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The setting

I S∞ is the topological group of permutations of N.

I C is a Borel class of closed subgroups of S∞.

We study the complexity of the isomorphism problem for C:

Given groups G,H in C, how hard is it to determine whether G ∼= H?

All isomorphisms of groups will be topological isomorphisms.
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Two opposite classes

We focus on two classes:

I Oligomorphic:
for each k, the action on Nk has only finitely many orbits
These are the automorphism groups of ω-categorical structures with domain N.

I Profinite: each orbit of the action on N is finite.
These are the compact subgroups of S∞ and up to isomorphism, the inverse

limits of finite groups.
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A Borel superclass

A closed subgroup G of S∞ is Roelcke precompact if each open subgroup U of
G is large in the sense that there is finite set F ⊆ G such that UFU = G.

Roelcke precompact

Oligomorphic

19

Profinite

dl

Background on Roelcke precompact groups:

I Tsankov,

Unitary representations of oligomorphic groups

Geom. Funct. Anal. 22 (2012)
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Previous results on profinite groups

GI

∼=Roelcke precompact

≤B

OO

∼=Oligomorphic

≤B

55

∼=Profinite

≤B

hh

Theorem (Kechris, Nies, Tent)

Isomorphism of Roelcke precompact groups is Borel below graph isomorphism.

Graph isomorphism (GI) is universal for S∞ orbit equivalence relations. Result

independently by Rosendal and Zielinski, JSL 2018
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Theorem (Kechris, Nies, Tent)

Graph isomorphism is Borel below isomorphism of profinite groups.

Isomorphism of oligomorphic groups is between =R and GI.
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Main result (Nies, Tent, S.)

GI

E∞ ∼=Roelcke precompact

≤B

OO

∼=Oligomorphic

≤B

66

≤B

OO

∼=Profinite

≤B

hh

GI

≤B

OO

Isomorphism of oligomorphic groups is Borel below E∞.

E∞ denotes a universal countable Borel equivalence relation.

To be countable means: each class is countable.
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Main result (Nies, Tent, S.)

∼=Profinite
oo
≡B

// GI S∞-actions

E∞

≤B

OO

actions of countable groups

∼=Oligomorphic

≤B

99

ff
≤B

E0

≤B

OO

Z-actions

=R

≤B

OO

Isomorphism of oligomorphic groups is Borel below E∞.

E0 denotes equality with finite error on 2N.
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The Borel space of closed subgroups of S∞

The closed subgroups of S∞ can be seen as points in a standard Borel space.
This means: the space is Borel isomorphic to a Polish metric space.

For a 1-1 map σ : {0, . . . , n− 1} → N let

Nσ = {f ∈ S∞ : σ ≺ f}

To define the Borel sets, we start with sets of the form

{G ≤c S∞ : G ∩Nσ 6= ∅},

where G ≤c S∞ means that G is a closed subgroup of S∞.

The Borel sets are generated from these basic sets by complementation and
countable union.

Example: for every f ∈ S∞, the set
⋂

k{H : H ∩Nf�k 6= ∅} is Borel. It expresses that

a closed subgroup of S∞ contains α.
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The Borel space of closed subgroups of S∞

The closed subgroups of S∞ can be seen as points in a standard Borel space.

To define the Borel sets, we start with sets of the form

{G ≤c S∞ : G ∩Nσ 6= ∅},

where G ≤c S∞ means that G is a closed subgroup of S∞.

The Borel sets are generated from these basic sets by complementation and
countable union.

Assume that E, F are binary relations on standard Borel spaces X, Y .

Definition. E is Borel reducible to F , or E ≤B F , if there is a Borel
measurable r : X → Y with

(x, y) ∈ E ⇐⇒ (r(x), r(y)) ∈ F.
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Complexity of the isomorphism relation

for Roelcke precompact and profinite groups
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Roelcke precompactness

A closed subgroup G of S∞ is called Roelcke precompact if
for each open subgroup U of G

there is a finite set F ⊆ G such that UFU = G.

