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Covering and ideals

• The family I ⊆ P(ω) is called ideal, if
• it is closed under taking subsets and finite unions
• does not contain the set ω, but contains all finite subsets of ω.

• E.g.: the Frechét ideal, denoted as Fin, is a set [ω]<ℵ0 .
• For A ⊆ P(M) we denote Ad = {A ⊆ M; M \ A ∈ A}.

Let X be a topological space.
• the sequence ⟨Un : n ∈ ω⟩ of subsets of X is called an ω-cover, if for every

n ∈ ω, Un ̸= X and for every finite F ⊆ X there is n such that F ⊆ Un, see [7].
• Ω is the family of all open ω-covers.

• the sequence ⟨Un : n ∈ ω⟩ of subsets of X is called γ-cover if for every
n ∈ ω, Un ̸= X and for every x ∈ X, the set {n ∈ ω : x /∈ Un} is finite, see [7].

• Γ denotes the family of all open γ-covers of X.

• the sequence ⟨Un : n ∈ ω⟩ of subsets of X is called an I-γ-cover, if for every
n ∈ ω, Un ̸= X and for every x ∈ X, the set {n ∈ ω : x /∈ Un} ∈ I, see [3].

• I-Γ denotes the family of all open I-γ-covers of X.
• Fin-Γ = Γ.
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Convergences

• A sequence ⟨xn : n ∈ ω⟩ elements of a topological space X is I-convergent to
x ∈ X if the set {n ∈ ω : xn /∈ U} ∈ I for each neighborhood U of x,
(written xn

I−→ x ).

• Cp(X) denotes the set of all continuous functions on X.
• It can be equipped with inherited topology from Tychonoff product topology of XR,

i.e., topology of pointwise convergence.

• Let ⟨fn : n ∈ ω⟩ be a sequence functions on X and f being function on X.

• fn
I−→ f ⇔ {n ∈ ω : |fn(x)− f(x)| ≥ ε} ∈ I for each x ∈ X and for each ε > 0.

• The sequence ⟨fn : n ∈ ω⟩ is called I-quasi-normal convergent to f on X if there
exists a sequence of positive reals ⟨εn : n ∈ ω⟩ and εn

I−→ 0 such that
{n ∈ ω : |fn(x)− f(x)| ≥ εn} ∈ I for any x ∈ X, denoted fn

IQN−−−→ f.

⟨εn : n ∈ ω⟩ is called control sequence

• especially, if control sequence is ⟨2−n : n ∈ ω⟩ we are talking about strongly
I-quasi normal convergence of fn to f, written fn

sIQN−−−→ f.
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Convergences

classical convergence ⇒ I-convergence

QN-convergence ⇒ sIQN-convergence ⇒ IQN-convergence

Similarly to M. Scheepers [8] we define
• Ωx(X) =

{
A ∈ ω(X \ {x}) : x ∈ {y : (∃n ∈ ω) A(n) = y}

}
.

• I-Γx(X) = {A ∈ ω(X \ {x}) : A is I-convergent to x} .

• Let 0 denote constant zero-value function on X.
• We will omit Cp(X) from notation I-Γ0(Cp(X)) i.e., I-Γ0.
• We use Γ0 instead of Fin-Γ0.

5 / 20



Convergences

classical convergence ⇒ I-convergence

QN-convergence ⇒ sIQN-convergence ⇒ IQN-convergence

Similarly to M. Scheepers [8] we define
• Ωx(X) =

{
A ∈ ω(X \ {x}) : x ∈ {y : (∃n ∈ ω) A(n) = y}

}
.

• I-Γx(X) = {A ∈ ω(X \ {x}) : A is I-convergent to x} .

• Let 0 denote constant zero-value function on X.
• We will omit Cp(X) from notation I-Γ0(Cp(X)) i.e., I-Γ0.
• We use Γ0 instead of Fin-Γ0.

5 / 20



Convergences

classical convergence ⇒ I-convergence

QN-convergence ⇒ sIQN-convergence ⇒ IQN-convergence

Similarly to M. Scheepers [8] we define
• Ωx(X) =

{
A ∈ ω(X \ {x}) : x ∈ {y : (∃n ∈ ω) A(n) = y}

}
.

• I-Γx(X) = {A ∈ ω(X \ {x}) : A is I-convergent to x} .

• Let 0 denote constant zero-value function on X.

• We will omit Cp(X) from notation I-Γ0(Cp(X)) i.e., I-Γ0.
• We use Γ0 instead of Fin-Γ0.

