Divisibility in βN and ${ }^{*} N$

Boris Šobot
Faculty of Sciences, University of Novi Sad

SetTop 2018

The motivation

N - discrete topological space on the set of natural numbers
βN - the set of ultrafilters on N

Principal ultrafilters $\{A \subseteq N: n \in A\}$ are identified with respective elements $n \in N$

Idea: extend the divisibility relation \mid to βN to get results in number theory

The motivation

N - discrete topological space on the set of natural numbers
βN - the set of ultrafilters on N

Principal ultrafilters $\{A \subseteq N: n \in A\}$ are identified with respective elements $n \in N$

Idea: extend the divisibility relation \mid to βN to get results in number theory

The motivation

N - discrete topological space on the set of natural numbers
βN - the set of ultrafilters on N

Principal ultrafilters $\{A \subseteq N: n \in A\}$ are identified with respective elements $n \in N$

Idea: extend the divisibility relation | to βN to get results in number

The motivation

N - discrete topological space on the set of natural numbers
βN - the set of ultrafilters on N

Principal ultrafilters $\{A \subseteq N: n \in A\}$ are identified with respective elements $n \in N$

Idea: extend the divisibility relation \mid to βN to get results in number theory

$\widetilde{\mid}$-divisibility

$\mathcal{U}=\{S \subseteq N: S$ is upward closed for $\mid\}$

Definition
For $\mathcal{F}, \mathcal{G} \in B N$

$\mathcal{F} \mid \mathcal{G}$ iff $\mathcal{F} \cap \mathcal{U} \subseteq \mathcal{G}$

The restriction of $\widetilde{\mid}$ to N^{2} is the usual
is reflexive and transitive, but not antisymmetric. Hence it is an order on $\beta N / \sim$, where

$$
\mathcal{F} \sim \mathcal{G} \Leftrightarrow \mathcal{F} \widetilde{G} \wedge \mathcal{G} \widetilde{\mathcal{F}} .
$$

I-divisibility

$\mathcal{U}=\{S \subseteq N: S$ is upward closed for $\mid\}$

Definition
For $\mathcal{F}, \mathcal{G} \in \beta N$

$$
\mathcal{F}\lceil\mathcal{G} \text { iff } \mathcal{F} \cap \mathcal{U} \subseteq \mathcal{G}
$$

The restriction of \mid to N^{2} is the usual
| is reflexive and transitive, but not antisymmetric. Hence it is an order on $\beta N / \sim$, where

\widetilde{I}-divisibility
$\mathcal{U}=\{S \subseteq N: S$ is upward closed for $\mid\}$

Definition
For $\mathcal{F}, \mathcal{G} \in \beta N$

$$
\mathcal{F} \tilde{G} \text { iff } \mathcal{F} \cap \mathcal{U} \subseteq \mathcal{G}
$$

The restriction of $\widetilde{\|}$ to N^{2} is the usual \mid
\square

|-divisibility

$\mathcal{U}=\{S \subseteq N: S$ is upward closed for $\mid\}$

Definition
For $\mathcal{F}, \mathcal{G} \in \beta N$

$$
\mathcal{F} \widetilde{G} \text { iff } \mathcal{F} \cap \mathcal{U} \subseteq \mathcal{G}
$$

The restriction of $\widetilde{\|}$ to N^{2} is the usual \mid
$\widetilde{ }$ is reflexive and transitive, but not antisymmetric. Hence it is an order on $\beta N / \sim$, where

$$
\mathcal{F} \sim \mathcal{G} \Leftrightarrow \mathcal{F} \widetilde{G} \wedge \mathcal{G} \widetilde{\mathcal{F}}
$$

Prime ultrafilters

$P \subseteq N$ - the set of primes

Prime ultrafilters: $\mathcal{P} \in \beta N \backslash\{1\}$ divisible only by 1 and themselves

Lemma
$\mathcal{P} \in \beta N$ is prime iff $P \in \mathcal{P}$.

Lemma

There are 2^{c} prime ultrafilters.

Lemma
For cvery $\mathcal{F} \in \beta N \backslash\{1\}$ there is prime \mathcal{P} such that $\mathcal{P} \mid \mathcal{F}$.

Prime ultrafilters

$P \subseteq N$ - the set of primes

Prime ultrafilters: $\mathcal{P} \in \beta N \backslash\{1\}$ divisible only by 1 and themselves

Lemma

$\mathcal{P} \in \beta N$ is prime iff $P \in \mathcal{P}$.

Lemma

There are 2^{c} prime ultrafilters.

Lemma
For curory $\mathcal{F} \in \beta N \backslash\{1\}$ there is prime \mathcal{P} such that $\mathcal{P} \mid \mathcal{F}$

Prime ultrafilters

$P \subseteq N$ - the set of primes
Prime ultrafilters: $\mathcal{P} \in \beta N \backslash\{1\}$ divisible only by 1 and themselves

Lemma
$\mathcal{P} \in \beta N$ is prime iff $P \in \mathcal{P}$.

