for M^{\prime} and C_{1}. This implies that in $V[H], R$ is proper for M.

Conclusion and questions

Theorem (Z.)
$R C^{b}$ is compatible with $M A_{\omega_{1}}(B I P)$.

Conclusion and questions

Theorem (Z.)
$R C^{b}$ is compatible with $M A_{\omega_{1}}(B I P)$.
$M A_{\omega_{1}}(B I P)$ implies $\neg R C$: $S(\sigma \mathbb{R})$ is BIP.
Question

Conclusion and questions

Theorem (Z.)
$R C^{b}$ is compatible with $M A_{\omega_{1}}(B I P)$.
$M A_{\omega_{1}}(B I P)$ implies $\neg R C: S(\sigma \mathbb{R})$ is BIP.
Question
1 Can we separate $R C$ and $R C^{b}$ with a model of CH ?

Conclusion and questions

Theorem (Z.)
$R C^{b}$ is compatible with $M A_{\omega_{1}}(B I P)$.
$M A_{\omega_{1}}(B I P)$ implies $\neg R C: S(\sigma \mathbb{R})$ is BIP.
Question
1 Can we separate $R C$ and $R C^{b}$ with a model of CH ?
2 Enlarge the fragment of PFA that is compatible with $R C^{b}$.

Conclusion and questions

Theorem (Z.)
$R C^{b}$ is compatible with $M A_{\omega_{1}}(B I P)$.
$M A_{\omega_{1}}(B I P)$ implies $\neg R C: S(\sigma \mathbb{R})$ is BIP.
Question
1 Can we separate $R C$ and $R C^{b}$ with a model of CH ?
2 Enlarge the fragment of PFA that is compatible with $R C^{b}$.
3 Is $R C^{b}+C H$ consistent with $\square\left(\lambda, \omega_{1}\right)$ when $\lambda>\omega_{2}$?

Conclusion and questions

Theorem (Z.)
$R C^{b}$ is compatible with $M A_{\omega_{1}}(B I P)$.
$M A_{\omega_{1}}(B I P)$ implies $\neg R C: S(\sigma \mathbb{R})$ is BIP.
Question
1 Can we separate $R C$ and $R C^{b}$ with a model of CH ?
2 Enlarge the fragment of PFA that is compatible with $R C^{b}$.
3 Is $R C^{b}+C H$ consistent with $\square\left(\lambda, \omega_{1}\right)$ when $\lambda>\omega_{2}$?
4 ...

Conclusion and questions

Theorem (Z.)
$R C^{b}$ is compatible with $M A_{\omega_{1}}(B I P)$.
$M A_{\omega_{1}}(B I P)$ implies $\neg R C: S(\sigma \mathbb{R})$ is BIP.
Question
1 Can we separate $R C$ and $R C^{b}$ with a model of CH ?
2 Enlarge the fragment of PFA that is compatible with $R C^{b}$.
3 Is $R C^{b}+C H$ consistent with $\square\left(\lambda, \omega_{1}\right)$ when $\lambda>\omega_{2}$?
4 ... Thank you!

