Relation between Ideal convergence and Sequence selection principle

Viera Šottová

joint work with Jaroslav Šupina
Institute of Mathematic, Czech Academy of Sciences, Prague
Institute of Mathematics, UPJŠ, Košice

SETTOP 2018

Diagram. Scheepers' diagram.

Diagram. Scheepers' diagram.

Covering and ideals

- The family $\mathcal{I} \subseteq \mathcal{P}(\omega)$ is called ideal, if
- it is closed under taking subsets and finite unions
- does not contain the set ω, but contains all finite subsets of ω.
- E.g.: the Frechét ideal, denoted as Fin, is a set $[\omega]^{<\aleph_{0}}$.
- For $\mathcal{A} \subseteq \mathcal{P}(M)$ we denote $\mathcal{A}^{d}=\{A \subseteq M ; M \backslash A \in \mathcal{A}\}$.

Covering and ideals

- The family $\mathcal{I} \subseteq \mathcal{P}(\omega)$ is called ideal, if
- it is closed under taking subsets and finite unions
- does not contain the set ω, but contains all finite subsets of ω.
- E.g.: the Frechét ideal, denoted as Fin, is a set $[\omega]^{<\aleph_{0}}$.
- For $\mathcal{A} \subseteq \mathcal{P}(M)$ we denote $\mathcal{A}^{d}=\{A \subseteq M ; M \backslash A \in \mathcal{A}\}$.

Let X be a topological space.

- the sequence $\left\langle U_{n}: n \in \omega\right\rangle$ of subsets of X is called an ω-cover, if for every $n \in \omega, U_{n} \neq X$ and for every finite $F \subseteq X$ there is n such that $F \subseteq U_{n}$, see [7].
- Ω is the family of all open ω-covers.

Covering and ideals

- The family $\mathcal{I} \subseteq \mathcal{P}(\omega)$ is called ideal, if
- it is closed under taking subsets and finite unions
- does not contain the set ω, but contains all finite subsets of ω.
- E.g.: the Frechét ideal, denoted as Fin, is a set $[\omega]^{<\aleph_{0}}$.
- For $\mathcal{A} \subseteq \mathcal{P}(M)$ we denote $\mathcal{A}^{d}=\{A \subseteq M ; M \backslash A \in \mathcal{A}\}$.

Let X be a topological space.

- the sequence $\left\langle U_{n}: n \in \omega\right\rangle$ of subsets of X is called an ω-cover, if for every $n \in \omega, U_{n} \neq X$ and for every finite $F \subseteq X$ there is n such that $F \subseteq U_{n}$, see [7].
- Ω is the family of all open ω-covers.
- the sequence $\left\langle U_{n}: n \in \omega\right\rangle$ of subsets of X is called γ-cover if for every $n \in \omega, U_{n} \neq X$ and for every $x \in X$, the set $\left\{n \in \omega: x \notin U_{n}\right\}$ is finite, see [7].
- Γ denotes the family of all open γ-covers of X.

Covering and ideals

- The family $\mathcal{I} \subseteq \mathcal{P}(\omega)$ is called ideal, if
- it is closed under taking subsets and finite unions
- does not contain the set ω, but contains all finite subsets of ω.
- E.g.: the Frechét ideal, denoted as Fin, is a set $[\omega]^{<\aleph_{0}}$.
- For $\mathcal{A} \subseteq \mathcal{P}(M)$ we denote $\mathcal{A}^{d}=\{A \subseteq M ; M \backslash A \in \mathcal{A}\}$.

Let X be a topological space.

- the sequence $\left\langle U_{n}: n \in \omega\right\rangle$ of subsets of X is called an ω-cover, if for every $n \in \omega, U_{n} \neq X$ and for every finite $F \subseteq X$ there is n such that $F \subseteq U_{n}$, see [7].
- Ω is the family of all open ω-covers.
- the sequence $\left\langle U_{n}: n \in \omega\right\rangle$ of subsets of X is called γ-cover if for every $n \in \omega, U_{n} \neq X$ and for every $x \in X$, the set $\left\{n \in \omega: x \notin U_{n}\right\}$ is finite, see [7].
- Γ denotes the family of all open γ-covers of X.
- the sequence $\left\langle U_{n}: n \in \omega\right\rangle$ of subsets of X is called an \mathcal{I} - γ-cover, if for every $n \in \omega, U_{n} \neq X$ and for every $x \in X$, the set $\left\{n \in \omega: x \notin U_{n}\right\} \in \mathcal{I}$, see [3].
- \mathcal{I} - Γ denotes the family of all open \mathcal{I} - γ-covers of X.
- Fin- $\Gamma=\Gamma$.

Convergences

- A sequence $\left\langle x_{n}: n \in \omega\right\rangle$ elements of a topological space X is \mathcal{I}-convergent to $x \in X$ if the set $\left\{n \in \omega: x_{n} \notin U\right\} \in \mathcal{I}$ for each neighborhood U of x, (written $x_{n} \xrightarrow{I} x$).

Convergences

- A sequence $\left\langle x_{n}: n \in \omega\right\rangle$ elements of a topological space X is \mathcal{I}-convergent to $x \in X$ if the set $\left\{n \in \omega: x_{n} \notin U\right\} \in \mathcal{I}$ for each neighborhood U of x, (written $x_{n} \xrightarrow{I} x$).

Convergences

- A sequence $\left\langle x_{n}: n \in \omega\right\rangle$ elements of a topological space X is \mathcal{I}-convergent to $x \in X$ if the set $\left\{n \in \omega: x_{n} \notin U\right\} \in \mathcal{I}$ for each neighborhood U of x, (written $x_{n} \xrightarrow{I} x$).

Convergences

- A sequence $\left\langle x_{n}: n \in \omega\right\rangle$ elements of a topological space X is \mathcal{I}-convergent to $x \in X$ if the set $\left\{n \in \omega: x_{n} \notin U\right\} \in \mathcal{I}$ for each neighborhood U of x, (written $x_{n} \xrightarrow{I} x$).
- $\mathrm{C}_{p}(X)$ denotes the set of all continuous functions on X.
- It can be equipped with inherited topology from Tychonoff product topology of $X_{\mathbb{R}}$, i.e., topology of pointwise convergence.
- Let $\left\langle f_{n}: n \in \omega\right\rangle$ be a sequence functions on X and f being function on X.

Convergences

- A sequence $\left\langle x_{n}: n \in \omega\right\rangle$ elements of a topological space X is \mathcal{I}-convergent to $x \in X$ if the set $\left\{n \in \omega: x_{n} \notin U\right\} \in \mathcal{I}$ for each neighborhood U of x, (written $x_{n} \xrightarrow{I} x$).
- $\mathrm{C}_{p}(X)$ denotes the set of all continuous functions on X.
- It can be equipped with inherited topology from Tychonoff product topology of $X_{\mathbb{R}}$, i.e., topology of pointwise convergence.
- Let $\left\langle f_{n}: n \in \omega\right\rangle$ be a sequence functions on X and f being function on X.
- $f_{n} \xrightarrow{\mathcal{I}} f \Leftrightarrow\left\{n \in \omega:\left|f_{n}(x)-f(x)\right| \geq \varepsilon\right\} \in \mathcal{I}$ for each $x \in X$ and for each $\varepsilon>0$.

Convergences

- A sequence $\left\langle x_{n}: n \in \omega\right\rangle$ elements of a topological space X is \mathcal{I}-convergent to $x \in X$ if the set $\left\{n \in \omega: x_{n} \notin U\right\} \in \mathcal{I}$ for each neighborhood U of x, (written $x_{n} \xrightarrow{\mathcal{I}} x$).
- $\mathrm{C}_{p}(X)$ denotes the set of all continuous functions on X.
- It can be equipped with inherited topology from Tychonoff product topology of $X_{\mathbb{R}}$, i.e., topology of pointwise convergence.
- Let $\left\langle f_{n}: n \in \omega\right\rangle$ be a sequence functions on X and f being function on X.
- $f_{n} \xrightarrow{\mathcal{I}} f \Leftrightarrow\left\{n \in \omega:\left|f_{n}(x)-f(x)\right| \geq \varepsilon\right\} \in \mathcal{I}$ for each $x \in X$ and for each $\varepsilon>0$.
- The sequence $\left\langle f_{n}: n \in \omega\right\rangle$ is called \mathcal{I}-quasi-normal convergent to f on X if there exists a sequence of positive reals $\left\langle\varepsilon_{n}: n \in \omega\right\rangle$ and $\varepsilon_{n} \xrightarrow{\mathcal{I}} 0$ such that $\left\{n \in \omega:\left|f_{n}(x)-f(x)\right| \geq \varepsilon_{n}\right\} \in \mathcal{I}$ for any $x \in X$, denoted $f_{n} \xrightarrow{\text { IQN }} f$. $\left\langle\varepsilon_{n}: n \in \omega\right\rangle$ is called control sequence

Convergences

- A sequence $\left\langle x_{n}: n \in \omega\right\rangle$ elements of a topological space X is \mathcal{I}-convergent to $x \in X$ if the set $\left\{n \in \omega: x_{n} \notin U\right\} \in \mathcal{I}$ for each neighborhood U of x, (written $x_{n} \xrightarrow{\mathcal{I}} x$).
- $\mathrm{C}_{p}(X)$ denotes the set of all continuous functions on X.
- It can be equipped with inherited topology from Tychonoff product topology of $X_{\mathbb{R}}$, i.e., topology of pointwise convergence.
- Let $\left\langle f_{n}: n \in \omega\right\rangle$ be a sequence functions on X and f being function on X.
- $f_{n} \xrightarrow{\mathcal{I}} f \Leftrightarrow\left\{n \in \omega:\left|f_{n}(x)-f(x)\right| \geq \varepsilon\right\} \in \mathcal{I}$ for each $x \in X$ and for each $\varepsilon>0$.
- The sequence $\left\langle f_{n}: n \in \omega\right\rangle$ is called \mathcal{I}-quasi-normal convergent to f on X if there exists a sequence of positive reals $\left\langle\varepsilon_{n}: n \in \omega\right\rangle$ and $\varepsilon_{n} \xrightarrow{\mathcal{I}} 0$ such that $\left\{n \in \omega:\left|f_{n}(x)-f(x)\right| \geq \varepsilon_{n}\right\} \in \mathcal{I}$ for any $x \in X$, denoted $f_{n} \xrightarrow{\text { IQN }} f$. $\left\langle\varepsilon_{n}: n \in \omega\right\rangle$ is called control sequence
- especially, if control sequence is $\left\langle 2^{-n}: n \in \omega\right\rangle$ we are talking about strongly \mathcal{I}-quasi normal convergence of f_{n} to f, written $f_{n} \xrightarrow{\text { sIQN }} f$.