Lemma

There are 2^{c} prime ultrafilters.

Lemma
For every $\mathcal{F} \in \beta N \backslash\{1\}$ there is prime \mathcal{P} such that $\mathcal{P} \mid \mathcal{F}$

Prime ultrafilters

$P \subseteq N$ - the set of primes

Prime ultrafilters: $\mathcal{P} \in \beta N \backslash\{1\}$ divisible only by 1 and themselves

Lemma
$\mathcal{P} \in \beta N$ is prime iff $P \in \mathcal{P}$.

Lemma
There are $2^{\text {c }}$ prime ultrafilters.

Lemma
For every $\mathcal{F} \in \beta N \backslash\{1\}$ there is prime \mathcal{P} such that $\mathcal{P} \mid \mathcal{F}$

Prime ultrafilters

$P \subseteq N$ - the set of primes
Prime ultrafilters: $\mathcal{P} \in \beta N \backslash\{1\}$ divisible only by 1 and themselves

Lemma
$\mathcal{P} \in \beta N$ is prime iff $P \in \mathcal{P}$.

Lemma
There are $2^{\text {c }}$ prime ultrafilters.

Lemma
For every $\mathcal{F} \in \beta N \backslash\{1\}$ there is prime \mathcal{P} such that $\mathcal{P} \widetilde{\mathcal{F}}$.

Prime ultrafilters

The second level

$$
A^{2}=\left\{a^{2}: a \in A\right\}
$$

The only ultrafilter above \mathcal{P} containing P^{2} is

The second level

$A^{2}=\left\{a^{2}: a \in A\right\}$
The only ultrafilter above \mathcal{P} containing P^{2} is

$$
\mathcal{P}^{2} \text { generated by }\left\{A^{2}: A \in \mathcal{P}\right\}
$$

The second level

The second level

$$
A^{(2)}=\{a b: a, b \in A, G C D(a, b)=1\}
$$

$$
F_{(\mathcal{P}, 2)}=\left\{A^{(2)}: A \in \mathcal{P}, A \subseteq P\right\}
$$

Ultrafilters containing $F_{(\mathcal{P}, 2)}$ are also divisible only by $1, \mathcal{P}$ and themselves

Example. $\mathcal{P} \cdot \mathcal{P} \supseteq F_{(\mathcal{P}, 2)}$
where

$$
\mathcal{F} \cdot \mathcal{G}=\{A \in P(N):\{n \in N:\{m \in N: m n \in A\} \in \mathcal{G}\} \in \mathcal{F}\} .
$$

The second level

$$
\begin{aligned}
& A^{(2)}=\{a b: a, b \in A, G C D(a, b)=1\} \\
& F_{(\mathcal{P}, 2)}=\left\{A^{(2)}: A \in \mathcal{P}, A \subseteq P\right\}
\end{aligned}
$$

The second level

$$
\begin{aligned}
& A^{(2)}=\{a b: a, b \in A, G C D(a, b)=1\} \\
& F_{(\mathcal{P}, 2)}=\left\{A^{(2)}: A \in \mathcal{P}, A \subseteq P\right\}
\end{aligned}
$$

Ultrafilters containing $F_{(\mathcal{P}, 2)}$ are also divisible only by $1, \mathcal{P}$ and themselves

Example. $\mathcal{P} \cdot \mathcal{P} \supseteq F_{(\mathcal{P}, 2)}$
where

The second level

$$
\begin{aligned}
& A^{(2)}=\{a b: a, b \in A, G C D(a, b)=1\} \\
& F_{(\mathcal{P}, 2)}=\left\{A^{(2)}: A \in \mathcal{P}, A \subseteq P\right\}
\end{aligned}
$$

Ultrafilters containing $F_{(\mathcal{P}, 2)}$ are also divisible only by $1, \mathcal{P}$ and themselves

Example. $\mathcal{P} \cdot \mathcal{P} \supseteq F_{(\mathcal{P}, 2)}$

The second level

$$
\begin{aligned}
& A^{(2)}=\{a b: a, b \in A, G C D(a, b)=1\} \\
& F_{(\mathcal{P}, 2)}=\left\{A^{(2)}: A \in \mathcal{P}, A \subseteq P\right\}
\end{aligned}
$$

Ultrafilters containing $F_{(\mathcal{P}, 2)}$ are also divisible only by $1, \mathcal{P}$ and themselves

Example. $\mathcal{P} \cdot \mathcal{P} \supseteq F_{(\mathcal{P}, 2)}$
where

$$
\mathcal{F} \cdot \mathcal{G}=\{A \in P(N):\{n \in N:\{m \in N: m n \in A\} \in \mathcal{G}\} \in \mathcal{F}\}
$$