5 / 20



Convergences

classical convergence ⇒ I-convergence

QN-convergence ⇒ sIQN-convergence ⇒ IQN-convergence

Similarly to M. Scheepers [8] we define
• Ωx(X) =

{
A ∈ ω(X \ {x}) : x ∈ {y : (∃n ∈ ω) A(n) = y}

}
.

• I-Γx(X) = {A ∈ ω(X \ {x}) : A is I-convergent to x} .

• Let 0 denote constant zero-value function on X.
• We will omit Cp(X) from notation I-Γ0(Cp(X)) i.e., I-Γ0.

• We use Γ0 instead of Fin-Γ0.

5 / 20



Convergences

classical convergence ⇒ I-convergence

QN-convergence ⇒ sIQN-convergence ⇒ IQN-convergence

Similarly to M. Scheepers [8] we define
• Ωx(X) =

{
A ∈ ω(X \ {x}) : x ∈ {y : (∃n ∈ ω) A(n) = y}

}
.

• I-Γx(X) = {A ∈ ω(X \ {x}) : A is I-convergent to x} .

• Let 0 denote constant zero-value function on X.
• We will omit Cp(X) from notation I-Γ0(Cp(X)) i.e., I-Γ0.
• We use Γ0 instead of Fin-Γ0.

5 / 20



Selection principle S1(P,R)

Let P and R be families of sets.

• X has
(P
R

)
if for any P ∈ P we can select a set R ∈ R such that R ⊆ P. [7]

• X has
[P
R

]
or X is a [P,R] -space if for every ⟨pn : n ∈ ω⟩ ∈ P there is

⟨nm : m ∈ ω⟩ such that ⟨pnm : m ∈ ω⟩ ∈ R.
• If P and R denote convergences then X is a [Pp,Rp]-space if for every ⟨pn : n ∈ ω⟩

such that pn
P−→ p there is ⟨nm : m ∈ ω⟩ such that pnm

R−→ p.

• X is an S1(P,R)-space if for a sequence ⟨Un : n ∈ ω⟩ of elements of P we can
select a set Un ∈ Un for each n ∈ ω such that ⟨Un : n ∈ ω⟩ is a member of R. [7]

Let I,J be ideals on ω. Then S1(I-Γ0,J -Γ0) can be imagined by follow way

f1,m
f2,m
f3,m

fn,m

fn,m
I−→ 0

fn,mn
J−−→ 0

...

...
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Covering S1(P,R) and S1(P,R) for functions

Observation
(1) If X is an S1(Γ,J -Γ)-space then X is an S1(Γ,Ω)-space.
(2) If Cp(X) is an S1(Γ0,J -Γ0)-space then Cp(X) is an S1(Γ0,Ω0)-space.

Proposition (V.Š.,J.Šupina)

Let X be a topological space. Then
(1) X is an S1(I-Γ,Γ)-space if and only if X has

[I-Γ
Γ

]
and S1(Γ,Γ).

(2) Cp(X) is an S1(I-Γ0,Γ0)-space if and only if Cp(X) has
[I-Γ0

Γ0

]
and S1(Γ0,Γ0).

Lemma (V.Š., J.Šupina)
(1) For any countable ω-cover U of X and its bijective enumeration ⟨Un : n ∈ ω⟩ there

is an ideal I such that ⟨Un : n ∈ ω⟩ is an I-γ-cover.
(2) For any countable family of functions E on X such that 0 ∈ E \ {0} and its bijective enumeration

⟨fn : n ∈ ω⟩ there is an ideal I such that fn
I−→ 0.
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Covering S1(P,R) and S1(P,R) for functions

Let us recall a folklore result by J. Gerlits and Zs. Nagy [4] for a Tychonoff space X:
X has

(
Ω
Γ

)
⇔ X has S1(Ω,Γ) ⇔ Cp(X) has

(
Ω0
Γ0

)
⇔ Cp(X) has S1(Ω0,Γ0).

Theorem (V.Š.,J.Šupina)

Let X be a Tychonoff topological space. The following statements are equivalent.
(a) X is an S1(Ω,Γ)-space.
(b) X is an S1(I-Γ,Γ)-space for every ideal I.
(c) Cp(X) is an S1(I-Γ0,Γ0)-space for every ideal I.
(d) X has

[I-Γ
Γ

]
for every ideal I.

(e) Cp(X) has
[I-Γ0

Γ0

]
for every ideal I.

