A Ramsey-Theoretic Notion of Forcing

Heike Mildenberger

SetTop Novi Sad July 3, 2018

Let $k \in \omega \setminus \{0\}$ unless stated otherwise.

(1) For $a: \omega \to k+1$ we let $\operatorname{supp}(a) = \{n \in \omega : a(n) \neq 0\}.$

 $\mathbf{Fin}_{k} = \{a \colon \omega \to k+1 : \operatorname{supp}(a) \text{ is finite } \land k \in \operatorname{range}(a)\}.$

Let $k \in \omega \setminus \{0\}$ unless stated otherwise.

(1) For $a: \omega \to k+1$ we let $\operatorname{supp}(a) = \{n \in \omega : a(n) \neq 0\}.$

 $\operatorname{Fin}_k = \{a \colon \omega \to k+1 : \operatorname{supp}(a) \text{ is finite } \wedge k \in \operatorname{range}(a)\}.$

(2) $\operatorname{Fin}_{[1,k]} = \bigcup_{j=1}^k \operatorname{Fin}_j$.

Let $k \in \omega \setminus \{0\}$ unless stated otherwise.

(1) For $a: \omega \to k+1$ we let $\operatorname{supp}(a) = \{n \in \omega : a(n) \neq 0\}.$

 $\operatorname{Fin}_k = \{a \colon \omega \to k+1 \, : \, \operatorname{supp}(a) \text{ is finite } \wedge k \in \operatorname{range}(a)\}.$

(2)
$$\operatorname{Fin}_{[1,k]} = \bigcup_{j=1}^k \operatorname{Fin}_j.$$

(3) For a, b ∈ Fink, we let a < b denote supp(a) < supp(b), i.e., (∀m ∈ supp(a))(∀n ∈ supp(b))(m < n). A finite or infinite sequence ⟨ai : i < m ≤ ω⟩ of elements of Fink is in block-position if for any i < j < m, ai < aj. The set (Fink)^ω is the set of ω-sequences in block-position, also called block sequences.

(4) For k ≥ 1, a, b ∈ Fin_k, we define the partial semigroup operation + as follows: If supp(a) < supp(b), then a + b ∈ Fin_k is defined. We let (a + b)(n) = a(n) + b(n). Otherwise a + b is undefined. Thus a+b = a ↾ supp(a)∪b ↾ supp(b)∪0 ↾ (ω\(supp(a)∪supp(b))).

- (4) For k ≥ 1, a, b ∈ Fin_k, we define the partial semigroup operation + as follows: If supp(a) < supp(b), then a + b ∈ Fin_k is defined. We let (a + b)(n) = a(n) + b(n). Otherwise a + b is undefined. Thus a+b = a ↾ supp(a)∪b ↾ supp(b)∪0 ↾ (ω\(supp(a)∪supp(b))).
 (5) For any k ≥ 2 we define an Fin, the Tatric expection.
- (5) For any $k \ge 2$ we define on Fin_k the Tetris operation: $T: \operatorname{Fin}_k \to \operatorname{Fin}_{k-1}$ by $T(a)(n) = \max\{a(n) - 1, 0\}.$

(6) Let B ⊆ Fin_k be min-unbounded, i.e., contain for any n some a with supp(a) > n. We let

$$\begin{aligned} \text{TFU}_{k}(B) = & \{ T^{(j_{0})}(b_{n_{0}}) + \dots + T^{(j_{\ell})}(b_{n_{\ell}}) : \\ & \ell \in \omega \setminus \{0\}, b_{n_{i}} \in B, b_{n_{0}} < \dots < b_{n_{\ell}}, \\ & j_{i} \in k, \exists r \leq \ell j_{r} = 0 \} \end{aligned}$$

be the partial subsemigroup of Fin_k generated by B. We call B a TFU_k -set if $B = TFU_k(B)$.

(7) We define the condensation order: $\bar{a} \sqsubseteq_k \bar{b}$ if $\bar{a} \in (TFU_k(\bar{b}))^{\omega}$.

(7) We define the condensation order: ā ⊑_k b̄ if ā ∈ (TFU_k(b̄))^ω.
(8) We define the past-operation: Let ā ∈ (Fin_k)^ω and s ∈ Fin_k.

$$(\bar{a} \operatorname{past} s) = \langle a_i : i \ge i_0 \rangle$$

with $i_0 = \min\{i : \operatorname{supp}(a_i) > \operatorname{supp}(s)\}.$

A negation of near coherence for not necessarily centred families

Definition

Two subsets *F*₁, *F*₂ of [ω]^ω are called nnc, not nearly coherent, if for any *X_i* ∈ *F_i*, *i* = 1, 2 and any finite-to-one *h*: ω → ω there is *Y_i* ⊆ *X_i*, *Y_i* ∈ *F_i*, *i* = 1, 2 such that *h*[*Y*₁] ∩ *h*[*Y*₂] = Ø.