The second level

$$
\begin{aligned}
& A^{(2)}=\{a b: a, b \in A, G C D(a, b)=1\} \\
& F_{(\mathcal{P}, 2)}=\left\{A^{(2)}: A \in \mathcal{P}, A \subseteq P\right\}
\end{aligned}
$$

Ultrafilters containing $F_{(\mathcal{P}, 2)}$ are also divisible only by $1, \mathcal{P}$ and themselves

Example. $\mathcal{P} \cdot \mathcal{P} \supseteq F_{(\mathcal{P}, 2)}$

The second level

$A^{(2)}=\{a b: a, b \in A, G C D(a, b)=1\}$
$F_{(\mathcal{P}, 2)}=\left\{A^{(2)}: A \in \mathcal{P}, A \subseteq P\right\}$
Ultrafilters containing $F_{(\mathcal{P}, 2)}$ are also divisible only by $1, \mathcal{P}$ and themselves

Example. $\mathcal{P} \cdot \mathcal{P} \supseteq F_{(\mathcal{P}, 2)}$

Lemma
There are either finitely many or $2^{\text {c }}$ ultrafilters containing $F_{(\mathcal{P}, 2)}$.

The second level

The second level

Theorem

Let \mathcal{P} be prime. There is unique ultrafilter $\mathcal{F} \supseteq F_{(\mathcal{P}, 2)}$ if and only if \mathcal{P} is Ramsey.

Theorem

(CH) There is a prime \mathcal{P} such that there are 2^{6} ultrafilters $\mathcal{F} \longrightarrow F_{(\mathcal{P}, 2)}$

The second level

Theorem

Let \mathcal{P} be prime. There is unique ultrafilter $\mathcal{F} \supseteq F_{(\mathcal{P}, 2)}$ if and only if \mathcal{P} is Ramsey.

Theorem
$(C H)$ There is a prime \mathcal{P} such that there are $2^{\mathfrak{c}}$ ultrafilters $\mathcal{F} \supseteq F_{(\mathcal{P}, 2)}$.

The second level

$$
A B=\{a b: a \in A, b \in B, G C D(a, b)=1\}
$$

$$
F_{(\mathcal{P}, 1),(Q, 1)}=\{A B: A \in \mathcal{P}, B \in Q, A, B \subseteq P \text { are disjoint }\}
$$

Ultrafilters containing $F_{(\mathcal{P}, 1),(\mathcal{Q}, 1)}$ are divisible only by $1, \mathcal{P}, \mathcal{Q}$ and themselves

They are exactly ultrafilters containing $A B$ for some disjoint $A, B \subseteq P$

Example. $\mathcal{P} \cdot \mathcal{Q}, \mathcal{Q} \cdot \mathcal{P} \supseteq F_{(\mathcal{P}, 1),(\mathcal{Q}, 1)}$

Bears similarities to another kind of product of filters

$$
\mathcal{F} \times \mathcal{G}=\left\{X \in P\left(N^{2}\right):(\exists A \in \mathcal{F})(\exists B \in \mathcal{G}) A \times B \subseteq X\right\}
$$

The second level

$$
\begin{aligned}
& A B=\{a b: a \in A, b \in B, G C D(a, b)=1\} \\
& F_{(\mathcal{P}, 1),(\mathcal{Q}, 1)}=\{A B: A \in \mathcal{P}, B \in \mathcal{Q}, A, B \subseteq P \text { are disjoint }\}
\end{aligned}
$$

The second level

$A B=\{a b: a \in A, b \in B, G C D(a, b)=1\}$
$F_{(\mathcal{P}, 1),(\mathcal{Q}, 1)}=\{A B: A \in \mathcal{P}, B \in \mathcal{Q}, A, B \subseteq P$ are disjoint $\}$
Ultrafilters containing $F_{(\mathcal{P}, 1),(\mathcal{Q}, 1)}$ are divisible only by $1, \mathcal{P}, \mathcal{Q}$ and themselves

They are exactly ultrafilters containing $A B$ for some disjoint $A, B \subseteq P$

Example. $\mathcal{P} \cdot \mathcal{Q}, \mathcal{Q} \cdot \mathcal{P} \supseteq F_{(\mathcal{P}, 1),(\mathcal{Q}, 1)}$
Bears similarities to another kind of product of filters

The second level

$A B=\{a b: a \in A, b \in B, G C D(a, b)=1\}$
$F_{(\mathcal{P}, 1),(\mathcal{Q}, 1)}=\{A B: A \in \mathcal{P}, B \in \mathcal{Q}, A, B \subseteq P$ are disjoint $\}$
Ultrafilters containing $F_{(\mathcal{P}, 1),(\mathcal{Q}, 1)}$ are divisible only by $1, \mathcal{P}, \mathcal{Q}$ and themselves

They are exactly ultrafilters containing $A B$ for some disjoint $A, B \subseteq P$

Example. $\mathcal{P} \cdot \mathcal{Q}, \mathcal{Q} \cdot \mathcal{P} \supseteq F_{(\mathcal{P}, 1),(\mathcal{Q}, 1)}$
Bears similarities to another kind of product of filters