Convergences

$$
\text { classical convergence } \Rightarrow \mathcal{I} \text {-convergence }
$$

QN-convergence \Rightarrow sIQN-convergence $\Rightarrow \mathcal{I}$ QN-convergence

Convergences

$$
\text { classical convergence } \Rightarrow \mathcal{I} \text {-convergence }
$$

QN-convergence \Rightarrow sIQN-convergence $\Rightarrow \mathcal{I}$ QN-convergence

Similarly to M. Scheepers [8] we define

- $\Omega_{x}(X)=\left\{A \in{ }^{\omega}(X \backslash\{x\}): x \in \overline{\{y:(\exists n \in \omega) A(n)=y\}}\right\}$.
- \mathcal{I} - $\Gamma_{x}(X)=\left\{A \in{ }^{\omega}(X \backslash\{x\}): A\right.$ is \mathcal{I}-convergent to $\left.x\right\}$.

Convergences

$$
\text { classical convergence } \Rightarrow \mathcal{I} \text {-convergence }
$$

QN-convergence \Rightarrow sIQN-convergence $\Rightarrow \mathcal{I}$ QN-convergence

Similarly to M. Scheepers [8] we define

- $\Omega_{x}(X)=\left\{A \in{ }^{\omega}(X \backslash\{x\}): x \in \overline{\{y:(\exists n \in \omega) A(n)=y\}}\right\}$.
- \mathcal{I} - $\Gamma_{x}(X)=\left\{A \in{ }^{\omega}(X \backslash\{x\}): A\right.$ is \mathcal{I}-convergent to $\left.x\right\}$.
- Let $\mathbf{0}$ denote constant zero-value function on X.

Convergences

$$
\begin{gathered}
\text { classical convergence } \Rightarrow \mathcal{I} \text {-convergence } \\
\text { QN-convergence } \Rightarrow s \mathcal{I} \text { QN-convergence } \Rightarrow \mathcal{I} \text { QN-convergence }
\end{gathered}
$$

Similarly to M. Scheepers [8] we define

- $\Omega_{x}(X)=\left\{A \in{ }^{\omega}(X \backslash\{x\}): x \in \overline{\{y:(\exists n \in \omega) A(n)=y\}}\right\}$.
- \mathcal{I} - $\Gamma_{x}(X)=\left\{A \in{ }^{\omega}(X \backslash\{x\}): A\right.$ is \mathcal{I}-convergent to $\left.x\right\}$.
- Let $\mathbf{0}$ denote constant zero-value function on X.
- We will omit $\mathrm{C}_{p}(X)$ from notation \mathcal{I} - $\Gamma_{\mathbf{0}}\left(\mathrm{C}_{p}(X)\right)$ i.e., \mathcal{I} - $\Gamma_{\mathbf{0}}$.

Convergences

$$
\begin{gathered}
\text { classical convergence } \Rightarrow \mathcal{I} \text {-convergence } \\
\text { QN-convergence } \Rightarrow s \mathcal{I} \text { QN-convergence } \Rightarrow \mathcal{I} \text { QN-convergence }
\end{gathered}
$$

Similarly to M. Scheepers [8] we define

- $\Omega_{x}(X)=\left\{A \in{ }^{\omega}(X \backslash\{x\}): x \in \overline{\{y:(\exists n \in \omega) A(n)=y\}}\right\}$.
- \mathcal{I} - $\Gamma_{x}(X)=\left\{A \in{ }^{\omega}(X \backslash\{x\}): A\right.$ is \mathcal{I}-convergent to $\left.x\right\}$.
- Let $\mathbf{0}$ denote constant zero-value function on X.
- We will omit $\mathrm{C}_{p}(X)$ from notation $\mathcal{I}-\Gamma_{\mathbf{0}}\left(\mathrm{C}_{p}(X)\right)$ i.e., \mathcal{I} - $\Gamma_{\mathbf{0}}$.
- We use Γ_{0} instead of Fin- Γ_{0}.

Selection principle $\mathrm{S}_{1}(\mathcal{P}, \mathcal{R})$

Let \mathcal{P} and \mathcal{R} be families of sets.

Selection principle $\mathrm{S}_{1}(\mathcal{P}, \mathcal{R})$

Let \mathcal{P} and \mathcal{R} be families of sets.

- X has $\binom{\mathcal{P}}{\mathcal{R}}$ if for any $P \in \mathcal{P}$ we can select a set $R \in \mathcal{R}$ such that $R \subseteq P$. [7]

Selection principle $\mathrm{S}_{1}(\mathcal{P}, \mathcal{R})$

Let \mathcal{P} and \mathcal{R} be families of sets.

- X has $\binom{\mathcal{P}}{\mathcal{R}}$ if for any $P \in \mathcal{P}$ we can select a set $R \in \mathcal{R}$ such that $R \subseteq P$. [7]
- X has $\left[\begin{array}{l}\mathcal{P} \\ \mathcal{R}\end{array}\right]$ or X is a $[\mathcal{P}, \mathcal{R}]$-space if for every $\left\langle p_{n}: n \in \omega\right\rangle \in \mathcal{P}$ there is $\left\langle n_{m}: m \in \omega\right\rangle$ such that $\left\langle p_{n_{m}}: m \in \omega\right\rangle \in \mathcal{R}$.

Selection principle $\mathrm{S}_{1}(\mathcal{P}, \mathcal{R})$

Let \mathcal{P} and \mathcal{R} be families of sets.

- X has $\binom{\mathcal{P}}{\mathcal{R}}$ if for any $P \in \mathcal{P}$ we can select a set $R \in \mathcal{R}$ such that $R \subseteq P$. [7]
- X has $\left[\begin{array}{l}\mathcal{P} \\ \mathcal{R}\end{array}\right]$ or X is a $[\mathcal{P}, \mathcal{R}]$-space if for every $\left\langle p_{n}: n \in \omega\right\rangle \in \mathcal{P}$ there is $\left\langle n_{m}: m \in \omega\right\rangle$ such that $\left\langle p_{n_{m}}: m \in \omega\right\rangle \in \mathcal{R}$.
- If \mathcal{P} and \mathcal{R} denote convergences then X is a $\left[\mathcal{P}_{p}, \mathcal{R}_{p}\right]$-space if for every $\left\langle p_{n}: n \in \omega\right\rangle$ such that $p_{n} \xrightarrow{\mathcal{P}} p$ there is $\left\langle n_{m}: m \in \omega\right\rangle$ such that $p_{n_{m}} \xrightarrow{\mathcal{R}} p$.

Selection principle $\mathrm{S}_{1}(\mathcal{P}, \mathcal{R})$

Let \mathcal{P} and \mathcal{R} be families of sets.

- X has $\binom{\mathcal{P}}{\mathcal{R}}$ if for any $P \in \mathcal{P}$ we can select a set $R \in \mathcal{R}$ such that $R \subseteq P$. [7]
- X has $\left[\begin{array}{l}\mathcal{P} \\ \mathcal{R}\end{array}\right]$ or X is a $[\mathcal{P}, \mathcal{R}]$-space if for every $\left\langle p_{n}: n \in \omega\right\rangle \in \mathcal{P}$ there is $\left\langle n_{m}: m \in \omega\right\rangle$ such that $\left\langle p_{n_{m}}: m \in \omega\right\rangle \in \mathcal{R}$.
- If \mathcal{P} and \mathcal{R} denote convergences then X is a $\left[\mathcal{P}_{p}, \mathcal{R}_{p}\right]$-space if for every $\left\langle p_{n}: n \in \omega\right\rangle$ such that $p_{n} \xrightarrow{\mathcal{P}} p$ there is $\left\langle n_{m}: m \in \omega\right\rangle$ such that $p_{n_{m}} \xrightarrow{\mathcal{R}} p$.
- X is an $\mathrm{S}_{1}(\mathcal{P}, \mathcal{R})$-space if for a sequence $\left\langle\mathcal{U}_{n}: n \in \omega\right\rangle$ of elements of \mathcal{P} we can select a set $U_{n} \in \mathcal{U}_{n}$ for each $n \in \omega$ such that $\left\langle U_{n}: n \in \omega\right\rangle$ is a member of \mathcal{R}. [7]

Selection principle $\mathrm{S}_{1}(\mathcal{P}, \mathcal{R})$

Let \mathcal{P} and \mathcal{R} be families of sets.

- X has $\binom{\mathcal{P}}{\mathcal{R}}$ if for any $P \in \mathcal{P}$ we can select a set $R \in \mathcal{R}$ such that $R \subseteq P$. [7]
- X has $\left[\begin{array}{l}\mathcal{P} \\ \mathcal{R}\end{array}\right]$ or X is a $[\mathcal{P}, \mathcal{R}]$-space if for every $\left\langle p_{n}: n \in \omega\right\rangle \in \mathcal{P}$ there is $\left\langle n_{m}: m \in \omega\right\rangle$ such that $\left\langle p_{n_{m}}: m \in \omega\right\rangle \in \mathcal{R}$.
- If \mathcal{P} and \mathcal{R} denote convergences then X is a $\left[\mathcal{P}_{p}, \mathcal{R}_{p}\right]$-space if for every $\left\langle p_{n}: n \in \omega\right\rangle$ such that $p_{n} \xrightarrow{\mathcal{P}} p$ there is $\left\langle n_{m}: m \in \omega\right\rangle$ such that $p_{n_{m}} \xrightarrow{\mathcal{R}} p$.
- X is an $\mathrm{S}_{1}(\mathcal{P}, \mathcal{R})$-space if for a sequence $\left\langle\mathcal{U}_{n}: n \in \omega\right\rangle$ of elements of \mathcal{P} we can select a set $U_{n} \in \mathcal{U}_{n}$ for each $n \in \omega$ such that $\left\langle U_{n}: n \in \omega\right\rangle$ is a member of \mathcal{R}. [7]
$\mathrm{S}_{1}(\Gamma, \Gamma)$ can be sketched by follow way

\mathcal{U}_{1}-cover of X

\mathcal{U}_{2}-cover of X

\mathcal{U}_{3}-cover of X

Selection principle $\mathrm{S}_{1}(\mathcal{P}, \mathcal{R})$

Let \mathcal{P} and \mathcal{R} be families of sets.

