Divisibility in βN and *N

Boris Šobot

Faculty of Sciences, University of Novi Sad

SetTop 2018

Boris Šobot (Novi Sad)

Divisibility in βN and N

July 3rd 2018 1 / 29

3

イロト イヨト イヨト イヨト

${\cal N}$ - discrete topological space on the set of natural numbers

 βN - the set of ultrafilters on N

Principal ultrafilters $\{A\subseteq N:n\in A\}$ are identified with respective elements $n\in N$

Idea: extend the divisibility relation | to βN to get results in number theory

- 34

${\cal N}$ - discrete topological space on the set of natural numbers

βN - the set of ultrafilters on N

Principal ultrafilters $\{A\subseteq N:n\in A\}$ are identified with respective elements $n\in N$

Idea: extend the divisibility relation | to βN to get results in number theory

- 2

- ${\cal N}$ discrete topological space on the set of natural numbers
- βN the set of ultrafilters on N

Principal ultrafilters $\{A\subseteq N:n\in A\}$ are identified with respective elements $n\in N$

Idea: extend the divisibility relation | to βN to get results in number theory

《曰》 《圖》 《臣》 《臣》 [] 臣]

- ${\cal N}$ discrete topological space on the set of natural numbers
- βN the set of ultrafilters on N

Principal ultrafilters $\{A\subseteq N:n\in A\}$ are identified with respective elements $n\in N$

Idea: extend the divisibility relation | to βN to get results in number theory

 $\mathcal{U} = \{ S \subseteq N : S \text{ is upward closed for } | \}$

Definition For $\mathcal{F}, \mathcal{G} \in \beta N$

$$\mathcal{F} \ \widetilde{\mid} \ \mathcal{G} \ iff \ \mathcal{F} \cap \mathcal{U} \subseteq \mathcal{G}$$

The restriction of $\tilde{|}$ to N^2 is the usual |

| is reflexive and transitive, but not antisymmetric. Hence it is an order on $\beta N/\sim,$ where

$$\mathcal{F}\sim\mathcal{G}\Leftrightarrow\mathcal{F}\stackrel{\sim}{|}\mathcal{G}\wedge\mathcal{G}\stackrel{\sim}{|}\mathcal{F}.$$

Divisibility in βN and N

 $\mathcal{U} = \{ S \subseteq N : S \text{ is upward closed for } | \}$

Definition For $\mathcal{F}, \mathcal{G} \in \beta N$

 $\mathcal{F} \,\widetilde{\mid}\, \mathcal{G} \, \, \mathit{iff} \, \mathcal{F} \cap \mathcal{U} \subseteq \mathcal{G}$

The restriction of $\tilde{|}$ to N^2 is the usual |

| is reflexive and transitive, but not antisymmetric. Hence it is an order on $\beta N/\sim,$ where

$$\mathcal{F}\sim\mathcal{G}\Leftrightarrow\mathcal{F}\stackrel{\sim}{|}\mathcal{G}\wedge\mathcal{G}\stackrel{\sim}{|}\mathcal{F}.$$

Divisibility in βN and N

- 32

イロト イヨト イヨト イヨト

 $\mathcal{U} = \{ S \subseteq N : S \text{ is upward closed for } | \}$

Definition For $\mathcal{F}, \mathcal{G} \in \beta N$

$$\mathcal{F} \mathrel{\widetilde{\mid}} \mathcal{G} \textit{ iff } \mathcal{F} \cap \mathcal{U} \subseteq \mathcal{G}$$

The restriction of $\tilde{\mid}$ to N^2 is the usual \mid

| is reflexive and transitive, but not antisymmetric. Hence it is an order on $\beta N/\sim,$ where

$$\mathcal{F}\sim\mathcal{G}\Leftrightarrow\mathcal{F}\stackrel{\sim}{|}\mathcal{G}\wedge\mathcal{G}\stackrel{\sim}{|}\mathcal{F}.$$

Divisibility in βN and N

 $\mathcal{U} = \{ S \subseteq N : S \text{ is upward closed for } | \}$

Definition

For $\mathcal{F}, \mathcal{G} \in \beta N$

$$\mathcal{F} \,\widetilde{\mid}\, \mathcal{G} \, \textit{ iff } \mathcal{F} \cap \mathcal{U} \subseteq \mathcal{G}$$

The restriction of $\tilde{|}$ to N^2 is the usual |

] is reflexive and transitive, but not antisymmetric. Hence it is an order on $\beta N/\sim$, where

$$\mathcal{F}\sim\mathcal{G}\Leftrightarrow\mathcal{F}\stackrel{\sim}{|}\mathcal{G}\wedge\mathcal{G}\stackrel{\sim}{|}\mathcal{F}.$$

Divisibility in βN and N

$P\subseteq N$ - the set of primes

Prime ultrafilters: $\mathcal{P} \in \beta N \setminus \{1\}$ divisible only by 1 and themselves

Lemma

 $\mathcal{P} \in \beta N$ is prime iff $P \in \mathcal{P}$.