This condition is Borel because it suffices to check it for the basic open subgroups

Un = {ρ ∈ G : ∀i < n [ρ(i) = i]}; further, we can pick F from a countable dense set

predetermined from G in a Borel way.

Fact. G Roelcke precompact ⇒
G has only countably many open subgroups.

Proof. Each open subgroup U contains a basic open subgroup Un.
Un has finitely many double cosets, and U is the union of some of them.

In fact, from G we can in a Borel way determine a listing A0, A1, . . .. without

repetition of all open cosets.
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Theorem (Kechris, Nies, Tent)

Isomorphism of Roelcke precompact groups is Borel reducible to graph
isomorphism.

This was independently and via different methods proved by Rosendal and Zielinski

(JSL, 2018).

Proof.

I Let M(G) be the structure with domain the open cosets. Via the listing
A0, A1, . . . above, we can identify its domain with ω.

I The ternary predicate R(A,B,C) holds in M(G) if AB ⊆ C.

I The main work is to show that for Roelcke precompact G,H ≤c S∞,

G ∼= H ⇐⇒M(G) ∼=M(H).
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Definition

A topological group G is called profinite if one of the following equivalent
conditions holds.

(a) G is compact, and the clopen sets form a basis for the topology.

(b) G is the inverse limit of a system of finite groups.

(c) G is isomorphic to a closed subgroup of S∞ with all orbits finite.
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Graph isomorphism ≤B isomorphism of profinite groups

A group G is nilpotent-2 if it satisfies the law [[x, y], z] = 1.

Let N p
2 denote the class of nilpotent-2 groups of exponent p.

Theorem (Kechris, Nies, Tent)

Let p ≥ 3 be prime. Graph isomorphism can be Borel reduced to isomorphism
between profinite groups in N p

2 .

Sketch of proof: A result of Alan Mekler (1981) implies the theorem for
countable groups.
A symmetric and irreflexive countable graph is called nice if it has no triangles, no

squares, and for each pair of distinct vertices x, y, there is a vertex z joined to x and

not to y.

Easy fact: Graph isomorphism ≤B nice graph isomorphism.
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Mekler’s construction

Isomorphism of nice graphs ≤B isomorphism of countable groups in N p
2 .

I Let F be the free N p
2 group on free generators x0, x1, . . ..

I For r 6= s we write xr,s = [xr, xs].

I Given a graph with domain N and edge relation A, let

G(A) = F/〈xr,s : rAs〉normal closure.

Show that A can be reconstructed from G(A). Then for nice graphs A, B:

A ∼= B iff G(A) ∼= G(B).

Now a profinite group G(A) in N p
2 is constructed from G(A) in such a way

that A can be recovered from G(A).

A ∼= B iff G(A) ∼= G(B).

A→ G(A) is Borel. So GI ≤B isomorphism of profinite N p
2 groups.
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Complexity of the isomorphism relation for

oligomorphic subgroups of S∞
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Oligomorphic groups

I A closed subgroup G of S∞ is called oligomorphic if for each k, the action
of G on Nk has only finitely many orbits.

I For instance, Aut(R) and Aut(Q, <) are oligomorphic.

I This is the opposite of profinite, where each orbit is finite.

I Intuitively, oligomorphic groups are big, profinite groups are small.

I Unlike for profinite groups, G being oligomorphic depends on the way G
is embedded into S∞.
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Oligomorphic groups as automorphism groups

Fact
G ≤c S∞ is oligomorphic ⇐⇒ G is the automorphism group of an
ω-categorical structure S with domain N.

