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The k-valued blocks, Fink

De�nition

Let k ∈ ω \ {0} unless stated otherwise.

(1) For a : ω → k + 1 we let supp(a) = {n ∈ ω : a(n) 6= 0}.

Fink = {a : ω → k + 1 : supp(a) is �nite ∧ k ∈ range(a)}.

(2) Fin[1,k] =
⋃k
j=1 Finj .

(3) For a, b ∈ Fink, we let a < b denote supp(a) < supp(b), i.e.,

(∀m ∈ supp(a))(∀n ∈ supp(b))(m < n). A �nite or in�nite

sequence 〈ai : i < m ≤ ω〉 of elements of Fink is in

block-position if for any i < j < m, ai < aj . The set (Fink)
ω

is the set of ω-sequences in block-position, also called block

sequences.
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Two operations on Finj

De�nition

(4) For k ≥ 1, a, b ∈ Fink, we de�ne the partial semigroup

operation + as follows: If supp(a) < supp(b), then

a+ b ∈ Fink is de�ned. We let (a+ b)(n) = a(n) + b(n).

Otherwise a+ b is unde�ned. Thus

a+b = a � supp(a)∪b � supp(b)∪0 � (ω\(supp(a)∪supp(b))).

(5) For any k ≥ 2 we de�ne on Fink the Tetris operation:

T : Fink → Fink−1 by T (a)(n) = max{a(n)− 1, 0}.
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Generated semigroups

De�nition

(6) Let B ⊆ Fink be min-unbounded, i.e., contain for any n some

a with supp(a) > n. We let

TFUk(B) ={T (j0)(bn0) + · · ·+ T (j`)(bn`) :

` ∈ ω \ {0}, bni ∈ B, bn0 < · · · < bn` ,

ji ∈ k, ∃r ≤ `jr = 0}

be the partial subsemigroup of Fink generated by B. We call

B a TFUk-set if B = TFUk(B).



The condensation order

De�nition

(7) We de�ne the condensation order: ā vk b̄ if ā ∈ (TFUk(b̄))
ω.

(8) We de�ne the past -operation: Let ā ∈ (Fink)
ω and s ∈ Fink.

(ā past s) = 〈ai : i ≥ i0〉

with i0 = min{i : supp(ai) > supp(s)}.
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A negation of near coherence for not necessarily centred

families

De�nition

1. Two subsets F1, F2 of [ω]ω are called nnc, not nearly coherent,

if for any Xi ∈ Fi, i = 1, 2 and any �nite-to-one h : ω → ω

there is Yi ⊆ Xi, Yi ∈ Fi, i = 1, 2 such that h[Y1]∩ h[Y2] = ∅.

2. Let H ⊆ (Fink)
ω and let E be a P -point. We say H avoids E

if {supp(ā) : ā ∈ H} is nnc to E .
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A subspace of (Fink)
ω�Fixing PP and R̄

De�nition

We �x parameters as follows. Let k ≥ 1. Fix

Pmin, Pmax ⊆ {1, . . . , k}. Let
PP = {(i, x) : x ∈ {min,max}, i ∈ Px} and let

R̄ = {(ι,Rι) : ι ∈ PP}

be a PP -sequence of pairwise nnc Ramsey ultra�lters (pairwise nnc

selective coideals, i.e., happy families, would su�ce for the pure

decision property and properness). We also name the end segments

for 1 ≤ j ≤ k:

R̄ � {j, . . . , k} = {(ι,Rι) : ι = (i, x) ∈ PP ∧ i ∈ {j, . . . , k}}.



Happy families � selective coideals

De�nition

We call H ⊆ [ω]ω a selective coideal if

1. any co�nite subset of ω is in H,

2. ∀X ∈ H∀X1, X2(X1 ∪X2 = X → X1 ∈ H ∨X2 ∈ H).

3. For any 〈An : n < ω〉 such that for any n, An ∈ H and

An+1 ⊆ An there is a diagonal lower bound A ∈ H, i.e.,

∀n ∈ A(A \ (n+ 1) ⊆ An).