Lemma There are 2° prime ultrafilters

Lemma

For every $\mathcal{F} \in \beta N \setminus \{1\}$ there is prime \mathcal{P} such that $\mathcal{P} \mid \mathcal{F}$.

Boris Šobot (Novi Sad)

Divisibility in βN and N

 $P\subseteq N$ - the set of primes

Prime ultrafilters: $\mathcal{P} \in \beta N \setminus \{1\}$ divisible only by 1 and themselves

Lemma

 $\mathcal{P} \in \beta N$ is prime iff $P \in \mathcal{P}$.

Lemma There are 2° prime ultrafilters.

Lemma

For every $\mathcal{F} \in \beta N \setminus \{1\}$ there is prime \mathcal{P} such that $\mathcal{P} \mid \mathcal{F}$.

Boris Šobot (Novi Sad)

Divisibility in βN and N

 $P\subseteq N$ - the set of primes

Prime ultrafilters: $\mathcal{P} \in \beta N \setminus \{1\}$ divisible only by 1 and themselves

Lemma

 $\mathcal{P} \in \beta N$ is prime iff $P \in \mathcal{P}$.

Lemma

There are 2° prime ultrafilters.

Lemma

For every $\mathcal{F} \in \beta N \setminus \{1\}$ there is prime \mathcal{P} such that $\mathcal{P} \mid \mathcal{F}$.

Boris Šobot (Novi Sad)

Divisibility in βN and N

 $P\subseteq N$ - the set of primes

Prime ultrafilters: $\mathcal{P} \in \beta N \setminus \{1\}$ divisible only by 1 and themselves

Lemma

 $\mathcal{P} \in \beta N$ is prime iff $P \in \mathcal{P}$.

Lemma

There are 2^c prime ultrafilters.

Lemma

For every $\mathcal{F} \in \beta N \setminus \{1\}$ there is prime \mathcal{P} such that $\mathcal{P} \mid \mathcal{F}$.

Boris Šobot (Novi Sad)

Divisibility in βN and N

 $P\subseteq N$ - the set of primes

Prime ultrafilters: $\mathcal{P} \in \beta N \setminus \{1\}$ divisible only by 1 and themselves

Lemma

 $\mathcal{P} \in \beta N$ is prime iff $P \in \mathcal{P}$.

Lemma

There are 2^c prime ultrafilters.

Lemma

For every $\mathcal{F} \in \beta N \setminus \{1\}$ there is prime \mathcal{P} such that $\mathcal{P} \mid \mathcal{F}$.

Boris Šobot (Novi Sad)

Divisibility in βN and N

Boris Šobot (Novi Sad)

Divisibility in βN and ${}^*\!N$

July 3rd 2018 5 / 29

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

$A^2=\{a^2:a\in A\}$

The only ultrafilter above \mathcal{P} containing P^2 is

\mathcal{P}^2 generated by $\{A^2 : A \in \mathcal{P}\}$

Boris Šobot (Novi Sad)

Divisibility in βN and N

July 3rd 2018

6 / 29

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □ ● のへで

 $A^2=\{a^2:a\in A\}$

The only ultrafilter above \mathcal{P} containing P^2 is

 \mathcal{P}^2 generated by $\{A^2 : A \in \mathcal{P}\}$

Boris Šobot (Novi Sad)

Divisibility in βN and N

July 3rd 2018 6 / 29

Boris Šobot (Novi Sad)

Divisibility in βN and ${}^*\!N$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで July 3rd 2018 $\,$

$A^{(2)} = \{ab : a, b \in A, GCD(a, b) = 1\}$ $F_{(\mathcal{P}, 2)} = \{A^{(2)} : A \in \mathcal{P}, A \subseteq P\}$

Ultrafilters containing $F_{(\mathcal{P},2)}$ are also divisible only by 1, $\mathcal P$ and themselves

Example. $\mathcal{P} \cdot \mathcal{P} \supseteq F_{(\mathcal{P},2)}$

where

 $\mathcal{F} \cdot \mathcal{G} = \{ A \in P(N) : \{ n \in N : \{ m \in N : mn \in A \} \in \mathcal{G} \} \in \mathcal{F} \}.$