The second level

$$
\begin{aligned}
& A B=\{a b: a \in A, b \in B, G C D(a, b)=1\} \\
& F_{(\mathcal{P}, 1),(\mathcal{Q}, 1)}=\{A B: A \in \mathcal{P}, B \in \mathcal{Q}, A, B \subseteq P \text { are disjoint }\}
\end{aligned}
$$

Ultrafilters containing $F_{(\mathcal{P}, 1),(\mathcal{Q}, 1)}$ are divisible only by $1, \mathcal{P}, \mathcal{Q}$ and themselves

They are exactly ultrafilters containing $A B$ for some disjoint $A, B \subseteq P$

Example. $\mathcal{P} \cdot \mathcal{Q}, \mathcal{Q} \cdot \mathcal{P} \supseteq F_{(\mathcal{P}, 1),(\mathcal{Q}, 1)}$
Bears similarities to another kind of product of filters

The second level

$A B=\{a b: a \in A, b \in B, G C D(a, b)=1\}$
$F_{(\mathcal{P}, 1),(\mathcal{Q}, 1)}=\{A B: A \in \mathcal{P}, B \in \mathcal{Q}, A, B \subseteq P$ are disjoint $\}$
Ultrafilters containing $F_{(\mathcal{P}, 1),(\mathcal{Q}, 1)}$ are divisible only by $1, \mathcal{P}, \mathcal{Q}$ and themselves

They are exactly ultrafilters containing $A B$ for some disjoint $A, B \subseteq P$

Example. $\mathcal{P} \cdot \mathcal{Q}, \mathcal{Q} \cdot \mathcal{P} \supseteq F_{(\mathcal{P}, 1),(\mathcal{Q}, 1)}$
Bears similarities to another kind of product of filters

$$
\mathcal{F} \times \mathcal{G}=\left\{X \in P\left(N^{2}\right):(\exists A \in \mathcal{F})(\exists B \in \mathcal{G}) A \times B \subseteq X\right\}
$$

The second level

$A B=\{a b: a \in A, b \in B, G C D(a, b)=1\}$
$F_{(\mathcal{P}, 1),(\mathcal{Q}, 1)}=\{A B: A \in \mathcal{P}, B \in \mathcal{Q}, A, B \subseteq P$ are disjoint $\}$
Ultrafilters containing $F_{(\mathcal{P}, 1),(\mathcal{Q}, 1)}$ are divisible only by $1, \mathcal{P}, \mathcal{Q}$ and themselves

They are exactly ultrafilters containing $A B$ for some disjoint $A, B \subseteq P$
Example. $\mathcal{P} \cdot \mathcal{Q}, \mathcal{Q} \cdot \mathcal{P} \supseteq F_{(\mathcal{P}, 1),(\mathcal{Q}, 1)}$

The second level

$A B=\{a b: a \in A, b \in B, G C D(a, b)=1\}$
$F_{(\mathcal{P}, 1),(\mathcal{Q}, 1)}=\{A B: A \in \mathcal{P}, B \in \mathcal{Q}, A, B \subseteq P$ are disjoint $\}$
Ultrafilters containing $F_{(\mathcal{P}, 1),(\mathcal{Q}, 1)}$ are divisible only by $1, \mathcal{P}, \mathcal{Q}$ and themselves

They are exactly ultrafilters containing $A B$ for some disjoint $A, B \subseteq P$
Example. $\mathcal{P} \cdot \mathcal{Q}, \mathcal{Q} \cdot \mathcal{P} \supseteq F_{(\mathcal{P}, 1),(\mathcal{Q}, 1)}$

Lemma
There are either finitely many or $2^{\mathfrak{c}}$ ultrafilters containing $F_{(\mathcal{P}, 1),(\mathcal{Q}, 1)}$.

The second level

The second level

> Theorem
> Let \mathcal{P}, \mathcal{Q} be primes. If there is unique $\mathcal{F} \supseteq F_{(\mathcal{P}, 1),(\mathcal{Q}, 1)}$ then both \mathcal{P} and \mathcal{Q} are P-points.

Theorem
For every prime \mathcal{P} there is a prime Q such that there are $2^{\text {c }}$ ultrafilters

The second level

```
Theorem
Let \mathcal{P},\mathcal{Q}\mathrm{ be primes. If there is unique }\mathcal{F}\supseteq\mp@subsup{F}{(\mathcal{P},1),(\mathcal{Q},1)}{}}\mathrm{ then both }\mathcal{P}\mathrm{ and
\mathcal{Q}}\mathrm{ are P-points.
```


Theorem

For every prime \mathcal{P} there is a prime \mathcal{Q} such that there are $2^{\mathfrak{c}}$ ultrafilters $\mathcal{F} \supseteq F_{(\mathcal{P}, 1),(\mathcal{Q}, 1)}$.