A Ramsey ultra�lter is a selective coideal that is also a �lter.
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A subspace of (Fink)
ω: The space (Fink)

ω(R̄)

De�nition

We let (Fink)
ω(R̄) denote the set of Fink-blocksequences ā with

the following properties:

I (∀i ∈ Pmin){min(a−1
n [{i}]) : n ∈ ω} ∈ Ri,min,

I (∀i ∈ Pmax){max(a−1
n [{i}]) : n ∈ ω} ∈ Ri,max,

I

(∀s ∈ TFUk(ā))
(
min(s−1[{1}]) < min(s−1[{2}]) < · · · <

min(s−1[{k − 1}] < min(s−1[{k}]) < max(s−1[{k}])

< max(s−1[{k − 1}]) < · · · < max(s−1[{1}])
)
.

If (i, x) ∈ {1, . . . , k} × {min,max} \ PP , we leave the term

x(s−1[{i}]) out of the order requirement.



We do not localise to a centred set

Lemma

There are v∗k-incompatible elements in (Fink)
ω(R̄). Indeed, there

are ā, b̄ ∈ (Fink)
ω(R̄) such that for any j = 0, . . . , k − 1 the

Fink−j-block-sequences T
(j)[ā] and T (j)[b̄] are v∗k−j-incompatible.



A common strengthening of a theorem by Gowers and a

theorem by Blass

The special case of PP = {(1,min), (1,max)} was proved by Blass

in 1987, the case PP = ∅ and arbitrary �nite k by Gowers in 1992.

Theorem

Let k, PP , R̄ be as above. Let ā ∈ (Fink)
ω(R̄) and let c be a

colouring of TFUk(ā) into �nitely many colours. Then there is a

b̄ vk ā, b̄ ∈ (Fink)
ω(R̄), such that TFUk(b̄) is c-monochromatic.



Diagonal lower bounds

Lemma

let k, PP , R̄ be as above. Any vk-descending sequence

〈c̄n : n ∈ ω〉 in (Fink)
ω(R̄) has a diagonal lower bound

b̄ ∈ (Fink)
ω(R̄)

(∀n ∈ ω)((b̄ past bn) vk c̄max(supp(bn))+1).

such that each bn+1 is an element of {c`n+1,m : m ∈ ω} for some

`n+1 > max(supp(bn)) and b0 is an element of {c`0,m : m ∈ ω}
for some `0.



A k-stack of compact spaces

γ(Finj(R̄ � {k + j − 1, . . . , k})) is the set of ultra�lters U over

Finj such that for any ā ∈ U , ` ∈ {1, . . . , j},

{min(a−1
n [{`}]) : n ∈ ω} ∈ R`+k−j,min

and analogously for max.



Galvin�Glazer technique

De�nition

For any k ≥ 1, a reservoir of indices PP of the strict form is one of

the following three types: PP = {(i,min), (i,max) : 1 ≤ i ≤ k},
PP = {(i,min) : 1 ≤ i ≤ k}, PP = {(i,min) : 1 ≤ i ≤ k}.

De�nition and Lemma

Here we let PP be of the strict form. We de�ne +̇ on

(
⋃k

j=1 γ(Finj(R̄ � {k − j + 1, . . . , k})))2 as follows.

+̇ : γ(Fini(R̄ � {k − i+ 1, . . . , k}))× γ(Finj(R̄ � {k − j + 1, . . . , k}))

→ γ(Finmax{i,j}(R̄ � {k −max(i, j) + 1, . . . , k}))

is de�ned as

U+̇V =
{
X ⊆ Finmax{i,j}(R̄ � {k −max(i, j) + 1, . . . , k})

:
{
s : {t : s+ t ∈ X} ∈ V

}
∈ U

}
.



A k-sequence of very good idempotent ultra�lters

Lemma

Still PP of the strict form. (Lemma 2.24, Todorcevic, Ramsey

Spaces) Let k, PP , R̄ be as above, with full PP . For any

k ≥ j ≥ 1, and ā ∈ (Fink)
ω(R̄) there is an idempotent

Uj ∈ γ(Finj(R̄ � {k + j − 1, . . . , k})) such that for all

1 ≤ i ≤ j ≤ k

(1) Uj+̇Ui = Uj ,

(2) Ṫ (j−i)(Uj) = Ui.

(3) T (i−1)(ā) ∈ Uk−i+1.