A negation of near coherence for not necessarily centred families

Definition

- 1. Two subsets \mathcal{F}_1 , \mathcal{F}_2 of $[\omega]^{\omega}$ are called nnc, not nearly coherent, if for any $X_i \in \mathcal{F}_i$, i = 1, 2 and any finite-to-one $h \colon \omega \to \omega$ there is $Y_i \subseteq X_i$, $Y_i \in \mathcal{F}_i$, i = 1, 2 such that $h[Y_1] \cap h[Y_2] = \emptyset$.
- 2. Let $\mathcal{H} \subseteq (\operatorname{Fin}_k)^{\omega}$ and let \mathcal{E} be a *P*-point. We say \mathcal{H} avoids \mathcal{E} if $\{\operatorname{supp}(\bar{a}) : \bar{a} \in \mathcal{H}\}$ is not to \mathcal{E} .

A subspace of $(\operatorname{Fin}_k)^\omega$ -Fixing PP and $\bar{\mathcal{R}}$

Definition

We fix parameters as follows. Let $k \ge 1$. Fix $P_{\min}, P_{\max} \subseteq \{1, \dots, k\}$. Let $PP = \{(i, x) : x \in \{\min, \max\}, i \in P_x\}$ and let $\overline{\mathcal{R}} = \{(\iota, \mathcal{R}_{\iota}) : \iota \in PP\}$

be a PP-sequence of pairwise nnc Ramsey ultrafilters (pairwise nnc selective coideals, i.e., happy families, would suffice for the pure decision property and properness). We also name the end segments for $1 \le j \le k$:

$$\bar{\mathcal{R}} \upharpoonright \{j, \ldots, k\} = \{(\iota, \mathcal{R}_{\iota}) : \iota = (i, x) \in PP \land i \in \{j, \ldots, k\}\}.$$

We call $\mathcal{H} \subseteq [\omega]^{\omega}$ a selective coideal if

- 1. any cofinite subset of ω is in \mathcal{H} ,
- 2. $\forall X \in \mathcal{H} \forall X_1, X_2(X_1 \cup X_2 = X \to X_1 \in \mathcal{H} \lor X_2 \in \mathcal{H}).$
- 3. For any $\langle A_n : n < \omega \rangle$ such that for any $n, A_n \in \mathcal{H}$ and $A_{n+1} \subseteq A_n$ there is a diagonal lower bound $A \in \mathcal{H}$, i.e.,

$$\forall n \in A(A \setminus (n+1) \subseteq A_n).$$

We call $\mathcal{H} \subseteq [\omega]^\omega$ a selective coideal if

- 1. any cofinite subset of ω is in \mathcal{H} ,
- 2. $\forall X \in \mathcal{H} \forall X_1, X_2(X_1 \cup X_2 = X \to X_1 \in \mathcal{H} \lor X_2 \in \mathcal{H}).$
- 3. For any $\langle A_n : n < \omega \rangle$ such that for any $n, A_n \in \mathcal{H}$ and $A_{n+1} \subseteq A_n$ there is a diagonal lower bound $A \in \mathcal{H}$, i.e.,

$$\forall n \in A(A \setminus (n+1) \subseteq A_n).$$

A Ramsey ultrafilter is a selective coideal that is also a filter.

A subspace of $(\operatorname{Fin}_k)^{\omega}$: The space $(\operatorname{Fin}_k)^{\omega}(\bar{\mathcal{R}})$

Definition

We let $(\operatorname{Fin}_k)^{\omega}(\overline{\mathcal{R}})$ denote the set of Fin_k -blocksequences \overline{a} with the following properties:

- $\blacktriangleright \quad (\forall i \in P_{\min})\{\min(a_n^{-1}[\{i\}]) : n \in \omega\} \in \mathcal{R}_{i,\min},$
- $(\forall i \in P_{\max}) \{ \max(a_n^{-1}[\{i\}]) : n \in \omega \} \in \mathcal{R}_{i,\max},$

$$(\forall s \in \mathrm{TFU}_k(\bar{a})) (\min(s^{-1}[\{1\}]) < \min(s^{-1}[\{2\}]) < \dots < \\ \min(s^{-1}[\{k-1\}] < \min(s^{-1}[\{k\}]) < \max(s^{-1}[\{k\}]) \\ < \max(s^{-1}[\{k-1\}]) < \dots < \max(s^{-1}[\{1\}])).$$

If $(i, x) \in \{1, \dots, k\} \times \{\min, \max\} \setminus PP$, we leave the term $x(s^{-1}[\{i\}])$ out of the order requirement.