The third level

Nonstandard arithmetic

A superstructure over X :
$V_{0}(X)=X$,
$V_{n+1}(X)=V_{n}(X) \cup P\left(V_{n}(X)\right)$,
$V(X)=\bigcup_{n \in \omega} V_{n}(X)$.
$V(Y)$ is a nonstandard extension of $V(X)$ if $X \subset Y$ and there is a rank-preserving function $*: V(X) \rightarrow V(Y)$ such that ${ }^{*} X=Y$ and satisfying:

The Transfer Principle. For every bounded formula φ and every $a_{1}, a_{2}, \ldots, a_{n} \in V(X), \varphi\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ holds in $V(X)$ if and only if $\varphi\left({ }^{*} a_{1},{ }^{*} a_{2}, \ldots,{ }^{*} a_{n}\right)$ holds in $V(Y)$.

Nonstandard arithmetic

$$
\begin{aligned}
& \text { A superstructure over } X \text { : } \\
& V_{0}(X)=X \\
& V_{n+1}(X)=V_{n}(X) \cup P\left(V_{n}(X)\right) \\
& V(X)=U_{n \in \omega} V_{n}(X)
\end{aligned}
$$

$V(Y)$ is a nonstandard extension of $V(X)$ if $X \subset Y$ and there is a rank-preserving function $*: V(X) \rightarrow V(Y)$ such that ${ }^{*} X=Y$ and satisfying:

The Transfer Principle. For every bounded formula φ and every $a_{1}, a_{2}, \ldots, a_{n} \in V(X), \varphi\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ holds in $V(X)$ if and only if $\varphi\left({ }^{*} a_{1},{ }^{*} a_{2}, \ldots,{ }^{*} a_{n}\right)$ holds in $V(Y)$.

Nonstandard arithmetic

A superstructure over X :
$V_{0}(X)=X$,
$V_{n+1}(X)=V_{n}(X) \cup P\left(V_{n}(X)\right)$,
$V(X)=\bigcup_{n \in \omega} V_{n}(X)$.
$V(Y)$ is a nonstandard extension of $V(X)$ if $X \subset Y$ and there is a rank-preserving function $*: V(X) \rightarrow V(Y)$ such that ${ }^{*} X=Y$ and satisfying:

The Transfer Principle. For every bounded formula φ and every $a_{1}, a_{2}, \ldots, a_{n} \in V(X), \varphi\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ holds in $V(X)$ if and only if $\varphi\left({ }^{*} a_{1},{ }^{*} a_{2}, \ldots,{ }^{*} a_{n}\right)$ holds in $V(Y)$.

Nonstandard arithmetic

A superstructure over X :
$V_{0}(X)=X$,
$V_{n+1}(X)=V_{n}(X) \cup P\left(V_{n}(X)\right)$,
$V(X)=\bigcup_{n \in \omega} V_{n}(X)$.
$V(Y)$ is a nonstandard extension of $V(X)$ if $X \subset Y$ and there is a rank-preserving function $*: V(X) \rightarrow V(Y)$ such that ${ }^{*} X=Y$ and satisfying:

The Transfer Principle. For every bounded formula φ and every $a_{1}, a_{2}, \ldots, a_{n} \in V(X), \varphi\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ holds in $V(X)$ if and only if $\varphi\left({ }^{*} a_{1},{ }^{*} a_{2}, \ldots,{ }^{*} a_{n}\right)$ holds in $V(Y)$.

Nonstandard arithmetic

A superstructure over X :
$V_{0}(X)=X$,
$V_{n+1}(X)=V_{n}(X) \cup P\left(V_{n}(X)\right)$,
$V(X)=\bigcup_{n \in \omega} V_{n}(X)$.
$V(Y)$ is a nonstandard extension of $V(X)$ if $X \subset Y$ and there is a rank-preserving function $*: V(X) \rightarrow V(Y)$ such that ${ }^{*} X=Y$ and satisfying:

The Transfer Principle. For every bounded formula φ and every $a_{1}, a_{2}, \ldots, a_{n} \in V(X), \varphi\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ holds in $V(X)$ if and only if

Nonstandard arithmetic

A superstructure over X :
$V_{0}(X)=X$,
$V_{n+1}(X)=V_{n}(X) \cup P\left(V_{n}(X)\right)$,
$V(X)=\bigcup_{n \in \omega} V_{n}(X)$.
$V(Y)$ is a nonstandard extension of $V(X)$ if $X \subset Y$ and there is a rank-preserving function $*: V(X) \rightarrow V(Y)$ such that ${ }^{*} X=Y$ and satisfying:

The Transfer Principle. For every bounded formula φ and every $a_{1}, a_{2}, \ldots, a_{n} \in V(X), \varphi\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ holds in $V(X)$ if and only if $\varphi\left({ }^{*} a_{1},{ }^{*} a_{2}, \ldots,{ }^{*} a_{n}\right)$ holds in $V(Y)$.