Boris Šobot (Novi Sad)

$$A^{(2)} = \{ab : a, b \in A, GCD(a, b) = 1\}$$

$$F_{(\mathcal{P}, 2)} = \{A^{(2)} : A \in \mathcal{P}, A \subseteq P\}$$

Ultrafilters containing $F_{(\mathcal{P},2)}$ are also divisible only by 1, \mathcal{P} and themselves

Example. $\mathcal{P} \cdot \mathcal{P} \supseteq F_{(\mathcal{P},2)}$

where

 $\mathcal{F} \cdot \mathcal{G} = \{ A \in P(N) : \{ n \in N : \{ m \in N : mn \in A \} \in \mathcal{G} \} \in \mathcal{F} \}.$

Boris Šobot (Novi Sad)

Divisibility in βN and N

July 3rd 2018 8 / 29

$$A^{(2)} = \{ab : a, b \in A, GCD(a, b) = 1\}$$

$$F_{(\mathcal{P}, 2)} = \{A^{(2)} : A \in \mathcal{P}, A \subseteq P\}$$

Ultrafilters containing $F_{(\mathcal{P},2)}$ are also divisible only by 1, $\mathcal P$ and themselves

Example. $\mathcal{P} \cdot \mathcal{P} \supseteq F_{(\mathcal{P},2)}$

where

 $\mathcal{F} \cdot \mathcal{G} = \{ A \in P(N) : \{ n \in N : \{ m \in N : mn \in A \} \in \mathcal{G} \} \in \mathcal{F} \}.$

$$A^{(2)} = \{ab : a, b \in A, GCD(a, b) = 1\}$$

$$F_{(\mathcal{P}, 2)} = \{A^{(2)} : A \in \mathcal{P}, A \subseteq P\}$$

Ultrafilters containing $F_{(\mathcal{P},2)}$ are also divisible only by 1, $\mathcal P$ and themselves

Example. $\mathcal{P} \cdot \mathcal{P} \supseteq F_{(\mathcal{P},2)}$

where

 $\mathcal{F} \cdot \mathcal{G} = \{ A \in P(N) : \{ n \in N : \{ m \in N : mn \in A \} \in \mathcal{G} \} \in \mathcal{F} \}.$

Boris Šobot (Novi Sad)

$$A^{(2)} = \{ab : a, b \in A, GCD(a, b) = 1\}$$

$$F_{(\mathcal{P}, 2)} = \{A^{(2)} : A \in \mathcal{P}, A \subseteq P\}$$

Ultrafilters containing $F_{(\mathcal{P},2)}$ are also divisible only by 1, \mathcal{P} and themselves

Example. $\mathcal{P} \cdot \mathcal{P} \supseteq F_{(\mathcal{P},2)}$

where

 $\mathcal{F} \cdot \mathcal{G} = \{ A \in P(N) : \{ n \in N : \{ m \in N : mn \in A \} \in \mathcal{G} \} \in \mathcal{F} \}.$

Boris Šobot (Novi Sad)

$$A^{(2)} = \{ab : a, b \in A, GCD(a, b) = 1\}$$

$$F_{(\mathcal{P}, 2)} = \{A^{(2)} : A \in \mathcal{P}, A \subseteq P\}$$

Ultrafilters containing $F_{(\mathcal{P},2)}$ are also divisible only by 1, \mathcal{P} and themselves

Example. $\mathcal{P} \cdot \mathcal{P} \supseteq F_{(\mathcal{P},2)}$

Lemma

There are either finitely many or 2° ultrafilters containing $F_{(\mathcal{P},2)}$.

Boris Šobot (Novi Sad)

Divisibility in βN and N

July 3rd 2018 9 / 29

$$A^{(2)} = \{ab : a, b \in A, GCD(a, b) = 1\}$$

$$F_{(\mathcal{P}, 2)} = \{A^{(2)} : A \in \mathcal{P}, A \subseteq P\}$$

Ultrafilters containing $F_{(\mathcal{P},2)}$ are also divisible only by 1, \mathcal{P} and themselves

Example. $\mathcal{P} \cdot \mathcal{P} \supseteq F_{(\mathcal{P},2)}$

Lemma

There are either finitely many or $2^{\mathfrak{c}}$ ultrafilters containing $F_{(\mathcal{P},2)}$.

Boris Šobot (Novi Sad)

Divisibility in βN and N

July 3rd 2018 9 / 29

Boris Šobot (Novi Sad)

Divisibility in βN and ${}^*\!N$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで July 3rd 2018 $\,$

Theorem

Let \mathcal{P} be prime. There is unique ultrafilter $\mathcal{F} \supseteq F_{(\mathcal{P},2)}$ if and only if \mathcal{P} is Ramsey.