- X has $\binom{\mathcal{P}}{\mathcal{R}}$ if for any $P \in \mathcal{P}$ we can select a set $R \in \mathcal{R}$ such that $R \subseteq P$. [7]
- X has $\left[\begin{array}{l}\mathcal{P} \\ \mathcal{R}\end{array}\right]$ or X is a $[\mathcal{P}, \mathcal{R}]$-space if for every $\left\langle p_{n}: n \in \omega\right\rangle \in \mathcal{P}$ there is $\left\langle n_{m}: m \in \omega\right\rangle$ such that $\left\langle p_{n_{m}}: m \in \omega\right\rangle \in \mathcal{R}$.
- If \mathcal{P} and \mathcal{R} denote convergences then X is a $\left[\mathcal{P}_{p}, \mathcal{R}_{p}\right]$-space if for every $\left\langle p_{n}: n \in \omega\right\rangle$ such that $p_{n} \xrightarrow{\mathcal{P}} p$ there is $\left\langle n_{m}: m \in \omega\right\rangle$ such that $p_{n_{m}} \xrightarrow{\mathcal{R}} p$.
- X is an $\mathrm{S}_{1}(\mathcal{P}, \mathcal{R})$-space if for a sequence $\left\langle\mathcal{U}_{n}: n \in \omega\right\rangle$ of elements of \mathcal{P} we can select a set $U_{n} \in \mathcal{U}_{n}$ for each $n \in \omega$ such that $\left\langle U_{n}: n \in \omega\right\rangle$ is a member of \mathcal{R}. [7]
$\mathrm{S}_{1}(\Gamma, \Gamma)$ can be sketched by follow way

\mathcal{U}_{1}-cover of X

\mathcal{U}_{2}-cover of X

\mathcal{U}_{3}-cover of X

new one cover of X

Selection principle $\mathrm{S}_{1}(\mathcal{P}, \mathcal{R})$

Let \mathcal{P} and \mathcal{R} be families of sets.

- X has $\binom{\mathcal{P}}{\mathcal{R}}$ if for any $P \in \mathcal{P}$ we can select a set $R \in \mathcal{R}$ such that $R \subseteq P$. [7]
- X has $\left[\begin{array}{l}\mathcal{P} \\ \mathcal{R}\end{array}\right]$ or X is a $[\mathcal{P}, \mathcal{R}]$-space if for every $\left\langle p_{n}: n \in \omega\right\rangle \in \mathcal{P}$ there is $\left\langle n_{m}: m \in \omega\right\rangle$ such that $\left\langle p_{n_{m}}: m \in \omega\right\rangle \in \mathcal{R}$.
- If \mathcal{P} and \mathcal{R} denote convergences then X is a $\left[\mathcal{P}_{p}, \mathcal{R}_{p}\right]$-space if for every $\left\langle p_{n}: n \in \omega\right\rangle$ such that $p_{n} \xrightarrow{\mathcal{P}} p$ there is $\left\langle n_{m}: m \in \omega\right\rangle$ such that $p_{n_{m}} \xrightarrow{\mathcal{R}} p$.
- X is an $\mathrm{S}_{1}(\mathcal{P}, \mathcal{R})$-space if for a sequence $\left\langle\mathcal{U}_{n}: n \in \omega\right\rangle$ of elements of \mathcal{P} we can select a set $U_{n} \in \mathcal{U}_{n}$ for each $n \in \omega$ such that $\left\langle U_{n}: n \in \omega\right\rangle$ is a member of \mathcal{R}. [7]
$\mathrm{S}_{1}(\Gamma, \Gamma)$ can be sketched by follow way

\mathcal{U}_{1}-cover of X

\mathcal{U}_{2}-cover of X

\mathcal{U}_{3}-cover of X

new one cover of X

Selection principle $\mathrm{S}_{1}(\mathcal{P}, \mathcal{R})$

Let \mathcal{P} and \mathcal{R} be families of sets.

- X has $\binom{\mathcal{P}}{\mathcal{R}}$ if for any $P \in \mathcal{P}$ we can select a set $R \in \mathcal{R}$ such that $R \subseteq P$. [7]
- X has $\left[\begin{array}{l}\mathcal{P} \\ \mathcal{R}\end{array}\right]$ or X is a $[\mathcal{P}, \mathcal{R}]$-space if for every $\left\langle p_{n}: n \in \omega\right\rangle \in \mathcal{P}$ there is $\left\langle n_{m}: m \in \omega\right\rangle$ such that $\left\langle p_{n_{m}}: m \in \omega\right\rangle \in \mathcal{R}$.
- If \mathcal{P} and \mathcal{R} denote convergences then X is a $\left[\mathcal{P}_{p}, \mathcal{R}_{p}\right]$-space if for every $\left\langle p_{n}: n \in \omega\right\rangle$ such that $p_{n} \xrightarrow{\mathcal{P}} p$ there is $\left\langle n_{m}: m \in \omega\right\rangle$ such that $p_{n_{m}} \xrightarrow{\mathcal{R}} p$.
- X is an $\mathrm{S}_{1}(\mathcal{P}, \mathcal{R})$-space if for a sequence $\left\langle\mathcal{U}_{n}: n \in \omega\right\rangle$ of elements of \mathcal{P} we can select a set $U_{n} \in \mathcal{U}_{n}$ for each $n \in \omega$ such that $\left\langle U_{n}: n \in \omega\right\rangle$ is a member of \mathcal{R}. [7]
$\mathrm{S}_{1}(\Gamma, \Gamma)$ can be sketched by follow way

\mathcal{U}_{1}-cover of X

\mathcal{U}_{2}-cover of X

\mathcal{U}_{3}-cover of X

new one cover of X

Selection principle $\mathrm{S}_{1}(\mathcal{P}, \mathcal{R})$

Let \mathcal{P} and \mathcal{R} be families of sets.

- X has $\binom{\mathcal{P}}{\mathcal{R}}$ if for any $P \in \mathcal{P}$ we can select a set $R \in \mathcal{R}$ such that $R \subseteq P$. [7]
- X has $\left[\begin{array}{l}\mathcal{P} \\ \mathcal{R}\end{array}\right]$ or X is a $[\mathcal{P}, \mathcal{R}]$-space if for every $\left\langle p_{n}: n \in \omega\right\rangle \in \mathcal{P}$ there is $\left\langle n_{m}: m \in \omega\right\rangle$ such that $\left\langle p_{n_{m}}: m \in \omega\right\rangle \in \mathcal{R}$.
- If \mathcal{P} and \mathcal{R} denote convergences then X is a $\left[\mathcal{P}_{p}, \mathcal{R}_{p}\right]$-space if for every $\left\langle p_{n}: n \in \omega\right\rangle$ such that $p_{n} \xrightarrow{\mathcal{P}} p$ there is $\left\langle n_{m}: m \in \omega\right\rangle$ such that $p_{n_{m}} \xrightarrow{\mathcal{R}} p$.
- X is an $\mathrm{S}_{1}(\mathcal{P}, \mathcal{R})$-space if for a sequence $\left\langle\mathcal{U}_{n}: n \in \omega\right\rangle$ of elements of \mathcal{P} we can select a set $U_{n} \in \mathcal{U}_{n}$ for each $n \in \omega$ such that $\left\langle U_{n}: n \in \omega\right\rangle$ is a member of \mathcal{R}. [7]

Let \mathcal{I}, \mathcal{J} be ideals on ω. Then $\mathrm{S}_{1}\left(\mathcal{I}-\Gamma_{\mathbf{0}}, \mathcal{J}-\Gamma_{\mathbf{0}}\right)$ can be imagined by follow way

Covering $\mathrm{S}_{1}(\mathcal{P}, \mathcal{R})$ and $\mathrm{S}_{1}(\mathcal{P}, \mathcal{R})$ for functions

Observation

(1) If X is an $\mathrm{S}_{1}(\Gamma, \mathcal{J}-\Gamma)$-space then X is an $\mathrm{S}_{1}(\Gamma, \Omega)$-space.
(2) If $\mathrm{C}_{p}(X)$ is an $\mathrm{S}_{1}\left(\Gamma_{\mathbf{0}}, \mathcal{J}\right.$ - $\left.\Gamma_{\mathbf{0}}\right)$-space then $\mathrm{C}_{p}(X)$ is an $\mathrm{S}_{\mathbf{1}}\left(\Gamma_{\mathbf{0}}, \Omega_{\mathbf{0}}\right)$-space.

Covering $\mathrm{S}_{1}(\mathcal{P}, \mathcal{R})$ and $\mathrm{S}_{1}(\mathcal{P}, \mathcal{R})$ for functions

Observation

(1) If X is an $\mathrm{S}_{1}(\Gamma, \mathcal{J}-\Gamma)$-space then X is an $\mathrm{S}_{1}(\Gamma, \Omega)$-space.
(2) If $\mathrm{C}_{p}(X)$ is an $\mathrm{S}_{1}\left(\Gamma_{\mathbf{0}}, \mathcal{J}\right.$ - $\left.\Gamma_{\mathbf{0}}\right)$-space then $\mathrm{C}_{p}(X)$ is an $\mathrm{S}_{\mathbf{1}}\left(\Gamma_{\mathbf{0}}, \Omega_{\mathbf{0}}\right)$-space.

Proposition (V.Š.,J.Šupina)

Let X be a topological space. Then
(1) X is an $\mathrm{S}_{1}(\mathcal{I}-\Gamma, \Gamma)$-space if and only if X has $\left[\begin{array}{c}\mathcal{I}-\Gamma \\ \Gamma\end{array}\right]$ and $\mathrm{S}_{1}(\Gamma, \Gamma)$.
(2) $\mathrm{C}_{p}(X)$ is an $\mathrm{S}_{1}\left(\mathcal{I}-\Gamma_{\mathbf{0}}, \Gamma_{\mathbf{0}}\right)$-space if and only if $\mathrm{C}_{p}(X)$ has $\left[\begin{array}{c}\mathcal{I}-\Gamma_{\mathbf{0}} \\ \Gamma_{\mathbf{0}}\end{array}\right]$ and $\mathrm{S}_{1}\left(\Gamma_{\mathbf{0}}, \Gamma_{\mathbf{0}}\right)$.