Nonstandard arithmetic

By Transfer, for $x, y \in{ }^{*} N$:

$$
x^{*} \mid y \operatorname{iff}\left(\exists k \in{ }^{*} N\right) y=k x .
$$

Each element $n \in N$ is identified with * n.

In every nonstandard extension $V\left({ }^{*} N\right)$ of $V(N)$ holds a generalization of the Fundamental Theorem of Arithmetic. (Here p is the unique increasing function from N to P.)
\square
(a) For every $z \in{ }^{*} N$ and every internal sequence $\langle h(n): n \leq z\rangle$ there is unique $x \in{ }^{*} N$ such that ${ }^{*} p(n)^{h(n) *} \| x$ for $n \leq z$ and ${ }^{*} p(n)^{*} \not x$ for $n>z$; we denote such element by $\prod_{n \leq z}{ }^{*} p(n)^{h(n)}$.
(b) Every $x \in{ }^{*} N$ can be uniquely represented as $\prod_{n<z}{ }^{*} p(n)^{h(n)}$ for some $z \in{ }^{*} N$ and some internal sequence $\langle h(n): n \leq z\rangle$ such that $h(z)>0$.

Nonstandard arithmetic

By Transfer, for $x, y \in{ }^{*} N$:

$$
x^{*} \mid y \operatorname{iff}\left(\exists k \in{ }^{*} N\right) y=k x .
$$

Each element $n \in N$ is identified with ${ }^{*} n$.
In every nonstandard extension $V\left({ }^{*} N\right)$ of $V(N)$ holds a generalization
of the Fundamental Theorem of Arithmetic. (Here p is the unique increasing function from N to P.)
\square
(a) For every $z \in{ }^{*} N$ and every internal sequence $\langle h(n): n \leq z\rangle$ there is unique $x \in{ }^{*} N$ such that ${ }^{*} p(n)^{h(n)}{ }^{*} \| x$ for $n \leq z$ and ${ }^{*} p(n)^{*} \nmid x$ for $n>z$; we denote such element by $\prod_{n \leq z}{ }^{*} p(n)^{h(n)}$.
 some $z \in{ }^{*} N$ and some internal sequence $\langle h(n): n \leq z\rangle$ such that $h(z)>0$.

Nonstandard arithmetic

By Transfer, for $x, y \in{ }^{*} N$:

$$
x^{*} \mid y \operatorname{iff}\left(\exists k \in{ }^{*} N\right) y=k x .
$$

Each element $n \in N$ is identified with * n.
In every nonstandard extension $V\left({ }^{*} N\right)$ of $V(N)$ holds a generalization of the Fundamental Theorem of Arithmetic. (Here p is the unique increasing function from N to P.)

Theorem

(a) For every $z \in{ }^{*} N$ and every internal sequence $\langle h(n): n \leq z\rangle$ there is unique $x \in{ }^{*} N$ such that ${ }^{*} p(n)^{h(n) *} \| x$ for $n \leq z$ and ${ }^{*} p(n)^{*} \nmid x$ for $n>z$; we denote such element by $\prod_{n \leq z}{ }^{*} p(n)^{h(n)}$.
(b) Every $x \in{ }^{*} N$ can be uniquely represented as $\prod_{n \leq z}{ }^{*} p(n)^{h(n)}$ for some $z \in{ }^{*} N$ and some internal sequence $\langle h(n): n \leq z\rangle$ such that $h(z)>0$.

The connection

For every $x \in{ }^{*} N$ the family $\left\{S \subseteq N: x \in{ }^{*} S\right\}$ is an ultrafilter; it is denoted by $v(x)$.

Thus a function $v:{ }^{*} N \rightarrow \beta N$ is obtained. v is onto if $V\left({ }^{*} N\right)$ is an enlargement.
$\mu(\mathcal{F})=v^{-1}[\{\mathcal{F}\}]$ is the monad of $\mathcal{F} \in \beta N$.

The connection

For every $x \in{ }^{*} N$ the family $\left\{S \subseteq N: x \in{ }^{*} S\right\}$ is an ultrafilter; it is denoted by $v(x)$.

Thus a function $v:{ }^{*} N \rightarrow \beta N$ is obtained. v is onto if $V\left({ }^{*} N\right)$ is an enlargement.
$\mu(\mathcal{F})=v^{-1}[\{\mathcal{F}\}]$ is the monad of $\mathcal{F} \in \beta N$.

The connection

For every $x \in{ }^{*} N$ the family $\left\{S \subseteq N: x \in{ }^{*} S\right\}$ is an ultrafilter; it is denoted by $v(x)$.

Thus a function $v:{ }^{*} N \rightarrow \beta N$ is obtained. v is onto if $V\left({ }^{*} N\right)$ is an enlargement.
$\mu(\mathcal{F})=v^{-1}[\{\mathcal{F}\}]$ is the monad of $\mathcal{F} \in \beta N$.