Fréchet

S1(I-Γ0,Γ0) S1(I-Γ0,J -Γ0)

S1(Γ0,Γ0) S1(Γ0,J -Γ0) S1(Γ0,Ω0) IndZ(X) = 0

Diagram. Selection principles for functions.
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Monotonne version of S1(P,R) for functions

• We say that a sequence ⟨fn : n ∈ ω⟩ is monotone sequence if for any n ∈ ω
and x ∈ X we have fn(x) ≥ fn+1(x).

• Γm
0 = {A ∈ ω(Cp(X) \ {0}) : A is monotone and convergent to 0} .

• We say that a sequence ⟨fn : n ∈ ω⟩ is I-monotone sequence
if {n : fn ≰ fm} ∈ I for every m ∈ ω.

• I-Γm
0 = {A ∈ ω(Cp(X) \ {0}) : A is I-monotone and I-convergent to 0} .
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Lemma (V.Š., J.Šupina)
Let X be a topological space.
(1) Cp(X) has the property S1(Γ

m
0 ,J -Γ0) if and only if Cp(X) has the property

S1(Fin-Γm
0 ,J -Γ0).

(2) Cp(X) has the property
[

Γm
0

JQN0

]
if and only if Cp(X) has the property
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0
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(3) Cp(X) has the property
[

Γm
0

sJQN0
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0
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]
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Conection between coverings and functions

• We say that a topological space X has J -Hurewicz property if for each sequence
⟨Un : n ∈ ω⟩ of open covers of X there are finite Vn ⊂ Un, n ∈ ω such that for each
x ∈ X, {n ∈ ω : x /∈

∪
Vn} ∈ J .[3].

• P. Szewczak and B. Tsaban [10] showed
Hurewicz −→ J -Hurewicz −→ Menger.

S1(I-Γm
0 ,Γ0) S1(I-Γm

0 ,J -Γ0)

Hurewicz ≡ S1(Γ
m
0 ,Γ0) S1(Γ

m
0 ,J -Γ0) Menger

S1(I-Γ0,Γ0)

Diagram. Monotonic selection principles for functions.
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Conection between coverings and functions

Theorem (L. Bukovský, P. Das, J.Šupina.[1])

Let I, J be ideals on ω. If X is a normal topological space then the following are
equivalent.
Moreover, the equivalence (a) ≡ (b) holds for arbitrary topological space X.
(a) Cp(X) has

[ I-Γ0
sJQN0

]
.

(b) Cp(X) is an S1(I-Γ0,J -Γ0)-space.
(c) X is an S1(I-Γsh,J -Γ)-space.

• As a corollary L. Bukovský, P. Das and J. Š. obtained the ideal version of Scheepers’
result [9].

S1(I-Γ,J -Γ) → S1(I-Γsh,J -Γ) ⇔ S1(I-Γ0,J -Γ0) → S1(I-Γm
0 ,J -Γ0).
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Conection between coverings and functions

S1(I-Γm
0 ,Γ0) S1(I-Γm

0 ,J -Γ0)

Hurewicz ≡ S1(Γ
m
0 ,Γ0) S1(Γ

m
0 ,J -Γ0) Menger

S1(I-Γ0,Γ0) S1(I-Γ0,J -Γ0)

S1(Γ0,Γ0) S1(Γ0,J -Γ0) S1(Γ0,Ω0) IndZ(X) = 0

[
I-Γ0
J -Γ0

]

S1(Ω,Γ)

S1(I-Γ,Γ) S1(I-Γ,J -Γ)

S1(Γ,Γ) S1(Γ,J -Γ) S1(Γ,Ω)

[
I-Γ
J -Γ

]

Diagram. The overall relations of investigated properties.
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Cardinal invariants

• non(S1(I-Γ,J -Γ)-space) denotes the minimal cardinality of a perfectly normal
space which is not an S1(I-Γ,J -Γ)-space.

Let A ⊆ P(ω).
• a sequence s ∈ ωA will be called an A-slalom.
• a function φ ∈ ωω J -goes through A-slalom s if {n : φ(n) ∈ s(n)} ∈ J d,

i.e., {n : φ(n) ∈ ω \ s(n)} ∈ J .
• We say that φ goes through I-slalom instead of φ Fin-goes through I-slalom.

b = min
{
|R| : R ⊆ ω

ω, (∀Fin-slalom s)(∃φ ∈ R) ¬(φ goes through s)
}
.

λ(I,J ) = min
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Cardinal invariants

• J. Šupina’s results [12]: λ(Fin,J ) = bJ and
if I1 ≤K I2 and J1 ≤KB J2 then λ(I2,J1) ≤ λ(I1,J2).