Covering $\mathrm{S}_{1}(\mathcal{P}, \mathcal{R})$ and $\mathrm{S}_{1}(\mathcal{P}, \mathcal{R})$ for functions

Observation

(1) If X is an $\mathrm{S}_{1}(\Gamma, \mathcal{J}-\Gamma)$-space then X is an $\mathrm{S}_{1}(\Gamma, \Omega)$-space.
(2) If $\mathrm{C}_{p}(X)$ is an $\mathrm{S}_{1}\left(\Gamma_{\mathbf{0}}, \mathcal{J}-\Gamma_{\mathbf{0}}\right)$-space then $\mathrm{C}_{p}(X)$ is an $\mathrm{S}_{1}\left(\Gamma_{\mathbf{0}}, \Omega_{\mathbf{0}}\right)$-space.

Proposition (V.Š.,J.Šupina)

Let X be a topological space. Then
(1) X is an $\mathrm{S}_{1}(\mathcal{I}-\Gamma, \Gamma)$-space if and only if X has $\left[\begin{array}{c}\mathcal{I}-\Gamma \\ \Gamma\end{array}\right]$ and $\mathrm{S}_{1}(\Gamma, \Gamma)$.
(2) $\mathrm{C}_{p}(X)$ is an $\mathrm{S}_{1}\left(\mathcal{I}-\Gamma_{\mathbf{0}}, \Gamma_{\mathbf{0}}\right)$-space if and only if $\mathrm{C}_{p}(X)$ has $\left[\begin{array}{c}\mathcal{I}-\Gamma_{\mathbf{0}} \\ \Gamma_{\mathbf{0}}\end{array}\right]$ and $\mathrm{S}_{1}\left(\Gamma_{\mathbf{0}}, \Gamma_{\mathbf{0}}\right)$.

Lemma (V.Š., J.Šupina)

(1) For any countable ω-cover \mathcal{U} of X and its bijective enumeration $\left\langle U_{n}: n \in \omega\right\rangle$ there is an ideal \mathcal{I} such that $\left\langle U_{n}: n \in \omega\right\rangle$ is an \mathcal{I} - γ-cover.
(2) For any countable family of functions \mathcal{E} on X such that $\mathbf{0} \in \overline{\mathcal{E} \backslash\{\mathbf{0}\}}$ and its bijective enumeration $\left\langle f_{n}: n \in \omega\right\rangle$ there is an ideal \mathcal{I} such that $f_{n} \xrightarrow{\mathcal{I}} \mathbf{0}$.

Covering $\mathrm{S}_{1}(\mathcal{P}, \mathcal{R})$ and $\mathrm{S}_{1}(\mathcal{P}, \mathcal{R})$ for functions

Let us recall a folklore result by J. Gerlits and Zs. Nagy [4] for a Tychonoff space X : X has $\binom{\Omega}{\Gamma} \Leftrightarrow X$ has $\mathrm{S}_{1}(\Omega, \Gamma) \Leftrightarrow \mathrm{C}_{p}(X)$ has $\binom{\Omega_{\mathbf{0}}}{\Gamma_{\mathbf{0}}} \Leftrightarrow \mathrm{C}_{p}(X)$ has $\mathrm{S}_{\mathbf{1}}\left(\Omega_{\mathbf{0}}, \Gamma_{\mathbf{0}}\right)$.

Covering $\mathrm{S}_{1}(\mathcal{P}, \mathcal{R})$ and $\mathrm{S}_{1}(\mathcal{P}, \mathcal{R})$ for functions

Let us recall a folklore result by J. Gerlits and Zs. Nagy [4] for a Tychonoff space X : X has $\binom{\Omega}{\Gamma} \Leftrightarrow X$ has $\mathrm{S}_{1}(\Omega, \Gamma) \Leftrightarrow \mathrm{C}_{p}(X)$ has $\binom{\Omega_{\mathbf{0}}}{\Gamma_{\mathbf{0}}} \Leftrightarrow \mathrm{C}_{p}(X)$ has $\mathrm{S}_{1}\left(\Omega_{\mathbf{0}}, \Gamma_{\mathbf{0}}\right)$.

Theorem (V.Š.,J.Šupina)

Let X be a Tychonoff topological space. The following statements are equivalent.
(a) X is an $\mathrm{S}_{1}(\Omega, \Gamma)$-space.
(b) X is an $\mathrm{S}_{1}(\mathcal{I}-\Gamma, \Gamma)$-space for every ideal \mathcal{I}.
(c) $\mathrm{C}_{p}(X)$ is an $\mathrm{S}_{1}\left(\mathcal{I}-\Gamma_{\mathbf{0}}, \Gamma_{\mathbf{0}}\right)$-space for every ideal \mathcal{I}.
(d) X has $\left[\begin{array}{c}\mathcal{I}-\Gamma \\ \Gamma\end{array}\right]$ for every ideal \mathcal{I}.
(e) $\mathrm{C}_{p}(X)$ has $\left[\begin{array}{c}\mathcal{I}-\Gamma_{\mathbf{0}} \\ \Gamma_{\mathbf{0}}\end{array}\right]$ for every ideal \mathcal{I}.

Covering $\mathrm{S}_{1}(\mathcal{P}, \mathcal{R})$ and $\mathrm{S}_{1}(\mathcal{P}, \mathcal{R})$ for functions

Theorem (V.Š.,J.Šupina)

Let X be a Tychonoff topological space. The following statements are equivalent.
(a) X is an $\mathrm{S}_{1}(\Omega, \Gamma)$-space.
(b) X is an $\mathrm{S}_{1}(\mathcal{I}-\Gamma, \Gamma)$-space for every ideal \mathcal{I}.
(c) $\mathrm{C}_{p}(X)$ is an $\mathrm{S}_{1}\left(\mathcal{I}-\Gamma_{\mathbf{0}}, \Gamma_{\mathbf{0}}\right)$-space for every ideal \mathcal{I}.
(d) X has $\left[\begin{array}{c}\mathcal{I}-\Gamma \\ \Gamma\end{array}\right]$ for every ideal \mathcal{I}.
(e) $\mathrm{C}_{p}(X)$ has $\left[\begin{array}{c}\mathcal{I}-\Gamma_{0} \\ \Gamma_{\mathbf{0}}\end{array}\right]$ for every ideal \mathcal{I}.

Diagram. Covering selection principles.

Covering $\mathrm{S}_{1}(\mathcal{P}, \mathcal{R})$ and $\mathrm{S}_{1}(\mathcal{P}, \mathcal{R})$ for functions

Theorem (V.Š.,J.Šupina)

Let X be a Tychonoff topological space. The following statements are equivalent.
(a) X is an $\mathrm{S}_{1}(\Omega, \Gamma)$-space.
(b) X is an $\mathrm{S}_{1}(\mathcal{I}-\Gamma, \Gamma)$-space for every ideal \mathcal{I}.
(c) $\mathrm{C}_{p}(X)$ is an $\mathrm{S}_{1}\left(\mathcal{I}-\Gamma_{\mathbf{0}}, \Gamma_{\mathbf{0}}\right)$-space for every ideal \mathcal{I}.
(d) X has $\left[\begin{array}{c}\mathcal{I}-\Gamma \\ \Gamma\end{array}\right]$ for every ideal \mathcal{I}.
(e) $\mathrm{C}_{p}(X)$ has $\left[\begin{array}{c}\mathcal{I}-\Gamma_{0} \\ \Gamma_{\mathbf{0}}\end{array}\right]$ for every ideal \mathcal{I}.

Diagram. Selection principles for functions.

Monotonne version of $\mathrm{S}_{1}(\mathcal{P}, \mathcal{R})$ for functions

- We say that a sequence $\left\langle f_{n}: n \in \omega\right\rangle$ is monotone sequence if for any $n \in \omega$ and $x \in X$ we have $f_{n}(x) \geq f_{n+1}(x)$.

Monotonne version of $\mathrm{S}_{1}(\mathcal{P}, \mathcal{R})$ for functions

- We say that a sequence $\left\langle f_{n}: n \in \omega\right\rangle$ is monotone sequence if for any $n \in \omega$ and $x \in X$ we have $f_{n}(x) \geq f_{n+1}(x)$.
- $\Gamma_{\mathbf{0}}^{m}=\left\{A \in{ }^{\omega}\left(\mathrm{C}_{p}(X) \backslash\{\mathbf{0}\}\right)\right.$: A is monotone and convergent to $\left.\mathbf{0}\right\}$.

Monotonne version of $\mathrm{S}_{1}(\mathcal{P}, \mathcal{R})$ for functions

- We say that a sequence $\left\langle f_{n}: n \in \omega\right\rangle$ is monotone sequence if for any $n \in \omega$ and $x \in X$ we have $f_{n}(x) \geq f_{n+1}(x)$.
- $\Gamma_{\mathbf{0}}^{m}=\left\{A \in{ }^{\omega}\left(\mathrm{C}_{p}(X) \backslash\{\mathbf{0}\}\right): A\right.$ is monotone and convergent to $\left.\mathbf{0}\right\}$.
- We say that a sequence $\left\langle f_{n}: n \in \omega\right\rangle$ is \mathcal{I}-monotone sequence if $\left\{n: f_{n} \not \leq f_{m}\right\} \in \mathcal{I}$ for every $m \in \omega$.