Lemma

There are \sqsubseteq_k^* -incompatible elements in $(\operatorname{Fin}_k)^{\omega}(\overline{\mathcal{R}})$. Indeed, there are $\overline{a}, \overline{b} \in (\operatorname{Fin}_k)^{\omega}(\overline{\mathcal{R}})$ such that for any $j = 0, \ldots, k-1$ the Fin_{k-j} -block-sequences $T^{(j)}[\overline{a}]$ and $T^{(j)}[\overline{b}]$ are \sqsubseteq_{k-j}^* -incompatible.

A common strengthening of a theorem by Gowers and a theorem by Blass

The special case of $PP = \{(1, \min), (1, \max)\}$ was proved by Blass in 1987, the case $PP = \emptyset$ and arbitrary finite k by Gowers in 1992.

Theorem

Let k, PP, $\overline{\mathcal{R}}$ be as above. Let $\overline{a} \in (\operatorname{Fin}_k)^{\omega}(\overline{\mathcal{R}})$ and let c be a colouring of $\operatorname{TFU}_k(\overline{a})$ into finitely many colours. Then there is a $\overline{b} \sqsubseteq_k \overline{a}, \overline{b} \in (\operatorname{Fin}_k)^{\omega}(\overline{\mathcal{R}})$, such that $\operatorname{TFU}_k(\overline{b})$ is c-monochromatic.

Lemma

let k, PP, $\overline{\mathcal{R}}$ be as above. Any \sqsubseteq_k -descending sequence $\langle \overline{c}_n : n \in \omega \rangle$ in $(\operatorname{Fin}_k)^{\omega}(\overline{\mathcal{R}})$ has a diagonal lower bound $\overline{b} \in (\operatorname{Fin}_k)^{\omega}(\overline{\mathcal{R}})$

$(\forall n \in \omega)((\bar{b} \operatorname{past} b_n) \sqsubseteq_k \bar{c}_{\max(\operatorname{supp}(b_n))+1}).$

such that each b_{n+1} is an element of $\{c_{\ell_{n+1},m} : m \in \omega\}$ for some $\ell_{n+1} > \max(\operatorname{supp}(b_n))$ and b_0 is an element of $\{c_{\ell_0,m} : m \in \omega\}$ for some ℓ_0 .

 $\gamma(\operatorname{Fin}_j(\bar{\mathcal{R}} \upharpoonright \{k+j-1,\ldots,k\}))$ is the set of ultrafilters \mathcal{U} over Fin_j such that for any $\bar{a} \in \mathcal{U}, \ \ell \in \{1,\ldots,j\}$,

$$\{\min(a_n^{-1}[\{\ell\}]) : n \in \omega\} \in \mathcal{R}_{\ell+k-j,\min}$$

and analogously for \max .

For any $k \ge 1$, a reservoir of indices PP of the strict form is one of the following three types: $PP = \{(i, \min), (i, \max) : 1 \le i \le k\}$, $PP = \{(i, \min) : 1 \le i \le k\}$, $PP = \{(i, \min) : 1 \le i \le k\}$.

Definition and Lemma

Here we let PP be of the strict form. We define $\dot{+}$ on $(\bigcup_{j=1}^{k} \gamma(\operatorname{Fin}_{j}(\bar{\mathcal{R}} \upharpoonright \{k-j+1,\ldots,k\})))^{2}$ as follows.

$$\dot{+} : \gamma(\operatorname{Fin}_{i}(\bar{\mathcal{R}} \upharpoonright \{k-i+1,\ldots,k\})) \times \gamma(\operatorname{Fin}_{j}(\bar{\mathcal{R}} \upharpoonright \{k-j+1,\ldots,k\})) \rightarrow \gamma(\operatorname{Fin}_{\max\{i,j\}}(\bar{\mathcal{R}} \upharpoonright \{k-\max(i,j)+1,\ldots,k\}))$$

is defined as

$$\mathcal{U} \dot{+} \mathcal{V} = \Big\{ X \subseteq \operatorname{Fin}_{\max\{i,j\}} (\bar{\mathcal{R}} \upharpoonright \{k - \max(i,j) + 1, \dots, k\}) \\ : \{s : \{t : s + t \in X\} \in \mathcal{V}\} \in \mathcal{U} \Big\}.$$