Theorem

(CH) There is a prime \mathcal{P} such that there are 2^c ultrafilters $\mathcal{F} \supseteq F_{(\mathcal{P},2)}$.

Boris Šobot (Novi Sad)

Divisibility in βN and N

July 3rd 2018 11 / 29

æ

Theorem

Let \mathcal{P} be prime. There is unique ultrafilter $\mathcal{F} \supseteq F_{(\mathcal{P},2)}$ if and only if \mathcal{P} is Ramsey.

Theorem

(CH) There is a prime \mathcal{P} such that there are 2^c ultrafilters $\mathcal{F} \supseteq F_{(\mathcal{P},2)}$.

11 / 29

・ 同 ト ・ ヨ ト ・ ヨ ト

 $AB = \{ab : a \in A, b \in B, GCD(a, b) = 1\}$

Boris Šobot (Novi Sad)

Divisibility in βN and N

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○ July 3rd 2018

 $AB = \{ab : a \in A, b \in B, GCD(a, b) = 1\}$ $F_{(\mathcal{P},1),(\mathcal{Q},1)} = \{AB : A \in \mathcal{P}, B \in \mathcal{Q}, A, B \subseteq P \text{ are disjoint}\}$

Boris Šobot (Novi Sad)

Divisibility in βN and N

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○ July 3rd 2018

 $AB = \{ab : a \in A, b \in B, GCD(a, b) = 1\}$ $F_{(\mathcal{P},1),(\mathcal{Q},1)} = \{AB : A \in \mathcal{P}, B \in \mathcal{Q}, A, B \subseteq P \text{ are disjoint}\}$

Ultrafilters containing $F_{(\mathcal{P},1),(\mathcal{Q},1)}$ are divisible only by 1, \mathcal{P}, \mathcal{Q} and themselves

Boris Šobot (Novi Sad)

Divisibility in βN and N

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○ July 3rd 2018

 $AB = \{ab : a \in A, b \in B, GCD(a, b) = 1\}$ $F_{(\mathcal{P},1),(\mathcal{Q},1)} = \{AB : A \in \mathcal{P}, B \in \mathcal{Q}, A, B \subseteq P \text{ are disjoint}\}$

Ultrafilters containing $F_{(\mathcal{P},1),(\mathcal{Q},1)}$ are divisible only by 1, \mathcal{P}, \mathcal{Q} and themselves

They are exactly ultrafilters containing AB for some disjoint $A, B \subseteq P$

 $AB = \{ab : a \in A, b \in B, GCD(a, b) = 1\}$ $F_{(\mathcal{P},1),(\mathcal{Q},1)} = \{AB : A \in \mathcal{P}, B \in \mathcal{Q}, A, B \subseteq P \text{ are disjoint}\}$

Ultrafilters containing $F_{(\mathcal{P},1),(\mathcal{Q},1)}$ are divisible only by 1, \mathcal{P}, \mathcal{Q} and themselves

They are exactly ultrafilters containing AB for some disjoint $A, B \subseteq P$

Example. $\mathcal{P} \cdot \mathcal{Q}, \mathcal{Q} \cdot \mathcal{P} \supseteq F_{(\mathcal{P},1),(\mathcal{Q},1)}$

Boris Šobot (Novi Sad)

Divisibility in βN and N

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○ July 3rd 2018

 $AB = \{ab : a \in A, b \in B, GCD(a, b) = 1\}$ $F_{(\mathcal{P},1),(\mathcal{Q},1)} = \{AB : A \in \mathcal{P}, B \in \mathcal{Q}, A, B \subseteq P \text{ are disjoint}\}$

Ultrafilters containing $F_{(\mathcal{P},1),(\mathcal{Q},1)}$ are divisible only by 1, \mathcal{P}, \mathcal{Q} and themselves

They are exactly ultrafilters containing AB for some disjoint $A, B \subseteq P$

Example. $\mathcal{P} \cdot \mathcal{Q}, \mathcal{Q} \cdot \mathcal{P} \supseteq F_{(\mathcal{P},1),(\mathcal{Q},1)}$

Bears similarities to another kind of product of filters

$$\mathcal{F} \times \mathcal{G} = \{ X \in P(N^2) : (\exists A \in \mathcal{F}) (\exists B \in \mathcal{G}) A \times B \subseteq X \}.$$

 $AB = \{ab : a \in A, b \in B, GCD(a, b) = 1\}$ $F_{(\mathcal{P},1),(\mathcal{Q},1)} = \{AB : A \in \mathcal{P}, B \in \mathcal{Q}, A, B \subseteq P \text{ are disjoint}\}$