Monotonne version of $\mathrm{S}_{1}(\mathcal{P}, \mathcal{R})$ for functions

- We say that a sequence $\left\langle f_{n}: n \in \omega\right\rangle$ is monotone sequence if for any $n \in \omega$ and $x \in X$ we have $f_{n}(x) \geq f_{n+1}(x)$.
- $\Gamma_{\mathbf{0}}^{m}=\left\{A \in{ }^{\omega}\left(\mathrm{C}_{p}(X) \backslash\{\mathbf{0}\}\right): A\right.$ is monotone and convergent to $\left.\mathbf{0}\right\}$.
- We say that a sequence $\left\langle f_{n}: n \in \omega\right\rangle$ is \mathcal{I}-monotone sequence if $\left\{n: f_{n} \not \leq f_{m}\right\} \in \mathcal{I}$ for every $m \in \omega$.
- \mathcal{I} - $\Gamma_{\mathbf{0}}^{m}=\left\{A \in{ }^{\omega}\left(\mathrm{C}_{p}(X) \backslash\{\mathbf{0}\}\right): A\right.$ is \mathcal{I}-monotone and \mathcal{I}-convergent to $\left.\mathbf{0}\right\}$.

Monotonne version of $\mathrm{S}_{1}(\mathcal{P}, \mathcal{R})$ for functions

- We say that a sequence $\left\langle f_{n}: n \in \omega\right\rangle$ is monotone sequence if for any $n \in \omega$ and $x \in X$ we have $f_{n}(x) \geq f_{n+1}(x)$.
- $\Gamma_{\mathbf{0}}^{m}=\left\{A \in{ }^{\omega}\left(\mathrm{C}_{p}(X) \backslash\{\mathbf{0}\}\right): A\right.$ is monotone and convergent to $\left.\mathbf{0}\right\}$.
- We say that a sequence $\left\langle f_{n}: n \in \omega\right\rangle$ is \mathcal{I}-monotone sequence if $\left\{n: f_{n} \not \leq f_{m}\right\} \in \mathcal{I}$ for every $m \in \omega$.
- \mathcal{I} - $\Gamma_{\mathbf{0}}^{m}=\left\{A \in{ }^{\omega}\left(\mathrm{C}_{p}(X) \backslash\{\mathbf{0}\}\right): A\right.$ is \mathcal{I}-monotone and \mathcal{I}-convergent to $\left.\mathbf{0}\right\}$.

Lemma (V.Š., J.Šupina)

Let X be a topological space.
(1) $\mathrm{C}_{p}(X)$ has the property $\mathrm{S}_{1}\left(\Gamma_{\mathbf{0}}^{\mathrm{m}}, \mathcal{J}-\Gamma_{\mathbf{0}}\right)$ if and only if $\mathrm{C}_{p}(X)$ has the property $\mathrm{S}_{1}\left(\mathrm{Fin}-\Gamma_{\mathbf{0}}^{\mathrm{m}}, \mathcal{J}-\Gamma_{\mathbf{0}}\right)$.
(2) $\mathrm{C}_{p}(X)$ has the property $\left[\begin{array}{c}\Gamma_{\mathrm{O}}^{\mathrm{m}} \\ \mathcal{J} \mathrm{QN}_{\mathbf{0}}\end{array}\right]$ if and only if $\mathrm{C}_{p}(X)$ has the property $\left[\begin{array}{c}\mathrm{Fin}-\Gamma_{\mathrm{O}}^{\mathrm{m}} \\ \mathcal{J Q N} \\ \mathbf{0}\end{array}\right]$.
(3) $\mathrm{C}_{p}(X)$ has the property $\left[\begin{array}{c}\Gamma_{\mathbf{0}}^{m} \\ { }_{s} \mathcal{J} \mathrm{NN}_{\mathbf{0}}\end{array}\right]$ if and only if $\mathrm{C}_{p}(X)$ has the property $\left[\begin{array}{c}\mathrm{Fin}-\Gamma_{0}^{m} \\ { }_{s} \mathcal{J} Q N_{0}\end{array}\right]$.

Monotonne version of $\mathrm{S}_{1}(\mathcal{P}, \mathcal{R})$ for functions

- We say that a sequence $\left\langle f_{n}: n \in \omega\right\rangle$ is monotone sequence if for any $n \in \omega$ and $x \in X$ we have $f_{n}(x) \geq f_{n+1}(x)$.
- $\Gamma_{\mathbf{0}}^{m}=\left\{A \in{ }^{\omega}\left(\mathrm{C}_{p}(X) \backslash\{\mathbf{0}\}\right)\right.$: A is monotone and convergent to $\left.\mathbf{0}\right\}$.
- We say that a sequence $\left\langle f_{n}: n \in \omega\right\rangle$ is \mathcal{I}-monotone sequence if $\left\{n: f_{n} \not \leq f_{m}\right\} \in \mathcal{I}$ for every $m \in \omega$.
- $\mathcal{I}-\Gamma_{\mathbf{0}}^{m}=\left\{A \in{ }^{\omega}\left(\mathrm{C}_{p}(X) \backslash\{\mathbf{0}\}\right): A\right.$ is \mathcal{I}-monotone and \mathcal{I}-convergent to $\left.\mathbf{0}\right\}$.

$$
\mathrm{S}_{1}\left(\Gamma_{\mathbf{0}}^{\mathrm{m}}, \Gamma_{\mathbf{0}}\right) \rightarrow \mathrm{S}_{1}\left(\Gamma_{\mathbf{0}}^{\mathrm{m}}, \mathcal{J}-\Gamma_{\mathbf{0}}\right)
$$

Monotonne version of $\mathrm{S}_{1}(\mathcal{P}, \mathcal{R})$ for functions

- We say that a sequence $\left\langle f_{n}: n \in \omega\right\rangle$ is monotone sequence if for any $n \in \omega$ and $x \in X$ we have $f_{n}(x) \geq f_{n+1}(x)$.
- $\Gamma_{\mathbf{0}}^{m}=\left\{A \in{ }^{\omega}\left(\mathrm{C}_{p}(X) \backslash\{\mathbf{0}\}\right): A\right.$ is monotone and convergent to $\left.\mathbf{0}\right\}$.
- We say that a sequence $\left\langle f_{n}: n \in \omega\right\rangle$ is \mathcal{I}-monotone sequence if $\left\{n: f_{n} \not \leq f_{m}\right\} \in \mathcal{I}$ for every $m \in \omega$.
- \mathcal{I} - $\Gamma_{\mathbf{0}}^{m}=\left\{A \in{ }^{\omega}\left(\mathrm{C}_{p}(X) \backslash\{\mathbf{0}\}\right): A\right.$ is \mathcal{I}-monotone and \mathcal{I}-convergent to $\left.\mathbf{0}\right\}$.

$$
\begin{gathered}
\mathrm{S}_{1}\left(\Gamma_{\mathbf{0}}^{\mathrm{m}}, \Gamma_{\mathbf{0}}\right) \rightarrow \mathrm{S}_{1}\left(\Gamma_{\mathbf{0}}^{\mathrm{m}}, \mathcal{J}-\Gamma_{\mathbf{0}}\right) \\
\mathrm{S}_{1}\left(\mathcal{I}-\Gamma_{\mathbf{0}}, \mathcal{J}-\Gamma_{\mathbf{0}}\right) \rightarrow \mathrm{S}_{1}\left(\mathcal{I}-\Gamma_{\mathbf{0}}^{\mathrm{m}}, \mathcal{J}-\Gamma_{\mathbf{0}}\right)
\end{gathered}
$$

Conection between coverings and functions

- We say that a topological space X has \mathcal{J}-Hurewicz property if for each sequence $\left\langle\mathcal{U}_{n}: n \in \omega\right\rangle$ of open covers of X there are finite $\mathcal{V}_{n} \subset \mathcal{U}_{n}, n \in \omega$ such that for each $x \in X,\left\{n \in \omega: x \notin \bigcup \mathcal{V}_{n}\right\} \in \mathcal{J}$.[3].

Conection between coverings and functions

- We say that a topological space X has \mathcal{J}-Hurewicz property if for each sequence $\left\langle\mathcal{U}_{n}: n \in \omega\right\rangle$ of open covers of X there are finite $\mathcal{V}_{n} \subset \mathcal{U}_{n}, n \in \omega$ such that for each $x \in X,\left\{n \in \omega: x \notin \bigcup \mathcal{V}_{n}\right\} \in \mathcal{J}$.[3].
- P. Szewczak and B. Tsaban [10] showed

Hurewicz $\longrightarrow \mathcal{J}$-Hurewicz \longrightarrow Menger.

Conection between coverings and functions

- We say that a topological space X has \mathcal{J}-Hurewicz property if for each sequence $\left\langle\mathcal{U}_{n}: n \in \omega\right\rangle$ of open covers of X there are finite $\mathcal{V}_{n} \subset \mathcal{U}_{n}, n \in \omega$ such that for each $x \in X,\left\{n \in \omega: x \notin \bigcup \mathcal{V}_{n}\right\} \in \mathcal{J}$.[3].
- P. Szewczak and B. Tsaban [10] showed

Hurewicz $\longrightarrow \mathcal{J}$-Hurewicz \longrightarrow Menger.

Proposition (V.Š., J.Šupina)

If X is a perfectly normal topological space then the following are equivalent. Moreover, if X is arbitrary topological space then $(\mathrm{a}) \equiv(\mathrm{b})$.
(a) $\mathrm{C}_{p}(X)$ has $\left[\begin{array}{c}\Gamma_{\mathrm{J}}^{\mathrm{m}} \mathrm{JN}_{\mathbf{0}}\end{array}\right]$.
(b) $\mathrm{C}_{p}(X)$ has the property $\mathrm{S}_{1}\left(\Gamma_{\mathbf{0}}^{\mathrm{m}}, \mathcal{J}-\Gamma_{\mathbf{0}}\right)$.
(c) X possesses a \mathcal{J}-Hurewicz property.

Conection between coverings and functions

- We say that a topological space X has \mathcal{J}-Hurewicz property if for each sequence $\left\langle\mathcal{U}_{n}: n \in \omega\right\rangle$ of open covers of X there are finite $\mathcal{V}_{n} \subset \mathcal{U}_{n}, n \in \omega$ such that for each $x \in X,\left\{n \in \omega: x \notin \bigcup \mathcal{V}_{n}\right\} \in \mathcal{J}$.[3].
- P. Szewczak and B. Tsaban [10] showed

Hurewicz $\longrightarrow \mathcal{J}$-Hurewicz \longrightarrow Menger.

Diagram. Monotonic selection principles for functions.