Proof.
⇐: this follows from the Ryll-Nardzewski Theorem.
⇒: G = Aut(S) where S is the structure with a k-ary relation symbol for each
orbit of G on Nk.
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Examples of oligomorphic groups

Automorphism groups of Fraissè limits are oligomorphic:

Class of finite structures Fraissè limit
Linear orders (Q, <)
Graphs Random graph
Boolean algebras countable atomless Boolean algebra
Digraphs omitting a set of

tournaments Henson digraphs

I There are 2ω many Henson digraphs. Their automorphism groups are
pairwise non-isomorphic.
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Conjugacy of oligomorphic groups

The conjugacy relation for oligomorphic groups is smooth.

To see this,

I Given a closed subgroup G of S∞, let VG be the corresponding orbit
equivalence structure: for each k > 0 introduce a 2k-ary relation that
holds for two k-tuples of distinct elements if they are in the same orbit of
Nk.

I VG is ω-categorical.

I One checks that for oligomorphic groups G,H

G and H are conjugate in S∞ ⇐⇒ VG ∼= VH .

I Isomorphism of ω-categorical structures M , N for the same language is
smooth because M ∼= N ⇐⇒ Th(M) = Th(N).
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Interpretability

An interpretation of a structure A in a structure B is a representation of A as
a definable set of k-tuples in B quotiented by a definable equivalence relation.
The relations and functions of A are also represented in a definable way.

An interpretation is given by a scheme Γ of formulas.

A theory S is interpretable in a theory T if for any structure B with T |= B,
there is some A with S |= A that can be interpreted in B.

Examples:

I The theory of algebraically closed fields is interpretable in the theory of
real closed fields.

I If P ϕ, then ZFC + ϕ is interpretable in ZFC.
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The relations and functions of A are also represented in a definable way.

An interpretation is given by a scheme Γ of formulas.

A theory S is interpretable in a theory T if for every B with T |= B, there is
some A with S |= A that can be interpreted in B.

Examples:

I Let M be a countably infinite structure in the empty language. Let N be
a countably infinite structure with an equivalence relation with all classes
of size 2.

Then M can be interpreted in N . Conversely, N can be interpreted in M :
quotient M3 by the equivalence relation: (a, b, c) ∼ (a′, b′, c′)⇔
((a = b) ∧ (a′ = b′) ∧ (c = c′)) ∨ ((a 6= b) ∧ (a′ 6= b′) ∧ (c = c′)).
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Bi-interpretability

Structures A,B are bi-interpretable if there are

I interpretations Γ, of A in B, and ∆, of B in A (all formulas without
parameters)

I isomorphisms γ : A ∼= Γ(B), δ : B ∼= ∆(A) such that δ ◦ γ is definable in A
(without parameters) and similarly for γ ◦ δ.

(Note that Â = Γ(∆(A)) consists of equivalence classes of tuples from A.)

Coquand1 showed that for ω-categorical A,B we have

Aut(A) ∼= Aut(B) ⇐⇒ A and B are bi-interpretable.

1see Evans’ 2013 Bonn lecture notes, or Ahlbrandt/Ziegler 1986
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The space of theories

I Theories in a countable language can be identified with elements of 2N via
an enumeration of formulas.

I The complete theories form a closed set.

I To be ω-categorical is a Π0
3 property of theories, because by

Ryll-Nardzewski this property is equivalent to saying that for each n, the
Boolean algebra of formulas with at most n free variables modulo
T -equivalence is finite.
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Bi-interpretability of structures via their theories

We can express bi-interpretability of ω-categorical structures A,B in terms of
their theories:

I A ∼= Γ(B) means that Th(B) says
“the structure interpreted in B via Γ satisfies Th(A)”

I similar for B ∼= ∆(A)

I also express that some γ : A ∼= Γ(∆(A)) is defined by a particular first
order formula.

For ω-categorical theories, it suffices that one of the compositions (of the
interpretations) is definable.
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Bi-interpretability of ω-categorical theories

Theorem (Nies, Tent, S.)

There is a Σ0
2 relation which coincides with bi-interpretability on the Π0

3 set of
ω-categorical theories.

