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Generalized Baire spaces

Let κ be an uncountable cardinal such that κ<κ = κ.

The κ-Baire space κκ is the set of functions f : κ→ κ, with the
bounded topology: basic open sets are of the form

Ns = {f ∈ κκ : s ⊂ f}, where s ∈ <κκ.

The κ-Cantor space κ2 is defined similarly.

κ-Borel sets: close the family of open subsets under intersections
and unions of size ≤ κ and complementation.
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Open coloring axioms for subsets of the κ-Baire space

Let X ⊆ κκ.

OCAκ(X):
Suppose [X]2 = R0 ∪R1 is an open partition

(i.e. {(x, y) : {x, y} ∈ R0} is an open subset of X ×X).

Then either X is a union of κ-many R1-homogeneous sets, or
there exists an R0-homogeneous set of size κ+.

OCA∗
κ(X):

If [X]2 = R0 ∪R1 is an open partition,
then either X is a union of κ-many R1-homogeneous sets, or X
has a κ-perfect R0-homogeneous subset,

i.e., there is a continuous embedding f : κ2→ X

whose image is R0-homogeneous.



Open coloring axioms for subsets of the κ-Baire space

Let X ⊆ κκ.

OCAκ(X):
Suppose [X]2 = R0 ∪R1 is an open partition

(i.e. {(x, y) : {x, y} ∈ R0} is an open subset of X ×X).

Then either X is a union of κ-many R1-homogeneous sets, or
there exists an R0-homogeneous set of size κ+.

OCA∗
κ(X):

If [X]2 = R0 ∪R1 is an open partition,
then either X is a union of κ-many R1-homogeneous sets, or X
has a κ-perfect R0-homogeneous subset,

i.e., there is a continuous embedding f : κ2→ X

whose image is R0-homogeneous.



Open coloring axioms for subsets of the κ-Baire space

Let X ⊆ κκ.

OCAκ(X):
Suppose [X]2 = R0 ∪R1 is an open partition

(i.e. {(x, y) : {x, y} ∈ R0} is an open subset of X ×X).

Then either X is a union of κ-many R1-homogeneous sets, or
there exists an R0-homogeneous set of size κ+.

OCA∗
κ(X):

If [X]2 = R0 ∪R1 is an open partition,
then either X is a union of κ-many R1-homogeneous sets, or X
has a κ-perfect R0-homogeneous subset,

i.e., there is a continuous embedding f : κ2→ X

whose image is R0-homogeneous.



OCA∗κ(X) for κ-analytic X

κ-analytic or Σ1
1(κ) sets: continuous images of κ-Borel sets;

equivalently: continuous images of closed sets.

Theorem (Sz.)
If λ > κ is inaccessible and G is Col(κ,<λ)-generic, then

OCA∗
κ(Σ

1
1(κ)) holds in V [G].

I In the classical setting (when κ = ω), OCA∗(Σ1
1) holds in

ZFC (Feng, 1993).
I For uncountable κ = κ<κ, OCA∗

κ(Σ
1
1(κ)) is equiconsistent

with the existence of an inaccessible λ > κ by our result.
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OCA∗κ(X) for definable X ⊆ κκ

Work in progress
If λ > κ is inaccessible and G is Col(κ,<λ)-generic, then in V [G],

OCA∗
κ(X) holds for all X ⊆ κκ definable from an element of κκ.

I The classical version of this result is due to Feng (1993).
I The κ-perfect set property holds for such subsets X

(Schlicht, 2017).
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Question
Let OCAκ say: “OCAκ(X) holds for all X ⊆ κκ”.

Is OCAκ consistent?
If so, how does it influence the structure of the κ-Baire space?



Perfectness for the κ-Baire space

A subset of κκ is closed if and only if it is the set of branches

[T ] = {x ∈ κκ : x�α ∈ T for all α < κ}

of a subtree T of <κκ.

Definition
A subtree T of <κκ is a strong κ-perfect tree if T is <κ-closed
and every node of T extends to a splitting node.

A set X ⊆ κκ is a strong κ-perfect set if X = [T ] for a strong
κ-perfect tree T .
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Väänänen’s perfect set game

Perfectness was first generalized for the κ-Baire space by Väänänen,
based on the following game.

Definition (Väänänen)
Let X ⊆ κκ, let x0 ∈ X and let ω ≤ γ ≤ κ. Then Vγ(X,x0) is the
following game.

I U1 . . . Uα . . .

II x0 x1 . . . xα . . .

I plays a basic open sets Uα of X such that Uα ( Uβ for all β < α,
and xβ ∈ Uβ+1 at successor rounds α = β + 1, and Uα =

⋂
β<α Uβ at

limit rounds α.
II responds with xα ∈ Uα such that xα 6= xβ for all β < α.

Player II wins the run if she can make all her γ moves legally.
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Let X ⊆ κκ and let ω ≤ γ ≤ κ.