Conection between coverings and functions

Theorem (L. Bukovský, P. Das, J.Šupina.[1])

Let \mathcal{I}, \mathcal{J} be ideals on ω. If X is a normal topological space then the following are equivalent.
Moreover, the equivalence $(\mathrm{a}) \equiv(\mathrm{b})$ holds for arbitrary topological space X.
(a) $\mathrm{C}_{p}(X)$ has $\left[\begin{array}{c}\mathcal{I}-\Gamma_{0} \\ { }_{s} \mathrm{JQN}_{\mathbf{0}}\end{array}\right]$.
(b) $\mathrm{C}_{p}(X)$ is an $\mathrm{S}_{1}\left(\mathcal{I}-\Gamma_{\mathbf{0}}, \mathcal{J}-\Gamma_{\mathbf{0}}\right)$-space.
(c) X is an $S_{1}\left(\mathcal{I}-\Gamma^{s h}, \mathcal{J}-\Gamma\right)$-space.

Conection between coverings and functions

Theorem (L. Bukovský, P. Das, J.Šupina.[1])

Let \mathcal{I}, \mathcal{J} be ideals on ω. If X is a normal topological space then the following are equivalent.
Moreover, the equivalence $(\mathrm{a}) \equiv(\mathrm{b})$ holds for arbitrary topological space X.
(a) $\mathrm{C}_{p}(X)$ has $\left[\begin{array}{c}\mathcal{I}-\Gamma_{0} \\ { }_{s} \mathrm{JQN}_{\mathbf{0}}\end{array}\right]$.
(b) $\mathrm{C}_{p}(X)$ is an $\mathrm{S}_{1}\left(\mathcal{I}-\Gamma_{\mathbf{0}}, \mathcal{J}-\Gamma_{\mathbf{0}}\right)$-space.
(c) X is an $S_{1}\left(\mathcal{I}-\Gamma^{s h}, \mathcal{J}-\Gamma\right)$-space.

- As a corollary L. Bukovský, P. Das and J. Š. obtained the ideal version of Scheepers' result [9].

$$
\mathrm{S}_{1}(\mathcal{I}-\Gamma, \mathcal{J}-\Gamma) \rightarrow S_{1}\left(\mathcal{I}-\Gamma^{s h}, \mathcal{J}-\Gamma\right) \Leftrightarrow \mathrm{S}_{1}\left(\mathcal{I}-\Gamma_{\mathbf{0}}, \mathcal{J}-\Gamma_{\mathbf{0}}\right) \rightarrow \mathrm{S}_{1}\left(\mathcal{I}-\Gamma_{\mathbf{0}}^{\mathrm{m}}, \mathcal{J}-\Gamma_{\mathbf{0}}\right)
$$

Conection between coverings and functions

Diagram. The overall relations of investigated properties.

Cardinal invariants

- non $\left(\mathrm{S}_{1}(\mathcal{I}-\Gamma, \mathcal{J}-\Gamma)\right.$-space $)$ denotes the minimal cardinality of a perfectly normal space which is not an $\mathrm{S}_{1}(\mathcal{I}-\Gamma, \mathcal{J}-\Gamma)$-space.

Cardinal invariants

- non $\left(\mathrm{S}_{1}(\mathcal{I}-\Gamma, \mathcal{J}-\Gamma)\right.$-space) denotes the minimal cardinality of a perfectly normal space which is not an $\mathrm{S}_{1}(\mathcal{I}-\Gamma, \mathcal{J}-\Gamma)$-space.

Let $\mathcal{A} \subseteq \mathcal{P}(\omega)$.

Cardinal invariants

- $\operatorname{non}\left(\mathrm{S}_{1}(\mathcal{I}-\Gamma, \mathcal{J}-\Gamma)\right.$-space $)$ denotes the minimal cardinality of a perfectly normal space which is not an $\mathrm{S}_{1}(\mathcal{I}-\Gamma, \mathcal{J}-\Gamma)$-space.

Let $\mathcal{A} \subseteq \mathcal{P}(\omega)$.

- a sequence $s \in{ }^{\omega} \mathcal{A}$ will be called an \mathcal{A}-slalom.

Cardinal invariants

- non $\left(\mathrm{S}_{1}(\mathcal{I}-\Gamma, \mathcal{J}-\Gamma)\right.$-space $)$ denotes the minimal cardinality of a perfectly normal space which is not an $\mathrm{S}_{1}(\mathcal{I}-\Gamma, \mathcal{J}-\Gamma)$-space.

Let $\mathcal{A} \subseteq \mathcal{P}(\omega)$.

- a sequence $s \in{ }^{\omega} \mathcal{A}$ will be called an \mathcal{A}-slalom.
- a function $\varphi \in{ }^{\omega} \omega \mathcal{J}$-goes through \mathcal{A}-slalom s if $\{n: \varphi(n) \in s(n)\} \in \mathcal{J}^{d}$, i.e., $\{n: \varphi(n) \in \omega \backslash s(n)\} \in \mathcal{J}$.
- We say that φ goes through \mathcal{I}-slalom instead of φ Fin-goes through \mathcal{I}-slalom.

Cardinal invariants

- non $\left(\mathrm{S}_{1}(\mathcal{I}-\Gamma, \mathcal{J}-\Gamma)\right.$-space $)$ denotes the minimal cardinality of a perfectly normal space which is not an $\mathrm{S}_{1}(\mathcal{I}-\Gamma, \mathcal{J}-\Gamma)$-space.

Let $\mathcal{A} \subseteq \mathcal{P}(\omega)$.

- a sequence $s \in{ }^{\omega} \mathcal{A}$ will be called an \mathcal{A}-slalom.
- a function $\varphi \in{ }^{\omega} \omega \mathcal{J}$-goes through \mathcal{A}-slalom s if $\{n: \varphi(n) \in s(n)\} \in \mathcal{J}^{d}$, i.e., $\{n: \varphi(n) \in \omega \backslash s(n)\} \in \mathcal{J}$.
- We say that φ goes through \mathcal{I}-slalom instead of φ Fin-goes through \mathcal{I}-slalom.

$$
\mathfrak{b}=\min \left\{|\mathcal{R}|: \mathcal{R} \subseteq{ }^{\omega} \omega,(\forall \text { Fin-slalom } s)(\exists \varphi \in \mathcal{R}) \neg(\varphi \text { goes through } s)\right\}
$$

Cardinal invariants

- non $\left(\mathrm{S}_{1}(\mathcal{I}-\Gamma, \mathcal{J}-\Gamma)\right.$-space $)$ denotes the minimal cardinality of a perfectly normal space which is not an $\mathrm{S}_{1}(\mathcal{I}-\Gamma, \mathcal{J}-\Gamma)$-space.

Let $\mathcal{A} \subseteq \mathcal{P}(\omega)$.

- a sequence $s \in{ }^{\omega} \mathcal{A}$ will be called an \mathcal{A}-slalom.
- a function $\varphi \in{ }^{\omega} \omega \mathcal{J}$-goes through \mathcal{A}-slalom s if $\{n: \varphi(n) \in s(n)\} \in \mathcal{J}^{d}$, i.e., $\{n: \varphi(n) \in \omega \backslash s(n)\} \in \mathcal{J}$.
- We say that φ goes through \mathcal{I}-slalom instead of φ Fin-goes through \mathcal{I}-slalom.

$$
\begin{gathered}
\mathfrak{b}=\min \left\{|\mathcal{R}|: \mathcal{R} \subseteq{ }^{\omega} \omega,(\forall \text { Fin-slalom } s)(\exists \varphi \in \mathcal{R}) \neg(\varphi \text { goes through } s)\right\} \\
\lambda(\mathcal{I}, \mathcal{J})=\min \left\{|\mathcal{R}|: \mathcal{R} \text { contains } \mathcal{I}^{d} \text {-slaloms, }\left(\forall \varphi \in{ }^{\omega} \omega\right)(\exists s \in \mathcal{R}) \neg(\varphi \mathcal{J} \text {-goes through } s)\right\}
\end{gathered}
$$

Cardinal invariants

- non $\left(\mathrm{S}_{1}(\mathcal{I}-\Gamma, \mathcal{J}-\Gamma)\right.$-space $)$ denotes the minimal cardinality of a perfectly normal space which is not an $\mathrm{S}_{1}(\mathcal{I}-\Gamma, \mathcal{J}-\Gamma)$-space.

Let $\mathcal{A} \subseteq \mathcal{P}(\omega)$.

- a sequence $s \in{ }^{\omega} \mathcal{A}$ will be called an \mathcal{A}-slalom.
- a function $\varphi \in{ }^{\omega} \omega \mathcal{J}$-goes through \mathcal{A}-slalom s if $\{n: \varphi(n) \in s(n)\} \in \mathcal{J}^{d}$, i.e., $\{n: \varphi(n) \in \omega \backslash s(n)\} \in \mathcal{J}$.
- We say that φ goes through \mathcal{I}-slalom instead of φ Fin-goes through \mathcal{I}-slalom.

$$
\begin{gathered}
\mathfrak{b}=\min \left\{|\mathcal{R}|: \mathcal{R} \subseteq{ }^{\omega} \omega,(\forall \text { Fin-slalom } s)(\exists \varphi \in \mathcal{R}) \neg(\varphi \text { goes through } s)\right\} . \\
\lambda(\mathcal{I}, \mathcal{J})= \\
\min \left\{|\mathcal{R}|: \mathcal{R} \text { contains } \mathcal{I}^{d} \text {-slaloms, }\left(\forall \varphi \in{ }^{\omega} \omega\right)(\exists s \in \mathcal{R}) \neg(\varphi \mathcal{J} \text {-goes through } s)\right\} \\
\operatorname{cov}^{*}(\mathcal{I})=\min \left\{|\mathcal{A}|: \mathcal{A} \subseteq \mathcal{I} \wedge\left(\forall S \in[\omega]^{\omega}\right)(\exists A \in \mathcal{A})|S \cap A|=\omega\right\} .
\end{gathered}
$$

Cardinal invariants

- non $\left(\mathrm{S}_{1}(\mathcal{I}-\Gamma, \mathcal{J}-\Gamma)\right.$-space $)$ denotes the minimal cardinality of a perfectly normal space which is not an $\mathrm{S}_{1}(\mathcal{I}-\Gamma, \mathcal{J}-\Gamma)$-space.

Let $\mathcal{A} \subseteq \mathcal{P}(\omega)$.