Ultrafilters containing $F_{(\mathcal{P},1),(\mathcal{Q},1)}$ are divisible only by 1, \mathcal{P} , \mathcal{Q} and themselves

They are exactly ultrafilters containing AB for some disjoint $A, B \subseteq P$

```
Example. \mathcal{P} \cdot \mathcal{Q}, \mathcal{Q} \cdot \mathcal{P} \supseteq F_{(\mathcal{P},1),(\mathcal{Q},1)}
```

Lemma

There are either finitely many or 2^c ultrafilters containing $F_{(\mathcal{P},1),(\mathcal{Q},1)}$

 $AB = \{ab : a \in A, b \in B, GCD(a, b) = 1\}$ $F_{(\mathcal{P}, 1), (\mathcal{Q}, 1)} = \{AB : A \in \mathcal{P}, B \in \mathcal{Q}, A, B \subseteq P \text{ are disjoint}\}$

Ultrafilters containing $F_{(\mathcal{P},1),(\mathcal{Q},1)}$ are divisible only by 1, \mathcal{P} , \mathcal{Q} and themselves

They are exactly ultrafilters containing AB for some disjoint $A, B \subseteq P$

```
Example. \mathcal{P} \cdot \mathcal{Q}, \mathcal{Q} \cdot \mathcal{P} \supseteq F_{(\mathcal{P},1),(\mathcal{Q},1)}
```

Lemma

There are either finitely many or $2^{\mathfrak{c}}$ ultrafilters containing $F_{(\mathcal{P},1),(\mathcal{Q},1)}$.

Boris Šobot (Novi Sad)

Divisibility in βN and N

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで July 3rd 2018 $\,$

Theorem

Let \mathcal{P}, \mathcal{Q} be primes. If there is unique $\mathcal{F} \supseteq F_{(\mathcal{P},1),(\mathcal{Q},1)}$ then both \mathcal{P} and \mathcal{Q} are *P*-points.

Theorem

For every prime \mathcal{P} there is a prime \mathcal{Q} such that there are 2^c ultrafilters $\mathcal{F} \supseteq F_{(\mathcal{P},1),(\mathcal{Q},1)}$.

Boris Šobot (Novi Sad)

Divisibility in βN and N

July 3rd 2018 15 / 29

3

Theorem

Let \mathcal{P}, \mathcal{Q} be primes. If there is unique $\mathcal{F} \supseteq F_{(\mathcal{P},1),(\mathcal{Q},1)}$ then both \mathcal{P} and \mathcal{Q} are *P*-points.

Theorem

For every prime \mathcal{P} there is a prime \mathcal{Q} such that there are 2^c ultrafilters $\mathcal{F} \supseteq F_{(\mathcal{P},1),(\mathcal{Q},1)}$.

Boris Šobot (Novi Sad)

Divisibility in βN and N

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで July 3rd 2018 $\,$

Boris Šobot (Novi Sad)

Divisibility in βN and N

July 3rd 2018

17 / 29

(日) (四) (王) (王) (王)

Boris Šobot (Novi Sad)

Divisibility in βN and N

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで July 3rd 2018

Boris Šobot (Novi Sad)

Divisibility in βN and N

July 3rd 2018

19 / 29

(日) (四) (王) (王) (王)

Boris Šobot (Novi Sad)

Divisibility in βN and N

July 3rd 2018

20 / 29

(日) (四) (日) (日) (日) (日)

A superstructure over X:

A superstructure over X: $V_0(X) = X$,

A superstructure over X: $V_0(X) = X,$ $V_{n+1}(X) = V_n(X) \cup P(V_n(X)),$

A superstructure over X: $V_0(X) = X,$ $V_{n+1}(X) = V_n(X) \cup P(V_n(X)),$ $V(X) = \bigcup_{n \in \mathcal{U}} V_n(X).$

A superstructure over X: $V_0(X) = X,$ $V_{n+1}(X) = V_n(X) \cup P(V_n(X)),$ $V(X) = \bigcup_{n \in \mathcal{U}} V_n(X).$

V(Y) is a nonstandard extension of V(X) if $X \subset Y$ and there is a rank-preserving function $*: V(X) \to V(Y)$ such that *X = Y and satisfying:

A superstructure over X: $V_0(X) = X,$ $V_{n+1}(X) = V_n(X) \cup P(V_n(X)),$ $V(X) = \bigcup_{n \in \mathcal{U}} V_n(X).$

V(Y) is a nonstandard extension of V(X) if $X \subset Y$ and there is a rank-preserving function $*: V(X) \to V(Y)$ such that *X = Y and satisfying:

The Transfer Principle. For every bounded formula φ and every $a_1, a_2, \ldots, a_n \in V(X), \varphi(a_1, a_2, \ldots, a_n)$ holds in V(X) if and only if $\varphi(*a_1, *a_2, \ldots, *a_n)$ holds in V(Y).