Theorem (V.Š., J.Šupina)
(1) If I ̸≤K J then λ(I,J ) ≤ min{kI,J , bJ }.
(2) If I ̸≤K J and J ≤K I then λ(I,J ) = min{kI,J , λ(J ,J )}.
(3) If I is tall then λ(I,Fin) = min{cov∗(I), b}.

min{cov∗(I), b}=λ(I, Fin)

λ(I,J )b =λ(Fin, Fin)

bJ = λ(Fin,J )

d

p

Diagram. Cardinal λ(I,J ).
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Critical cardinality

Theorem (V.Š., J.Šupina)
Let I, J be ideals on ω, D being a discrete topological space. Then the following statements are equivalent.
(a) D is an S1(I-Γ,J -Γ)-space.

(b) Cp(D) has
[ I-Γ0

sJQN0

]
.

(c) Cp(D) has the property S1(I-Γ0,J -Γ0)

(d) Cp(D) has the property S1(I-Γm
0 ,J -Γ0).

(e) |D| < λ(I,J ).

Theorem (A. Kwela–M. Repický)
Let D be a discrete topological space. Then the following statements are equivalent.
(a) |D| < cov∗(I).

(b) Cp(D) has
[IQN0

QN0

]
.

(c) Cp(D) has
[I-Γ0

Γ0

]
.

(d) D has the property
[I-Γ

Γ

]
.
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Critical cardinality

• Let I,J ⊆ P(ω) be ideals.
(1) non(S1(I-Γ0,J -Γ0)) = non(S1(I-Γm

0 ,J -Γ0)) = non(
[ I-Γ0

sJQN0

]
) = λ(I,J ).

(2) non(S1(Γ0,J -Γ0)) = non(S1(Γm
0 ,J -Γ0)) = non(

[ Γ0
sJQN0

]
) = bJ .

• If I is tall then
(3) non(S1(I-Γ,Γ)) = non(S1(I-Γ0,Γ0)) = non(S1(I-Γm

0 ,Γ0)) = non(
[I-Γ0

QN0

]
) =

min{cov∗(I), b}.
(4) (A. Kwela–M. Repický) non(

[IQN0
QN0

]
) = non(

[I-Γ0
Γ0

]
) = non(

[I-Γ
Γ

]
) = cov∗(I).

• Consistency
(1) If b = c then non(S1(I-Γ,Γ)) = cov∗(I) for every tall ideal I.
(2) If b < cov∗(I) then non(S1(I-Γ,Γ)) < cov∗(I) for every tall ideal I.
(3) If p = b then non(S1(I-Γ,Γ)) = b.
(4) If cov∗(I) < b then non(S1(I-Γ,Γ)) < b.
(5) If bJ < d then non(S1(I-Γ,J -Γ)) < d.
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Conclusion

Proposition (V.Š., J.Šupina)
(1) If p < b there is an S1(Γ,Γ)-space X such that Cp(X) is not an S1(U-Γm

0 ,Γ0)-space.
(2) If cov∗(I) < b there is an S1(Γ,Γ)-space X such that Cp(X) is not

an S1(I-Γm
0 ,Γ0)-space.

(3) For any b-Sierpiński set S there is an ultrafilter U such that S such that Cp(S) is not
an S1(U-Γ0,Γ0)-space (but S is an S1(Γ,Γ)-space).

(4) If b < bU then there is an S1(Γ,U-Γ)-space X such that Cp(X) is not
an S1(Γ

m
0 ,Γ0)-space.

(5) If bJ < d then there is an S1(Γ,Ω)-space X such that Cp(X) is not
an S1(Γ

m
0 ,J -Γ0)-space.

(6) If b < cov∗(I) then there is an [I-Γ,Γ] -space X such that Cp(X) is not
an S1(I-Γm

0 ,Γ0)-space.
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Conclusion

S1(I-Γm
0 ,Γ0) S1(I-Γm

0 ,J -Γ0)

Hurewicz ≡ S1(Γ
m
0 ,Γ0) S1(Γ

m
0 ,J -Γ0) Menger

S1(I-Γ0,Γ0) S1(I-Γ0,J -Γ0)

S1(Γ0,Γ0) S1(Γ0,J -Γ0) S1(Γ0,Ω0) IndZ(X) = 0

[
I-Γ0
J -Γ0

]

S1(Ω,Γ)

S1(I-Γ,Γ) S1(I-Γ,J -Γ)

S1(Γ,Γ) S1(Γ,J -Γ) S1(Γ,Ω)

[
I-Γ
J -Γ

]

X

X X

Diagram. The overall relations of investigated properties.
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