Stepping up to �nite dimensions

Since the space (Fink)
ω(R̄) is stable, we can step up the

Milliken�Taylor style to higher �nite arities:

Theorem

Let n ∈ ω \ {0} and ā ∈ (Fink)
ω(R̄) and let c be a colouring of

(TFUk(ā))n< into �nitely many colours. Then there is a b̄ vk ā,
b̄ ∈ (Fink)

ω(R̄) such that (TFUk(b̄))
n
< is c-monochromatic.



A useful notion of forcing

De�nition

We let k, PP , R̄ be as above, not necessarily strict. In the

Gowers�Matet forcing with R̄, Mk(R̄), the conditions are pairs

(s, c̄) such that s ∈ Fink and c̄ ∈ (Fink)
ω(R̄) and

supp(s) < supp(c0).

The forcing order is: (t, b̄) ≤ (s, ā) if t = s+ s′ and s′ ∈ TFUk(ā)

and b̄ vk (ā past s′)

Lemma

Mk(R̄) has the pure decision property, i.e., for any ϕ ∈ L(∈),

(s, ā) ∈Mk(R̄) ∃(s, b̄) ≤ (s, ā) ((s, b̄)  ϕ ∨ (s, b̄)  ¬ϕ).
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Good properties of the reservoirs of pure conditions

De�nition

A set H ⊆ (Fink)
ω is called a Gowers�Matet-adequate family if the

following hold:

1. H is closed v∗k-upwards.

2. H is stable, i.e., any vk-descending ω-sequence of members of

H has a v∗ lower bound in H.

3. H has the Gowers property: If ā ∈ H and TFUk(ā) is

partitioned into �nitely many pieces then there is some b̄ vk ā,
b̄ ∈ H such that TFUk(b̄) is a subset of a single piece of the

partition.



Examples of Gowers�Matet-adequate families

I H = (Fink)
ω(R̄), we write M(R̄) for M(H).

I M(U) for a Gowers-Milliken-Taylor ultra�lter.

I Instead of imposing that mini[ā], maxi[ā] come from happy

families when ā ∈ H we could try to use seti(ā) for

i ∈ {1, . . . , k}.



The fate of the Ri,x, (i, x) ∈ PP , in VM(R̄)

De�nition

The i-�bre of the generic real µ =
⋃
{s � supp(s) : ∃ā(s, ā) ∈ G}

is

µi =
⋃
{s−1[{i}] : ∃ā(s, ā) ∈ G},

supp(µ) is the union of the µi.

Density argument: µi is not measured by Ri,min, Ri,max.

De�nition

Let X ∈ [ω]ω. We let fX(n) = |X ∩ n|.



The fate of other ultra�lters in VM(R̄)

Lemma

Let h : ω → ω be a �nite-to-one function. Let E and W be

ultra�lters over ω such that W, E 6≥RB Rι for ι ∈ PP . Then for

any (s, ā) ∈Mk(R̄), E ∈ E there are b̄ vk ā, b̄ ∈ (Fink)
ω(R̄), and

E′ ∈ E , E′ ⊆ E and W ∈ W such that

(1) h[
⋃
{supp(bn) : n ∈ ω}] ∩ h[E′] = ∅.

(2) h[
⋃
{[min(supp(bn)),max(supp(bn))] : n ∈ ω}]

∩(h[E′] ∪ h[W ]) = ∅, and
(s, b̄) Mk(R̄) fsupp(µ)[W ] = fsupp(µ)[E

′].



Fruit of conclusion 1 of the lemma

Theorem

(Adaption of a theorem of Eisworth) Let k ≥ 1 and R̄ be as above

and assume that E is a P -point with E 6≥RB R(i,min),R(j,max) for

any i ∈ Pmin and j ∈ Pmax. Then E continues to generate an

ultra�lter after we force with Mk(R̄).



Fruit of conclusion 2 of the lemma

Theorem

Let k ≥ 1 and R̄ be as above and assume

E ,W 6≥RB R(i,min),R(j,max) for any i ∈ Pmin and j ∈ Pmax and let

E be a P -point and W be an ultra�lter over ω. Then

Mk(R̄)  fsupp(µ)(E) = fsupp(µ)(W).



Start of an (cs) iteration

Now we are concerned with the second iterand. The following

follows from an easy density argument.

Lemma

Let ι = (i, x) ∈ PP .

Mk(R̄)  Rι ∪ {µi} is a �lter subbase.



Finding a second iterand

Theorem

Let k, PP , R̄ be as in the non-strict form, ι ∈ PP .