By Transfer, for $x, y \in {}^*N$:

$x^*|y \text{ iff } (\exists k \in N)y = kx.$

Each element $n \in N$ is identified with n.

In every nonstandard extension V(*N) of V(N) holds a generalization of the Fundamental Theorem of Arithmetic. (Here p is the unique increasing function from N to P.)

Theorem

(a) For every $z \in {}^*N$ and every internal sequence $\langle h(n) : n \leq z \rangle$ there is unique $x \in {}^*N$ such that ${}^*p(n)^{h(n)} * \parallel x$ for $n \leq z$ and ${}^*p(n) * \nmid x$ for n > z; we denote such element by $\prod_{n \leq z} {}^*p(n)^{h(n)}$. (b) Every $x \in {}^*N$ can be uniquely represented as $\prod_{n \leq z} {}^*p(n)^{h(n)}$ for some $z \in {}^*N$ and some internal sequence $\langle h(n) : n \leq z \rangle$ such that h(z) > 0.

Divisibility in βN and N

By Transfer, for $x, y \in {}^*N$:

$$x^*|y \text{ iff } (\exists k \in N)y = kx.$$

Each element $n \in N$ is identified with *n.

In every nonstandard extension V(*N) of V(N) holds a generalization of the Fundamental Theorem of Arithmetic. (Here p is the unique increasing function from N to P.)

Theorem

(a) For every $z \in {}^*N$ and every internal sequence $\langle h(n) : n \leq z \rangle$ there is unique $x \in {}^*N$ such that ${}^*p(n)^{h(n)} * \parallel x$ for $n \leq z$ and ${}^*p(n) * \nmid x$ for n > z; we denote such element by $\prod_{n \leq z} {}^*p(n)^{h(n)}$. (b) Every $x \in {}^*N$ can be uniquely represented as $\prod_{n \leq z} {}^*p(n)^{h(n)}$ for some $z \in {}^*N$ and some internal sequence $\langle h(n) : n \leq z \rangle$ such that h(z) > 0.

Divisibility in βN and N

By Transfer, for $x, y \in {}^*N$:

$$x^*|y \text{ iff } (\exists k \in N)y = kx.$$

Each element $n \in N$ is identified with n.

In every nonstandard extension V(*N) of V(N) holds a generalization of the Fundamental Theorem of Arithmetic. (Here p is the unique increasing function from N to P.)

Theorem

(a) For every $z \in {}^*N$ and every internal sequence $\langle h(n) : n \leq z \rangle$ there is unique $x \in {}^*N$ such that ${}^*p(n)^{h(n)} * \parallel x$ for $n \leq z$ and ${}^*p(n) * \nmid x$ for n > z; we denote such element by $\prod_{n \leq z} {}^*p(n)^{h(n)}$. (b) Every $x \in {}^*N$ can be uniquely represented as $\prod_{n \leq z} {}^*p(n)^{h(n)}$ for some $z \in {}^*N$ and some internal sequence $\langle h(n) : n \leq z \rangle$ such that h(z) > 0.

For every $x \in {}^*N$ the family $\{S \subseteq N : x \in {}^*S\}$ is an ultrafilter; it is denoted by v(x).

Thus a function $v: {}^*N \to \beta N$ is obtained. v is onto if $V({}^*N)$ is an enlargement.

 $\mu(\mathcal{F}) = v^{-1}[\{\mathcal{F}\}]$ is the monad of $\mathcal{F} \in \beta N$.

Boris Šobot (Novi Sad)

Divisibility in βN and N

July 3rd 2018

23 / 29

《曰》 《圖》 《臣》 《臣》 三臣 …

For every $x \in N$ the family $\{S \subseteq N : x \in S\}$ is an ultrafilter; it is denoted by v(x).

Thus a function $v: *N \to \beta N$ is obtained. v is onto if V(*N) is an enlargement.

Boris Šobot (Novi Sad)

Divisibility in βN and N

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○ July 3rd 2018

For every $x \in N$ the family $\{S \subseteq N : x \in S\}$ is an ultrafilter; it is denoted by v(x).

Thus a function $v: *N \to \beta N$ is obtained. v is onto if V(*N) is an enlargement.

 $\mu(\mathcal{F}) = v^{-1}[\{\mathcal{F}\}]$ is the monad of $\mathcal{F} \in \beta N$.