Lemma

Still PP of the strict form. (Lemma 2.24, Todorcevic, Ramsey Spaces) Let k, PP, $\overline{\mathcal{R}}$ be as above, with full PP. For any $k \ge j \ge 1$, and $\overline{a} \in (\operatorname{Fin}_k)^{\omega}(\overline{\mathcal{R}})$ there is an idempotent $\mathcal{U}_j \in \gamma(\operatorname{Fin}_j(\overline{\mathcal{R}} \upharpoonright \{k+j-1,\ldots,k\}))$ such that for all $1 \le i \le j \le k$ (1) $\mathcal{U}_j \dotplus \mathcal{U}_i = \mathcal{U}_j$,

(2) $\dot{T}^{(j-i)}(\mathcal{U}_j) = \mathcal{U}_i.$ (3) $T^{(i-1)}(\bar{a}) \in \mathcal{U}_{k-i+1}.$ Since the space $(Fin_k)^{\omega}(\bar{\mathcal{R}})$ is stable, we can step up the Milliken–Taylor style to higher finite arities:

Theorem

Let $n \in \omega \setminus \{0\}$ and $\bar{a} \in (\operatorname{Fin}_k)^{\omega}(\bar{\mathcal{R}})$ and let c be a colouring of $(\operatorname{TFU}_k(\bar{a}))^n_{<}$ into finitely many colours. Then there is a $\bar{b} \sqsubseteq_k \bar{a}$, $\bar{b} \in (\operatorname{Fin}_k)^{\omega}(\bar{\mathcal{R}})$ such that $(\operatorname{TFU}_k(\bar{b}))^n_{<}$ is c-monochromatic.

We let k, PP, $\overline{\mathcal{R}}$ be as above, not necessarily strict. In the Gowers-Matet forcing with $\overline{\mathcal{R}}$, $\mathbb{M}_k(\overline{\mathcal{R}})$, the conditions are pairs (s, \overline{c}) such that $s \in \operatorname{Fin}_k$ and $\overline{c} \in (\operatorname{Fin}_k)^{\omega}(\overline{\mathcal{R}})$ and $\operatorname{supp}(s) < \operatorname{supp}(c_0)$. The forcing order is: $(t, \overline{b}) \leq (s, \overline{a})$ if t = s + s' and $s' \in \operatorname{TFU}_k(\overline{a})$ and $\overline{b} \sqsubseteq_k (\overline{a} \operatorname{past} s')$

We let k, PP, $\overline{\mathcal{R}}$ be as above, not necessarily strict. In the Gowers-Matet forcing with $\overline{\mathcal{R}}$, $\mathbb{M}_k(\overline{\mathcal{R}})$, the conditions are pairs (s, \overline{c}) such that $s \in \operatorname{Fin}_k$ and $\overline{c} \in (\operatorname{Fin}_k)^{\omega}(\overline{\mathcal{R}})$ and $\operatorname{supp}(s) < \operatorname{supp}(c_0)$. The forcing order is: $(t, \overline{b}) \leq (s, \overline{a})$ if t = s + s' and $s' \in \operatorname{TFU}_k(\overline{a})$ and $\overline{b} \sqsubseteq_k (\overline{a} \operatorname{past} s')$

Lemma

 $\mathbb{M}_k(\bar{\mathcal{R}})$ has the pure decision property, i.e., for any $\varphi \in \mathcal{L}(\in)$, $(s,\bar{a}) \in \mathbb{M}_k(\bar{\mathcal{R}}) \exists (s,\bar{b}) \leq (s,\bar{a}) \ ((s,\bar{b}) \Vdash \varphi \lor (s,\bar{b}) \Vdash \neg \varphi).$

A set $\mathcal{H} \subseteq (Fin_k)^{\omega}$ is called a Gowers–Matet-adequate family if the following hold:

- 1. \mathcal{H} is closed \sqsubseteq_k^* -upwards.
- *H* is stable, i.e., any ⊑_k-descending ω-sequence of members of *H* has a ⊑* lower bound in *H*.
- H has the Gowers property: If ā ∈ H and TFU_k(ā) is partitioned into finitely many pieces then there is some b
 ⊆_k ā, b
 ∈ H such that TFU_k(b
 is a subset of a single piece of the partition.

- $\mathcal{H} = (\operatorname{Fin}_k)^{\omega}(\bar{\mathcal{R}})$, we write $\mathbb{M}(\bar{\mathcal{R}})$ for $\mathbb{M}(\mathcal{H})$.
- $\mathbb{M}(\mathcal{U})$ for a Gowers-Milliken-Taylor ultrafilter.
- Instead of imposing that min_i[ā], max_i[ā] come from happy families when ā ∈ H we could try to use set_i(ā) for i ∈ {1,...,k}.