Definition (Väänänen)
X is γ-perfect if II wins Vγ(X,x0) for all x0 ∈ X.

X is γ-scattered if I wins Vγ(X,x0) for all x0 ∈ X.
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κ-perfect and κ-scattered trees

Definition
Let T be a subtree of <κκ, and let t0 ∈ T . Then G∗κ(T, t0) is the
following game.
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II t01, t

1
1 . . . t0α, t

1
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II plays t0α, t1α ∈ T such that t0α ⊥ t1α and tiα ⊃ t
iβ
β for all β < α and

i < 2. Then I chooses, by playing iα < 2.
(Thus, II plays a pair of disjoint basic open subsets of [T ] which are
contained in the previously chosen basic open sets).

Player II wins the run if she can make all her κ moves legally.

T is a κ-perfect tree if II wins G∗κ(T, t0) for all t0 ∈ T .
T is a κ-scattered tree if I wins G∗κ(T, t0) for all t0 ∈ T .
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κ-perfect sets and trees
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1. X is a κ-perfect set.
2. X is a union of strong κ-perfect sets.
3. X = [T ] for a κ-perfect tree [T ].

This may not hold for κ-scattered sets and trees.
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γ-perfect sets and trees

Suppose ω ≤ γ ≤ κ.
I γ-perfect (and γ-scattered) sets are defined using Väänänen’s

game.

I γ-perfect (and γ-scattered) trees can be defined using a
strong cut-and-choose game Gγ(T, t0) (Galgon, 2016).

I Gγ(T, t0) is easier for player I and harder for player II to win
than G∗γ(T, t0).

Proposition
In the γ = κ case, the games Gκ(T, t0) and G∗κ(T, t0) are
equivalent.

Thus, the two games lead to equivalent definitions of κ-perfectness and
κ-scatteredness for trees.
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γ-perfect sets and trees when γ < κ

Theorem (Sz.)
Let X ⊆ κκ and let ω ≤ γ < κ.
1. If X is a γ-perfect set, then X = [T ] for a γ-perfect tree T .

2. If κ is weakly compact and X ⊆ <κ2, then

X is a γ-perfect set ⇐⇒ X = [T ] for a γ-perfect tree T .

More generally: if κ has the tree property and T is a κ-tree, then

[T ] is a γ-perfect set ⇐⇒ T is a γ-perfect tree.

3. Analogue of these statements for “generalized Cantor-
Bendixson ranks” for subsets of κκ and for subtrees of <κκ.

Generalized Cantor-Bendixson hierarchies can be defined for subsets of the
κ-Baire space and for subtrees of <κκ, using modifications of Väänänen’s
and Galgon’s games.
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Väänänen’s generalized Cantor-Bendixson theorem

Proposition (Sz.)
The following statements are equivalent:
1. The κ-perfect set property for closed subsets of κκ

(every closed subset of κκ of size > κ has a κ-perfect subset).

2. Väänänen’s generalized Cantor-Bendixson theorem:

every closed subset of κκ is the (disjoint) union of
a κ-perfect set and a κ-scattered set, which is of size ≤ κ.

I Väänänen (1991) showed that (2) is consistent relative to the
existence of a measurable λ > κ.

I Galgon (2016) showed that (2) holds after Lévy-collapsing an
inaccessible λ > κ to κ+.
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Density in itself for the κ-Baire space

Definition
A subset Y ⊆ κκ is κ-dense in itself if Y is κ-perfect.

Theorem (Schlicht, Sz.)
If λ > κ is weakly compact and G is Col(κ,<λ)-generic, then in
V [G],

every subset of κκ of cardinality κ+

contains a κ-dense in itself subset. (1)

Väänänen (1991) showed that (1) is consistent relative to the exis-
tence of a measurable λ > κ.

Remark: The following are equivalent for any X ⊆ κκ.
I X contains a κ-dense in itself subset.
I X contains a subset whose closure is a strong κ-perfect set.
I Player II wins Väänänen’s game Vκ(X,x) for some x ∈ X.
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I Player II wins Väänänen’s game Vκ(X,x) for some x ∈ X.



Density in itself for the κ-Baire space

Definition
A subset Y ⊆ κκ is κ-dense in itself if Y is κ-perfect.

Theorem (Schlicht, Sz.)
If λ > κ is weakly compact and G is Col(κ,<λ)-generic, then in
V [G],

every subset of κκ of cardinality κ+

contains a κ-dense in itself subset. (1)

Väänänen (1991) showed that (1) is consistent relative to the exis-
tence of a measurable λ > κ.

Remark: The following are equivalent for any X ⊆ κκ.
I X contains a κ-dense in itself subset.
I X contains a subset whose closure is a strong κ-perfect set.
I Player II wins Väänänen’s game Vκ(X,x) for some x ∈ X.



Thank you!