Boris Šobot (Novi Sad)

Divisibility in βN and N

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○ July 3rd 2018

Similarities between V(*N) and βN : -for $n \in N$, v(n) = n (the corresponding principal ultrafilter); $-x \in *N$ is prime iff v(x) is a prime ultrafilter; $-x \in *N$ is divisible by $n \in N$ iff v(x) is divisible by n...

Theorem

The following conditions are equivalent for every two ultrafilters $\mathcal{F}, \mathcal{G} \in \beta N$: (i) $\mathcal{F} \mid \mathcal{G}$; (ii) in every enlargement V(*N), there are $x, y \in *N$ such that $v(x) = \mathcal{F}, v(y) = \mathcal{G}$ and $x * \mid y$; (iii) in some enlargement V(*N), there are $x, y \in *N$ such that $v(x) = \mathcal{F}, v(y) = \mathcal{G}$ and $x * \mid y$.

$(i) \Rightarrow (ii)$ for any nonstandard extension.)

Boris Šobot (Novi Sad)

Divisibility in βN and N

July 3rd 2018

Similarities between V(*N) and βN : -for $n \in N$, v(n) = n (the corresponding principal ultrafilter); $-x \in {}^*N$ is prime iff v(x) is a prime ultrafilter;

Boris Šobot (Novi Sad)

Divisibility in βN and N

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○ July 3rd 2018

Similarities between V(*N) and βN : -for $n \in N$, v(n) = n (the corresponding principal ultrafilter); $-x \in {}^*N$ is prime iff v(x) is a prime ultrafilter; $-x \in N$ is divisible by $n \in N$ iff v(x) is divisible by $n \dots$

Boris Šobot (Novi Sad)

Divisibility in βN and N

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○ July 3rd 2018

Similarities between V(*N) and βN : -for $n \in N$, v(n) = n (the corresponding principal ultrafilter); $-x \in {}^*N$ is prime iff v(x) is a prime ultrafilter; $-x \in N$ is divisible by $n \in N$ iff v(x) is divisible by $n \dots$

Theorem

The following conditions are equivalent for every two ultrafilters $\mathcal{F}, \mathcal{G} \in \beta N$: (i) $\mathcal{F} \mid \mathcal{G}$: (ii) in every enlargement V(*N), there are $x, y \in *N$ such that $v(x) = \mathcal{F}, v(y) = \mathcal{G} and x^* | y;$ (iii) in some enlargement V(*N), there are $x, y \in *N$ such that $v(x) = \mathcal{F}, v(y) = \mathcal{G} and x^* | y.$

Boris Šobot (Novi Sad)

Divisibility in βN and N

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○ July 3rd 2018

Similarities between V(*N) and βN : -for $n \in N$, v(n) = n (the corresponding principal ultrafilter); $-x \in {}^*N$ is prime iff v(x) is a prime ultrafilter; $-x \in N$ is divisible by $n \in N$ iff v(x) is divisible by $n \dots$

Theorem

The following conditions are equivalent for every two ultrafilters $\mathcal{F}, \mathcal{G} \in \beta N$: (i) $\mathcal{F} \mid \mathcal{G}$: (ii) in every enlargement V(*N), there are $x, y \in *N$ such that $v(x) = \mathcal{F}, v(y) = \mathcal{G} and x^* | y;$ (iii) in some enlargement V(*N), there are $x, y \in *N$ such that $v(x) = \mathcal{F}, v(y) = \mathcal{G} and x^* | y.$

 $((i) \Rightarrow (ii)$ for any nonstandard extension.)

Boris Šobot (Novi Sad)

Divisibility in βN and N

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○ July 3rd 2018

Lemma

Let V(*N) be any nonstandard extension. (a) $x \in *N$ is of the form p^2 for some $p \in *P$ if and only if $v(x) = \mathcal{P}^2$ for some prime ultrafilter \mathcal{P} . (b) $x \in *N$ is of the form $p \cdot q$ for two distinct primes p, q such that $v(p) = v(q) = \mathcal{P}$ if and only if $v(x) \supseteq F_{(\mathcal{P},2)}$. (c) $x \in *N$ is of the form $p \cdot q$ for two primes p, q such that $v(p) = \mathcal{P}$, $v(q) = \mathcal{Q}$ and $\mathcal{P} \neq \mathcal{Q}$ if and only if $v(x) \supseteq F_{(\mathcal{P},1),(\mathcal{Q},1)}$.

25 / 29

《曰》 《問》 《臣》 《臣》 三臣

Boris Šobot (Novi Sad)

Divisibility in βN and N

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�? July 3rd 2018

Above finite levels of the $\tilde{|}$ -hierarchy

Theorem

(a) There is the $\tilde{|}$ -greatest class MAX of ultrafilters.