- a sequence $s \in{ }^{\omega} \mathcal{A}$ will be called an \mathcal{A}-slalom.
- a function $\varphi \in{ }^{\omega} \omega \mathcal{J}$-goes through \mathcal{A}-slalom s if $\{n: \varphi(n) \in s(n)\} \in \mathcal{J}^{d}$, i.e., $\{n: \varphi(n) \in \omega \backslash s(n)\} \in \mathcal{J}$.
- We say that φ goes through \mathcal{I}-slalom instead of φ Fin-goes through \mathcal{I}-slalom.

$$
\begin{gathered}
\mathfrak{b}=\min \left\{|\mathcal{R}|: \mathcal{R} \subseteq{ }^{\omega} \omega,(\forall \text { Fin-slalom } s)(\exists \varphi \in \mathcal{R}) \neg(\varphi \text { goes through } s)\right\} . \\
\lambda(\mathcal{I}, \mathcal{J})=\min \left\{|\mathcal{R}|: \mathcal{R} \text { contains } \mathcal{I}^{d} \text {-slaloms, }\left(\forall \varphi \in{ }^{\omega} \omega\right)(\exists s \in \mathcal{R}) \neg(\varphi \mathcal{J} \text {-goes through } s)\right\} \\
\operatorname{cov}^{*}(\mathcal{I})=\min \left\{|\mathcal{A}|: \mathcal{A} \subseteq \mathcal{I} \wedge\left(\forall S \in[\omega]^{\omega}\right)(\exists A \in \mathcal{A})|S \cap A|=\omega\right\} . \\
\mathfrak{k}_{\mathcal{I}, \mathcal{J}}=\min \left\{|\mathcal{A}|: \mathcal{A} \subseteq \mathcal{I} \wedge \mathcal{A} \not \mathbb{Z}_{K} \mathcal{J}\right\} .
\end{gathered}
$$

Cardinal invariants

- J. Šupina's results [12]: $\quad \lambda($ Fin, $\mathcal{J})=\mathfrak{b}_{\mathcal{J}}$ and if $\mathcal{I}_{1} \leq_{K} \mathcal{I}_{2}$ and $\mathcal{J}_{1} \leq{ }_{K B} \mathcal{J}_{2}$ then $\lambda\left(\mathcal{I}_{2}, \mathcal{J}_{1}\right) \leq \lambda\left(\mathcal{I}_{1}, \mathcal{J}_{2}\right)$.

Cardinal invariants

- J. Šupina's results [12]: $\quad \lambda($ Fin, $\mathcal{J})=\mathfrak{b}_{\mathcal{J}}$ and if $\mathcal{I}_{1} \leq_{K} \mathcal{I}_{2}$ and $\mathcal{J}_{1} \leq_{K B} \mathcal{J}_{2}$ then $\lambda\left(\mathcal{I}_{2}, \mathcal{J}_{1}\right) \leq \lambda\left(\mathcal{I}_{1}, \mathcal{J}_{2}\right)$.

Theorem (V.Š., J.Šupina)

(1) If $\mathcal{I} \not \mathbb{Z}_{K} \mathcal{J}$ then $\lambda(\mathcal{I}, \mathcal{J}) \leq \min \left\{\mathfrak{k}_{\mathcal{I}, \mathcal{J}}, \mathfrak{b}_{\mathcal{J}}\right\}$.
(2) If $\mathcal{I} \not \mathbb{K}_{K} \mathcal{J}$ and $\mathcal{J} \leq_{K} \mathcal{I}$ then $\lambda(\mathcal{I}, \mathcal{J})=\min \left\{\mathfrak{k}_{\mathcal{I}, \mathcal{J}}, \lambda(\mathcal{J}, \mathcal{J})\right\}$.
(3) If \mathcal{I} is tall then $\lambda(\mathcal{I}$, Fin $)=\min \left\{\operatorname{cov}^{*}(\mathcal{I}), \mathfrak{b}\right\}$.

Cardinal invariants

- J. Šupina's results [12]: $\quad \lambda($ Fin, $\mathcal{J})=\mathfrak{b}_{\mathcal{J}}$ and

$$
\text { if } \mathcal{I}_{1} \leq{ }_{K} \mathcal{I}_{2} \text { and } \mathcal{J}_{1} \leq{ }_{K B} \mathcal{J}_{2} \text { then } \lambda\left(\mathcal{I}_{2}, \mathcal{J}_{1}\right) \leq \lambda\left(\mathcal{I}_{1}, \mathcal{J}_{2}\right) .
$$

Theorem (V.Š., J.Šupina)

(1) If $\mathcal{I} \not \mathbb{Z}_{K} \mathcal{J}$ then $\lambda(\mathcal{I}, \mathcal{J}) \leq \min \left\{\mathfrak{k}_{\mathcal{I}, \mathcal{J}}, \mathfrak{b}_{\mathcal{J}}\right\}$.
(2) If $\mathcal{I} \not \mathbb{K}_{K} \mathcal{J}$ and $\mathcal{J} \leq_{K} \mathcal{I}$ then $\lambda(\mathcal{I}, \mathcal{J})=\min \left\{\mathfrak{k}_{\mathcal{I}, \mathcal{J}}, \lambda(\mathcal{J}, \mathcal{J})\right\}$.
(3) If \mathcal{I} is tall then $\lambda(\mathcal{I}$, Fin $)=\min \left\{\operatorname{cov}^{*}(\mathcal{I}), \mathfrak{b}\right\}$.

Diagram. Cardinal $\lambda(\mathcal{I}, \mathcal{J})$.

Critical cardinality

Theorem (V.Š., J.Šupina)

Let \mathcal{I}, \mathcal{J} be ideals on ω, D being a discrete topological space. Then the following statements are equivalent.
(a) D is an $\mathrm{S}_{1}(\mathcal{I}-\Gamma, \mathcal{J}-\Gamma)$-space.
(b) $\mathrm{C}_{p}(D)$ has $\left[\begin{array}{c}\mathcal{I}-\Gamma_{\mathbf{0}} \\ { }_{s} \mathrm{QN}_{\mathbf{0}}\end{array}\right]$.
(c) $\mathrm{C}_{p}(D)$ has the property $\mathrm{S}_{1}\left(\mathcal{I}-\Gamma_{\mathbf{0}}, \mathcal{J}-\Gamma_{\mathbf{0}}\right)$
(d) $\mathrm{C}_{p}(D)$ has the property $\mathrm{S}_{1}\left(\mathcal{I}-\Gamma_{\mathbf{0}}^{\mathrm{m}}, \mathcal{J}-\Gamma_{\mathbf{0}}\right)$.
(e) $|D|<\lambda(\mathcal{I}, \mathcal{J})$.

Theorem (A. Kwela-M. Repický)

Let D be a discrete topological space. Then the following statements are equivalent.
(a) $|D|<\operatorname{cov}^{*}(\mathcal{I})$.
(b) $\mathrm{C}_{p}(D)$ has $\left[\begin{array}{c}\mathrm{IQN}_{\mathrm{O}} \\ \mathrm{QN}_{\mathbf{O}}\end{array}\right]$.
(c) $\mathrm{C}_{p}(D)$ has $\left[\begin{array}{c}\mathcal{I}-\Gamma_{\mathbf{0}} \\ \Gamma_{\mathbf{0}}\end{array}\right]$.
(d) D has the property $\left[\begin{array}{c}\mathcal{I}-\Gamma \\ \Gamma\end{array}\right]$.

Critical cardinality

- Let $\mathcal{I}, \mathcal{J} \subseteq \mathcal{P}(\omega)$ be ideals.
(1) $\operatorname{non}\left(\mathrm{S}_{\mathbf{1}}\left(\mathcal{I}-\Gamma_{\mathbf{0}}, \mathcal{J}-\Gamma_{\mathbf{0}}\right)\right)=\operatorname{non}\left(\mathrm{S}_{\mathbf{1}}\left(\mathcal{I}-\Gamma_{\mathbf{0}}^{\mathrm{m}}, \mathcal{J}-\Gamma_{\mathbf{0}}\right)\right)=\operatorname{non}\left(\left[\left[_{\mathbf{s}}^{\mathcal{I}-\Gamma_{\mathrm{J}}} \mathbf{0} \mathrm{N}_{\mathbf{0}}\right]\right)=\lambda(\mathcal{I}, \mathcal{J})\right.$.
(2) $\operatorname{non}\left(\mathrm{S}_{1}\left(\Gamma_{\mathbf{0}}, \mathcal{J}-\Gamma_{\mathbf{0}}\right)\right)=\operatorname{non}\left(\mathrm{S}_{1}\left(\Gamma_{\mathbf{0}}^{\mathrm{m}}, \mathcal{J}-\Gamma_{\mathbf{0}}\right)\right)=\operatorname{non}\left(\left[{ }_{\mathrm{S}_{\mathcal{J}}}^{\Gamma_{\mathbf{0}} \mathrm{N}_{\mathbf{0}}}\right]\right)=\mathfrak{b}_{\mathcal{J}}$.