Mk(R̄) (filter((Rι ∪ {µi}))+ is a happy family that avoids E

and for ι 6= ι′ the family (filter((Rι ∪ {µi}))+

is nnc to the family (filter((Rι′ ∪ {µi′}))+.

and hence

Mk(R̄) (∃Rext
ι ⊇ (Rι ∪ {µi})

(
Rext
ι is a Ramsey ultra�lter

that is nnc to E and for ι 6= ι′, Rext
ι nnc Rext

ι′
)
.



Ramsey spaces of names

Lemma

(Existence of positive diagonal lower bounds) Let U be an

Milliken�Taylor ultra�lter, E be a P -point, Φ(U) 6≤RB E . Let
Q = M(U) and let µ be the name for the generic real. Let

X̄
˜

= 〈Xn
˜

: n ∈ ω〉 be a sequence of Q-names for elements of

(Fin)ω such that

Q  (∀n ∈ ω)(Xn
˜
∈ (U � µ)+ ∧Xn+1

˜
v Xn

˜
).



Continued

Lemma continued

Then

D
˜

=
{
〈t,(s, ā)〉 : (s, ā) ∈ Q ∧ (∃k ∈ ω)(∃t0 < t1 < · · · < tk−1 ∈ [Fin]k<)(

tk−1 < tk = t ∧ (s, ā)  �t0 = min
Fin

(X0
˜
� µ)∧∧

i<k

ti+1 = min
Fin

((Xmax(ti)+1

˜
� µ) past ti)�

)}
ful�ls

Q  D
˜
∈ (U � µ)+ ∧D

˜
v X0

˜
∧ (∀t ∈ D

˜
)((D

˜
past t) v Xmax(t)+1

˜
).



A ZFC result

Proposition

Let E be a �lter over ω, and let V and W be two �lters over ω that

are not nearly coherent to E . If V is nearly coherent to W, then

there is E ∈ E such that fE(V) ∪ fE(W) is a �lter subbase.



Carrying on in cs limit steps

Theorem

Suppose that Pβ, R̄β are as above Pα is the countable support limit

of 〈Pβ,Mk(R̄β) : β < α〉. In VPα , for any ι ∈ PP , the set of

positive sets (⋃
γ<α

(Rγ,ι ∪ {µγ,i})
)+

forms a happy family that avoids E and the happy families are

pairwise nnc.



Near coherence classes in an iteration of length ω2

Theorem

Let E be a P -point and assume CH and let k ≥ 1 and let

PP ⊆ {(i, x) : x = min,max, i = 1, . . . , k}. Then there is a

countable support iteration iteration of proper iterands

P = 〈Pα,Mk(R̄β) : β < ω2, α ≤ ω2〉 that in the extension there

exactly |PP |+ 1 near-coherence classes of ultra�lters. Namely, one

class is represented by a P -point of character ω1 and |PP | classes
represented by the Ramsey ultra�lters

Ri,x =
⋃
{Ri,x,α : α < ω2},

(i, x) ∈ PP .



A factorisation

Proposition

We let Qpure = (Finωk (R̄),v∗k) and we let

U
˜

= {〈ā, ˇ̄a〉 : ā ∈ Qpure}. Then the following holds:

(1) Qpure is ω-closed.

(2) Mk(R̄) is densely embedded into Qpure ∗Mk(U
˜

).

(3) Qpure forces that U
˜

is a Gowers�Milliken�Taylor ultra�lter

with m̂ini(U) = Ri,min and m̂axj(U) = Rj,max.

(4) Qpure forces that Φ(U
˜

) is nnc to any �lter from the ground

model that is nnc Rι, ι ∈ PP .



Proof of a conjecture of Blass

In 1987 Blass conjectured that the existence of two non-isomorphic

Ramsey ultra�lters does not imply the existence of a

Milliken�Taylor ultra�lter.

Theorem

For any k, PP , R̄ in the forcing extensions from the main theorem,

is there is no Gowers�Milliken�Taylor ultra�lter over Fink′ for any

k′ ≥ 1.

Reason: If V is an Milliken�Taylor ultra�lter, then this holds for

Pα-part in VPα for club many α < ω2. Under CH, the core

Φ(V) ∩VPα contains a tree of 2ω1 near coherence classes.