(b) Every $\mathcal{F} \in \beta N \setminus MAX$ has an immediate successor in $(\beta N, |)$. (c) Every $\mathcal{F} \in \beta N$ such that there are $p \in P$ and $n \in N \setminus \{0\}$ so that $p^{n*} || \mathcal{F}$ has an immediate predecessor in $(\beta N, \tilde{|})$.

(d) Every | -ascending sequence of ultrafilters of length ω has the least upper bound.

(e) Every | -descending sequence of ultrafilters of length ω has the greatest lower bound.

27 / 29

Above finite levels of the |-hierarchy

Theorem

- (a) There is the $\tilde{|}$ -greatest class MAX of ultrafilters.
- (b) Every $\mathcal{F} \in \beta N \setminus MAX$ has an immediate successor in $(\beta N, \widetilde{|})$.
- (c) Every $\mathcal{F} \in \beta N$ such that there are $p \in P$ and $n \in N \setminus \{0\}$ so that $p^{n*} \| \mathcal{F}$ has an immediate predecessor in $(\beta N, \widetilde{|})$.
- (d) Every ||-ascending sequence of ultrafilters of length ω has the least upper bound.
- (e) Every ||-descending sequence of ultrafilters of length ω has the greatest lower bound.

Above finite levels of the |-hierarchy

Theorem

- (a) There is the $\tilde{|}$ -greatest class MAX of ultrafilters.
- (b) Every $\mathcal{F} \in \beta N \setminus MAX$ has an immediate successor in $(\beta N, |)$. (c) Every $\mathcal{F} \in \beta N$ such that there are $p \in P$ and $n \in N \setminus \{0\}$ so that $p^{n*} \| \mathcal{F}$ has an immediate predecessor in $(\beta N, \tilde{|})$.
- (d) Every | -ascending sequence of ultrafilters of length ω has the least upper bound.
- (e) Every |-descending sequence of ultrafilters of length ω has the greatest lower bound.

27 / 29

Above finite levels of the $\tilde{|}$ -hierarchy

Theorem

- (a) There is the $\tilde{|}$ -greatest class MAX of ultrafilters.
- (b) Every $\mathcal{F} \in \beta N \setminus MAX$ has an immediate successor in $(\beta N, |)$.
- (c) Every $\mathcal{F} \in \beta N$ such that there are $p \in P$ and $n \in N \setminus \{0\}$ so that $p^{n*} \| \mathcal{F}$ has an immediate predecessor in $(\beta N, \widetilde{|})$.
- (d) Every ||-ascending sequence of ultrafilters of length ω has the least upper bound.
- (e) Every |-descending sequence of ultrafilters of length ω has the greatest lower bound.

27 / 29

Above finite levels of the $\tilde{|}$ -hierarchy

Theorem

- (a) There is the $\tilde{|}$ -greatest class MAX of ultrafilters.
- (b) Every $\mathcal{F} \in \beta N \setminus MAX$ has an immediate successor in $(\beta N, |)$.
- (c) Every $\mathcal{F} \in \beta N$ such that there are $p \in P$ and $n \in N \setminus \{0\}$ so that $p^{n*} \| \mathcal{F}$ has an immediate predecessor in $(\beta N, \widetilde{|})$.
- (d) Every ||-ascending sequence of ultrafilters of length ω has the least upper bound.

(e) Every |-descending sequence of ultrafilters of length ω has the greatest lower bound.

References

[1] M. Di Nasso, M. Forti, Topological and nonstandard extensions, Monatsh. Math. 144 (2005), 89–112.

[2] S.-A. Ng, H. Render, The Puritz order and its relationship to the Rudin-Keisler order, in: Reuniting the antipodes - Constructive and nonstandard views of the continuum, (Schuster P., Berger U., Osswald H., eds.), Kluwer Academic Publishers (2001), 157–166.

[3] C. Puritz, Skies, constellations and monads, in: Contributions to non-standard analysis (Luxemburg W. A. J., Robinson A., eds.), North Holland (1972), 215–243.

[4] B. Sobot: Divisibility in the Stone-Čech compactification, Rep. Math. Logic 50 (2015), 53-66.

[5] B. Šobot: | -divisibility of ultrafilters, arXiv 1703.05999

[6] B. Sobot: Divisibility in nonstandard arithmetic, arXiv 1806.06236

Thank you for your attention!

Divisibility in βN and N

July 3rd 2018

æ

29 / 29

イロト イヨト イヨト イヨト