Given ω-categorical theories S, T . We have an initial block of existential quantifiers
fixing the dimensions of the interpretations and asserting the existence of the
definable isomorphism γ.

I The rest is easy if the signature if finite

I In general, we have to express that a certain tree computed from S, T is infinite.
The tree is matching types of S and types of T in a way consistent with γ being
an isomorphism.

I The branching of the tree is bounded depending on S, T , because the
dimensions are fixed, and for each arity there are only so many types. So it is
Π0

1 in S, T to say that the tree is infinite.
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Bi-interpretability of ω-categorical theories

Corollary

Bi-interpretability on the set of ω-categorical theories is Borel bi-reducible with
a Σ0

2-equivalence relation on a Polish space.

Proof of Corollary.

I There is a finer Polish topology with the same Borel sets in which the set
of ω-categorical theories is closed.

I Then the Σ0
2 relation above yields a Σ0

2 description of bi-interpretability
on this closed set.
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Oligomorphic groups “are” countable models

Theorem
Isomorphism of oligomorphic groups is Borel bi-reducible with the orbit
equivalence relation of a Borel action S∞ y B; where

I B is an invariant Borel set of models with domain N for the language with
one ternary relation symbol,

I the action of S∞ is the natural one.
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A Borel equivalence relation on a Polish space is called countable if every
equivalence class is countable.

Corollary

Isomorphism of oligomorphic groups is Borel reducible to a countable Borel
equivalence relation.

Proof.

I Above we proved that isomorphism of oligomorphic groups is Borel reducible to
a Σ0

2 equivalence relation on a Polish space.

I So the isomorphism relation on B in the foregoing Theorem is Borel reducible to
a Σ0

2 equivalence relation.

I By Hjorth and Kechris (1995; Theorem 3.8): If an S∞ orbit equivalence relation
is Borel reducible to a Σ0

2 equivalence relation, then it is reducible to a
countable equivalence relation.
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Theorem
Isomorphism of oligomorphic groups is Borel bi-reducible with the orbit equivalence
relation of the natural action of S∞ on an isomorphism invariant Borel set B of
models.

For Roelcke precompact G, we defined a structure M(G) with domain consisting of
the cosets of open subgroups. We can in a Borel way find a bijection of these cosets
with N. We showed

G ∼= H ⇐⇒M(G) ∼=M(H).

We will define an “inverse” operation G of the operation M on a Borel set B of
models. For oligomorphic G and M ∈ B we will have

G(M(G)) ∼= G and M(G(M)) ∼= M

This suffices because it implies the converse reduction

G(M) ∼= G(N)⇐⇒M ∼= N .
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Axiomatizing the range of the map M

I We actually define the map G on an invariant co-analytic set D of
L-structures that contains range(M).

I Then range(M) ⊆ B ⊆ D for an invariant Borel set B.

I Since M(G(M)) ∼= M for each M ∈ B, actually B equals the closure of

range(M) under isomorphism.

I We will observe a number of properties, called axioms, of all the
structures of the form M(G). They can be expressed in Π1

1 form.

I D is the set of structures satisfying all the axioms.
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Definable relations in M(G)

Recall that our language L only has one ternary relation R(A,B,C) (which is
interpreted by AB ⊆ C for cosets A,B,C).

I The property of A to be a subgroup is definable in M(G) by the formula
AA ⊆ A. That a subgroup A is contained in a subgroup B is definable by the
formula AB ⊆ B.

I A is a left coset of a subgroup U if and only if U is the maximum subgroup with
AU ⊆ A; similarly for A being a right coset of U .

I A ⊆ B ⇐⇒ AU ⊆ B in case A is a left coset of U .

The first few axioms posit for a general L-structure M that the formulas
behave reasonably. E.g., ⊆ is transitive. We use terms like “subgroup”, “left
coset of” to refer to elements satisfying them.
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The filter group F(M)

Given a structure M , denote by F(M) the set of filters (for ⊆) that contain a
left and a right coset of each subgroup. (These cosets are unique because
axioms require that distinct left cosets are disjoint etc.) We use letters x, y, z
for filters.