The connection

Similarities between $V\left({ }^{*} N\right)$ and βN :
-for $n \in N, v(n)=n$ (the corresponding principal ultrafilter);
$-x \in{ }^{*} N$ is divisible by $n \in N$ iff $v(x)$ is divisible by $n \ldots$

Theorem
The following conditions are equivalent for every two ultrafilters $\mathcal{F}, \mathcal{G} \in \beta N:$
(i) $\mathcal{F} \mid \mathcal{G}$;
(ii) in every enlargement $V(* N)$, there are $x, y \in * N$ such that
\square
(iii) in some enlargement $V\left({ }^{*} N\right)$, there are $x, y \in{ }^{*} N$ such that $v(x)=\mathcal{F}, v(y)=\mathcal{G}$ and $x^{*} \mid y$.
$((i) \Rightarrow$ (ii) for any nonstandard extension.)

The connection

Similarities between $V\left({ }^{*} N\right)$ and βN :
-for $n \in N, v(n)=n$ (the corresponding principal ultrafilter);
$-x \in{ }^{*} N$ is prime iff $v(x)$ is a prime ultrafilter;

Theorem
The following conditions are equivalent for every two ultrafilters
\square
(ii) in every enlargement $V\left({ }^{*} N\right)$, there are $x, y \in{ }^{*} N$ such that
\square
(iii) in some enlargement $V(* N)$, there are $x, y \in{ }^{*} N$ such that $v(x)=\mathcal{F}, v(y)=\mathcal{G}$ and $x^{*} \mid y$.
$((\mathrm{i}) \Rightarrow($ ii $)$ for any nonstandard extension.)

The connection

Similarities between $V\left({ }^{*} N\right)$ and βN :
-for $n \in N, v(n)=n$ (the corresponding principal ultrafilter);
$-x \in{ }^{*} N$ is prime iff $v(x)$ is a prime ultrafilter;
$-x \in{ }^{*} N$ is divisible by $n \in N$ iff $v(x)$ is divisible by $n \ldots$

Theorem
The following conditions are equivalent for every two ultrafilters
\square
(ii) in every enlargement $V\left({ }^{*} N\right)$, there are $x, y \in{ }^{*} N$ such that

The connection

Similarities between $V\left({ }^{*} N\right)$ and βN :
-for $n \in N, v(n)=n$ (the corresponding principal ultrafilter);
$-x \in{ }^{*} N$ is prime iff $v(x)$ is a prime ultrafilter;
$-x \in{ }^{*} N$ is divisible by $n \in N$ iff $v(x)$ is divisible by $n \ldots$

Theorem

The following conditions are equivalent for every two ultrafilters $\mathcal{F}, \mathcal{G} \in \beta N:$
(i) $\mathcal{F} \mid \mathcal{G}$;
(ii) in every enlargement $V\left({ }^{*} N\right)$, there are $x, y \in{ }^{*} N$ such that $v(x)=\mathcal{F}, v(y)=\mathcal{G}$ and $x^{*} \mid y ;$
(iii) in some enlargement $V\left({ }^{*} N\right)$, there are $x, y \in{ }^{*} N$ such that $v(x)=\mathcal{F}, v(y)=\mathcal{G}$ and $x^{*} \mid y$.

The connection

Similarities between $V\left({ }^{*} N\right)$ and βN :
-for $n \in N, v(n)=n$ (the corresponding principal ultrafilter);
$-x \in{ }^{*} N$ is prime iff $v(x)$ is a prime ultrafilter;
$-x \in{ }^{*} N$ is divisible by $n \in N$ iff $v(x)$ is divisible by $n \ldots$

Theorem

The following conditions are equivalent for every two ultrafilters $\mathcal{F}, \mathcal{G} \in \beta N:$
(i) $\mathcal{F} \mid \mathcal{G}$;
(ii) in every enlargement $V\left({ }^{*} N\right)$, there are $x, y \in{ }^{*} N$ such that $v(x)=\mathcal{F}, v(y)=\mathcal{G}$ and $x^{*} \mid y ;$
(iii) in some enlargement $V\left({ }^{*} N\right)$, there are $x, y \in{ }^{*} N$ such that $v(x)=\mathcal{F}, v(y)=\mathcal{G}$ and $x^{*} \mid y$.
$((\mathrm{i}) \Rightarrow$ (ii) for any nonstandard extension.)

The connection

Lemma

Let $V\left({ }^{*} N\right)$ be any nonstandard extension.
(a) $x \in{ }^{*} N$ is of the form p^{2} for some $p \in{ }^{*} P$ if and only if $v(x)=\mathcal{P}^{2}$ for some prime ultrafilter \mathcal{P}.
(b) $x \in{ }^{*} N$ is of the form $p \cdot q$ for two distinct primes p, q such that $v(p)=v(q)=\mathcal{P}$ if and only if $v(x) \supseteq F_{(\mathcal{P}, 2)}$.
(c) $x \in{ }^{*} N$ is of the form $p \cdot q$ for two primes p, q such that $v(p)=\mathcal{P}$, $v(q)=\mathcal{Q}$ and $\mathcal{P} \neq \mathcal{Q}$ if and only if $v(x) \supseteq F_{(\mathcal{P}, 1),(\mathcal{Q}, 1)}$.