Critical cardinality

- Let $\mathcal{I}, \mathcal{J} \subseteq \mathcal{P}(\omega)$ be ideals.
(1) $\operatorname{non}\left(\mathrm{S}_{1}\left(\mathcal{I}-\Gamma_{\mathbf{0}}, \mathcal{J}-\Gamma_{\mathbf{0}}\right)\right)=\operatorname{non}\left(\mathrm{S}_{1}\left(\mathcal{I}-\Gamma_{\mathbf{0}}^{\mathrm{m}}, \mathcal{J}-\Gamma_{\mathbf{0}}\right)\right)=\operatorname{non}\left(\left[\left[_{\mathbf{s}}^{\mathcal{I} Q \mathrm{\Gamma}_{\mathbf{0}}}\right]\right)=\lambda(\mathcal{I}, \mathcal{J})\right.$.
(2) $\operatorname{non}\left(\mathrm{S}_{1}\left(\Gamma_{\mathbf{0}}, \mathcal{J}-\Gamma_{\mathbf{0}}\right)\right)=\operatorname{non}\left(\mathrm{S}_{1}\left(\Gamma_{\mathbf{0}}^{\mathrm{m}}, \mathcal{J}-\Gamma_{\mathbf{0}}\right)\right)=\operatorname{non}\left(\left[\begin{array}{c}\Gamma_{\mathbf{J}} \mathrm{J}_{\mathbf{0}}\end{array}\right]\right)=\mathfrak{b}_{\mathcal{J}}$.
- If \mathcal{I} is tall then
(3) $\operatorname{non}\left(\mathrm{S}_{1}(\mathcal{I}-\Gamma, \Gamma)\right)=\operatorname{non}\left(\mathrm{S}_{1}\left(\mathcal{I}-\Gamma_{\mathbf{0}}, \Gamma_{\mathbf{0}}\right)\right)=\operatorname{non}\left(\mathrm{S}_{1}\left(\mathcal{I}-\Gamma_{\mathbf{0}}^{m}, \Gamma_{\mathbf{0}}\right)\right)=\operatorname{non}\left(\left[\begin{array}{c}\mathcal{I}-\Gamma_{\mathbf{0}} \\ \mathrm{QN}_{\mathbf{0}}\end{array}\right]\right)=$ $\min \left\{\operatorname{cov}^{*}(\mathcal{I}), \mathfrak{b}\right\}$.
(4) (A. Kwela-M. Repický) $\operatorname{non}\left(\left[\begin{array}{c}\mathcal{I} \mathrm{QN}_{\mathbf{0}} \\ \mathrm{QN}_{\mathbf{0}}\end{array}\right]\right)=\operatorname{non}\left(\left[\begin{array}{c}\mathcal{I}-\Gamma_{\mathbf{0}} \\ \Gamma_{\mathbf{0}}\end{array}\right]\right)=\operatorname{non}\left(\left[\begin{array}{c}\mathcal{I}-\Gamma \\ \Gamma\end{array}\right]\right)=\operatorname{cov}^{*}(\mathcal{I})$.

Critical cardinality

- Let $\mathcal{I}, \mathcal{J} \subseteq \mathcal{P}(\omega)$ be ideals.
(1) $\operatorname{non}\left(\mathrm{S}_{1}\left(\mathcal{I}-\Gamma_{\mathbf{0}}, \mathcal{J}-\Gamma_{\mathbf{0}}\right)\right)=\operatorname{non}\left(\mathrm{S}_{1}\left(\mathcal{I}-\Gamma_{\mathbf{0}}^{\mathrm{m}}, \mathcal{J}-\Gamma_{\mathbf{0}}\right)\right)=\operatorname{non}\left(\left[\left[_{\mathbf{s}}^{\mathcal{I} Q \mathrm{\Gamma}_{\mathbf{0}}}\right]\right)=\lambda(\mathcal{I}, \mathcal{J})\right.$.
(2) $\operatorname{non}\left(\mathrm{S}_{1}\left(\Gamma_{\mathbf{0}}, \mathcal{J}-\Gamma_{\mathbf{0}}\right)\right)=\operatorname{non}\left(\mathrm{S}_{1}\left(\Gamma_{\mathbf{0}}^{\mathrm{m}}, \mathcal{J}-\Gamma_{\mathbf{0}}\right)\right)=\operatorname{non}\left(\left[\begin{array}{c}\Gamma_{\mathbf{J}}{ }_{\mathbf{O}} \mathrm{N}_{\mathbf{0}}\end{array}\right]\right)=\mathfrak{b}_{\mathcal{J}}$.
- If \mathcal{I} is tall then
(3) $\operatorname{non}\left(\mathrm{S}_{1}(\mathcal{I}-\Gamma, \Gamma)\right)=\operatorname{non}\left(\mathrm{S}_{1}\left(\mathcal{I}-\Gamma_{\mathbf{0}}, \Gamma_{\mathbf{0}}\right)\right)=\operatorname{non}\left(\mathrm{S}_{1}\left(\mathcal{I}-\Gamma_{\mathbf{0}}^{m}, \Gamma_{\mathbf{0}}\right)\right)=\operatorname{non}\left(\left[\begin{array}{c}\mathcal{I}-\Gamma_{\mathbf{0}} \\ \mathrm{QN}_{\mathbf{0}}\end{array}\right]\right)=$ $\min \left\{\operatorname{cov}^{*}(\mathcal{I}), \mathfrak{b}\right\}$.
(4) (A. Kwela-M. Repický) $\operatorname{non}\left(\left[\begin{array}{c}\mathcal{I} \mathrm{QN}_{\mathbf{0}} \\ \mathrm{QN}_{\mathbf{0}}\end{array}\right]\right)=\operatorname{non}\left(\left[\begin{array}{c}\mathcal{I}-\Gamma_{\mathbf{0}} \\ \Gamma_{\mathbf{0}}\end{array}\right]\right)=\operatorname{non}\left(\left[\begin{array}{c}\mathcal{I}-\Gamma \\ \Gamma\end{array}\right]\right)=\operatorname{cov}^{*}(\mathcal{I})$.
- Consistency
(1) If $\mathfrak{b}=\mathfrak{c}$ then $\operatorname{non}\left(\mathrm{S}_{1}(\mathcal{I}-\Gamma, \Gamma)\right)=\operatorname{cov}^{*}(\mathcal{I})$ for every tall ideal \mathcal{I}.
(2) If $\mathfrak{b}<\operatorname{cov}^{*}(\mathcal{I})$ then $\operatorname{non}\left(\mathrm{S}_{1}(\mathcal{I}-\Gamma, \Gamma)\right)<\operatorname{cov}^{*}(\mathcal{I})$ for every tall ideal \mathcal{I}.
(3) If $\mathfrak{p}=\mathfrak{b}$ then $\operatorname{non}\left(\mathrm{S}_{1}(\mathcal{I}-\Gamma, \Gamma)\right)=\mathfrak{b}$.
(4) If $\operatorname{cov}^{*}(\mathcal{I})<\mathfrak{b}$ then $\operatorname{non}\left(\mathrm{S}_{1}(\mathcal{I}-\Gamma, \Gamma)\right)<\mathfrak{b}$.
(5) If $\mathfrak{b}_{\mathcal{J}}<\mathfrak{d}$ then $\operatorname{non}\left(\mathrm{S}_{1}(\mathcal{I}-\Gamma, \mathcal{J}-\Gamma)\right)<\mathfrak{d}$.

Conclusion

Proposition (V.Š., J.Šupina)

(1) If $\mathfrak{p}<\mathfrak{b}$ there is an $\mathrm{S}_{1}(\Gamma, \Gamma)$-space X such that $\mathrm{C}_{p}(X)$ is not an $\mathrm{S}_{1}\left(\mathcal{U}-\Gamma_{\mathbf{0}}^{m}, \Gamma_{\mathbf{0}}\right)$-space.
(2) If $\operatorname{cov}^{*}(\mathcal{I})<\mathfrak{b}$ there is an $\mathrm{S}_{1}(\Gamma, \Gamma)$-space X such that $\mathrm{C}_{p}(X)$ is not an $\mathrm{S}_{1}\left(\mathcal{I}-\Gamma_{\mathbf{0}}^{m}, \Gamma_{\mathbf{0}}\right)$-space.
(3) For any \mathfrak{b}-Sierpiński set S there is an ultrafilter \mathcal{U} such that S such that $\mathrm{C}_{p}(S)$ is not an $\mathrm{S}_{1}\left(\mathcal{U}-\Gamma_{\mathbf{0}}, \Gamma_{\mathbf{0}}\right)$-space (but S is an $\mathrm{S}_{1}(\Gamma, \Gamma)$-space).
(4) If $\mathfrak{b}<\mathfrak{b}_{\mathcal{U}}$ then there is an $\mathrm{S}_{1}(\Gamma, \mathcal{U}-\Gamma)$-space X such that $\mathrm{C}_{p}(X)$ is not an $\mathrm{S}_{1}\left(\Gamma_{\mathbf{0}}^{m}, \Gamma_{\mathbf{0}}\right)$-space.
(5) If $\mathfrak{b}_{\mathcal{J}}<\mathfrak{d}$ then there is an $\mathrm{S}_{1}(\Gamma, \Omega)$-space X such that $\mathrm{C}_{p}(X)$ is not an $\mathrm{S}_{1}\left(\Gamma_{\mathbf{0}}^{m}, \mathcal{J}-\Gamma_{\mathbf{0}}\right)$-space.
(6) If $\mathfrak{b}<\operatorname{cov}^{*}(\mathcal{I})$ then there is an $[\mathcal{I}-\Gamma, \Gamma]$-space X such that $\mathrm{C}_{p}(X)$ is not an $\mathrm{S}_{1}\left(\mathcal{I}-\Gamma_{\mathbf{0}}^{m}, \Gamma_{\mathbf{0}}\right)$-space.

Conclusion

Diagram. The overall relations of investigated properties.

Thank you for your attention

viera.sottova@student.upjs.sk

Bibliography

Bukovský L., Das P., Šupina J.: Ideal quasi-normal convergence and related notions, Colloq. Math. 146 (2017), 265-281.

Bukovský L., Haleš J.: QN-spaces, wQN-spaces and covering properties, Topology Appl. 154 (2007), 848-858.
Das P., Certain types of open covers and selection principles using ideals, Houston J. Math. 39 (2013), 637-650.
Gerlits J. and Nagy Zs., Some properties of $\mathrm{C}_{p}(X)$, I, Topology Appl. 14 (1982), 151-161.
T. Kwela A., Ideal weak QN-space, Topology Appl. 240 (2018), 98-115.

Repicky M., Spaces not distinguishing ideal convergences of real-valued functions, preprint.Scheepers M.: Combinatorics of open covers I: Ramsey theory, Topology Appl. 69 (1996), 31-62.Scheepers M.: $\mathrm{C}_{p}(X)$ and Archangel'skiĭ's α_{i}-spaces, Topology Appl. (1998) 256-275.
目
Scheepers M.: A sequential convergence in $\mathrm{C}_{p}(X)$ and a covering property, East-West J. Math. 1 (1999), 207-214.

Szewczak P. and Tsaban B.: Products of Menger spaces: A combinatorial approach, Ann. Pure Appl. Logic 168 (2017) 1-18.
Ti. Šottová V., Šupina J.: Principle $\mathrm{S}_{1}(\mathcal{P}, \mathcal{R})$: ideals and functions, preprint.
Šupina J.: Ideal QN-spaces, J. Math. Anal. Appl. 434 (2016) 477-491.