A ∈ x means intuitively that A is an open neighbourhood of the group
element x.

With this intuition in mind we define an operation on F(M):

x · y = {C ∈M | ∃A ∈ x∃B ∈ y AB ⊆ C}.

For A a right coset of V and B a left coset of V , let A∗ = B if AB ⊆ V . Let
x−1 = {A∗ : A ∈ x}.
The filter of subgroups is the identity 1.
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The filter group F(M)

We can express by Π1
1 axioms that these operations behave as a group:

associativity, and ∀x [x · x−1 = 1].

The sets {x : U ∈ x}, where U ∈M is a subgroup, are declared a basis of
neighbourhoods for the identity. Using the right axioms, we ensure that F(M)
is a Polish group.

Further, for each subgroup V ∈M , there is an action F(M) y LC(V ) given
by

x ·A = B iff ∃S ∈ x [SA ⊆ B],

where LC(V ) denotes the set of left cosets of V .
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A faithful subgroup

I For oligomorphic G, there is an open subgroup V such that the action
Gy LC(V ) is oligomorphic:
e.g. let V = G{n1,...,nk} (the pointwise stabilizer) where the ni represent
the k many 1-orbits. Call such a V a faithful subgroup.

I As a further axiom for an abstract L-structure M , we require the
existence of such V , and that the embedding of F(M) into S∞ is
topological (these axioms are Π1

1 but not first-order).

I Then F(M) is oligomorphic and hence Roelcke precompact.
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Showing that the coset structure of F(M) is isomorphic
to M

Mainly, we have to show that each open subgroup U of F(M) has the form
U = {x : U ∈ x} for some subgroup U in M .

I By definition of the topology, U contains a basic open subgroup
Ŵ = {x : W ∈ x}, for some subgroup W ∈M .

I Since F(M) is Roelcke precompact, U is a finite union of double cosets of
Ŵ .

I We require as an axiom for M that each such finite union that is closed
under the group operations corresponds to an actual subgroup in M .
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Ŵ = {x : W ∈ x}, for some subgroup W ∈M .

I Since F(M) is Roelcke precompact, U is a finite union of double cosets of
Ŵ .

I We require as an axiom for M that each such finite union that is closed
under the group operations corresponds to an actual subgroup in M .

Philipp Schlicht Isomorphism of oligomorphic groups July 04, 2018 39 / 42



Turning F(M) into closed subgroup G(M) of S∞

I By Π1
1 uniformization (Addison/Kondo), from M ∈ B we can in a Borel

way determine a faithful subgroup V .

I Let A0, A1, . . . list LC(V ) in the natural order.

I Then the action F(M) y LC(V ) yields a topological embedding of F(M)
into S∞.

I Its range is the desired closed subgroup G(M).

By the arguments above we have for each oligomorphic G and each M ∈ B

G(M(G)) ∼= G and M(G(M)) ∼= M .

Theorem
Isomorphism of oligomorphic groups is Borel bi-reducible with the orbit equivalence
relation of the natural action of S∞ on a Borel set B of models.
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Outlook: model theoretic characterization of complexity

Let C be an invariant Borel set of countable structures.

Theorem (Hjorth, Kechris)

TFAE:

I ∼=C is smooth.

I There is a countable fragment F of Lω1,ω such that every model in C is
ThF -categorical.

Theorem (Hjorth, Kechris)

TFAE:

I ∼=C is Borel below E∞.

I There is a countable fragment F of Lω1,ω such that for every model A ∈ C, there
is some ~a ∈ A<ω such that (A,~a) is ThF -categorical.
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Some open problems

I What is a lower bound for the complexity of isomorphism for
oligomorphic groups?

I Is it smooth for automorphism groups of ω-categorical structures in finite
languages?
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