The connection

$$
{ }^{*} N \quad \beta N
$$

Above finite levels of the $\widetilde{\lceil }$-hierarchy

Theorem

(a) There is the $\widetilde{\lceil }$-greatest class MAX of ultrafilters.
(b) Every $\mathcal{F} \in \beta N \backslash M A X$ has an immediate successor in $(\beta N, \mid)$. (c) Every $\mathcal{F} \in \beta N$ such that there are $p \in P$ and $n \in N \backslash\{0\}$ so that $p^{n *} \| \mathcal{F}$ has an immediate predecessor in $(\beta N, \widetilde{\|})$. (d) Every |-ascending sequence of ultrafilters of length ω has the least upper bound.
(e) Every $\widetilde{\mid}$-descending sequence of ultrafilters of length w has the greatest lower bound.

Above finite levels of the $\widetilde{\lceil }$-hierarchy

Theorem

(a) There is the $\widetilde{\lceil }$-greatest class $M A X$ of ultrafilters.
(b) Every $\mathcal{F} \in \beta N \backslash M A X$ has an immediate successor in $(\beta N, \widetilde{\mid})$.
(c) Every $\mathcal{F} \in \beta N$ such that there are $p \in P$ and $n \in N \backslash\{0\}$ so that $p^{n *} \| \mathcal{F}$ has an immediate predecessor in $(\beta N, \widetilde{\mid})$. (d) Every |-ascending sequence of ultrafilters of length ω has the least upper bound.
(e) Every \mid-descending sequence of ultrafilters of length ω has the
greatest lower bound.

Above finite levels of the $\widetilde{\lceil }$-hierarchy

Theorem

(a) There is the $\widetilde{\lceil\text {-greatest class MAX of ultrafilters. }}$
(b) Every $\mathcal{F} \in \beta N \backslash M A X$ has an immediate successor in $(\beta N, \widetilde{\rceil})$.
(c) Every $\mathcal{F} \in \beta N$ such that there are $p \in P$ and $n \in N \backslash\{0\}$ so that $p^{n *} \| \mathcal{F}$ has an immediate predecessor in $(\beta N, \widetilde{\mid})$.

Above finite levels of the $\widetilde{\lceil }$-hierarchy

Theorem

(a) There is the $\widetilde{\lceil }$-greatest class MAX of ultrafilters.
(b) Every $\mathcal{F} \in \beta N \backslash M A X$ has an immediate successor in $(\beta N, \widetilde{\mid})$.
(c) Every $\mathcal{F} \in \beta N$ such that there are $p \in P$ and $n \in N \backslash\{0\}$ so that $p^{n *} \| \mathcal{F}$ has an immediate predecessor in $(\beta N, \widetilde{\mid})$.
(d) Every $\widetilde{\uparrow}$-ascending sequence of ultrafilters of length ω has the least upper bound.

Above finite levels of the $\widetilde{\lceil }$-hierarchy

Theorem

(a) There is the $\widetilde{\lceil\text {-greatest class MAX of ultrafilters. }}$
(b) Every $\mathcal{F} \in \beta N \backslash M A X$ has an immediate successor in $(\beta N, \widetilde{\mid})$.
(c) Every $\mathcal{F} \in \beta N$ such that there are $p \in P$ and $n \in N \backslash\{0\}$ so that $p^{n *} \| \mathcal{F}$ has an immediate predecessor in $(\beta N, \widetilde{\mid})$.
(d) Every $\widetilde{\uparrow}$-ascending sequence of ultrafilters of length ω has the least upper bound.
(e) Every $\widetilde{\mid}$-descending sequence of ultrafilters of length ω has the greatest lower bound.

References

[1] M. Di Nasso, M. Forti, Topological and nonstandard extensions, Monatsh. Math. 144 (2005), 89-112.
[2] S.-A. Ng, H. Render, The Puritz order and its relationship to the Rudin-Keisler order, in: Reuniting the antipodes - Constructive and nonstandard views of the continuum, (Schuster P., Berger U., Osswald H., eds.), Kluwer Academic Publishers (2001), 157-166.
[3] C. Puritz, Skies, constellations and monads, in: Contributions to non-standard analysis (Luxemburg W. A. J., Robinson A., eds.), North Holland (1972), 215-243.
[4] B. Šobot: Divisibility in the Stone-Čech compactification, Rep.
Math. Logic 50 (2015), 53-66.
[5] B. Šobot: $\widetilde{\mid}$-divisibility of ultrafilters, arXiv 1703.05999
[6] B. Šobot: Divisibility in nonstandard arithmetic, arXiv 1806.06236

Thank you for your attention!