The $i\text{-fibre of the generic real } \mu = \bigcup\{s \upharpoonright \mathrm{supp}(s) \, : \, \exists \bar{a}(s,\bar{a}) \in G\}$ is

$$\mu_i = \bigcup \{ s^{-1}[\{i\}] : \exists \bar{a}(s, \bar{a}) \in G \},\$$

 $\operatorname{supp}(\mu)$ is the union of the μ_i .

Density argument: μ_i is not measured by $\mathcal{R}_{i,\min}$, $\mathcal{R}_{i,\max}$.

Definition

Let $X \in [\omega]^{\omega}$. We let $f_X(n) = |X \cap n|$.

Lemma

- Let $h: \omega \to \omega$ be a finite-to-one function. Let \mathcal{E} and \mathcal{W} be ultrafilters over ω such that $\mathcal{W}, \mathcal{E} \not\geq_{RB} \mathcal{R}_{\iota}$ for $\iota \in PP$. Then for any $(s, \bar{a}) \in \mathbb{M}_k(\bar{\mathcal{R}}), E \in \mathcal{E}$ there are $\bar{b} \sqsubseteq_k \bar{a}, \bar{b} \in (\operatorname{Fin}_k)^{\omega}(\bar{\mathcal{R}})$, and $E' \in \mathcal{E}, E' \subseteq E$ and $W \in \mathcal{W}$ such that
 - (1) $h[\bigcup \{ \operatorname{supp}(b_n) : n \in \omega \}] \cap h[E'] = \emptyset.$
 - (2) $h[\bigcup\{[\min(\operatorname{supp}(b_n)), \max(\operatorname{supp}(b_n))] : n \in \omega\}]$ $\cap(h[E'] \cup h[W]) = \emptyset$, and $(s, \overline{b}) \Vdash_{\mathbb{M}_k(\overline{\mathcal{R}})} f_{\operatorname{supp}(\mu)}[W] = f_{\operatorname{supp}(\mu)}[E'].$

Theorem

(Adaption of a theorem of Eisworth) Let $k \ge 1$ and $\overline{\mathcal{R}}$ be as above and assume that \mathcal{E} is a P-point with $\mathcal{E} \not\ge_{RB} \mathcal{R}_{(i,\min)}, \mathcal{R}_{(j,\max)}$ for any $i \in P_{\min}$ and $j \in P_{\max}$. Then \mathcal{E} continues to generate an ultrafilter after we force with $\mathbb{M}_k(\overline{\mathcal{R}})$.

Theorem

Let $k \geq 1$ and $\overline{\mathcal{R}}$ be as above and assume $\mathcal{E}, \mathcal{W} \not\geq_{RB} \mathcal{R}_{(i,\min)}, \mathcal{R}_{(j,\max)}$ for any $i \in P_{\min}$ and $j \in P_{\max}$ and let \mathcal{E} be a P-point and \mathcal{W} be an ultrafilter over ω . Then

$$\mathbb{M}_k(\bar{\mathcal{R}}) \Vdash f_{\operatorname{supp}(\mu)}(\mathcal{E}) = f_{\operatorname{supp}(\mu)}(\mathcal{W}).$$

Now we are concerned with the second iterand. The following follows from an easy density argument.

Lemma

Let $\iota = (i, x) \in PP$.

 $\mathbb{M}_k(\bar{\mathcal{R}}) \Vdash \mathcal{R}_\iota \cup \{\mu_i\}$ is a filter subbase.

Theorem

Let k, PP, $\overline{\mathcal{R}}$ be as in the non-strict form, $\iota \in PP$.

 $\mathbb{M}_{k}(\bar{\mathcal{R}}) \Vdash (\operatorname{filter}((\mathcal{R}_{\iota} \cup \{\mu_{i}\}))^{+} \text{ is a happy family that avoids } \mathcal{E}$ and for $\iota \neq \iota'$ the family $(\operatorname{filter}((\mathcal{R}_{\iota} \cup \{\mu_{i}\}))^{+}$ is nnc to the family $(\operatorname{filter}((\mathcal{R}_{\iota'} \cup \{\mu_{i'}\}))^{+}.$

and hence

 $\mathbb{M}_{k}(\bar{\mathcal{R}}) \Vdash (\exists \mathcal{R}_{\iota}^{\text{ext}} \supseteq (\mathcal{R}_{\iota} \cup \{\mu_{i}\}) \big(\mathcal{R}_{\iota}^{\text{ext}} \text{ is a Ramsey ultrafilter} \\ \text{that is nnc to } \mathcal{E} \text{ and for } \iota \neq \iota', \mathcal{R}_{\iota}^{\text{ext}} \text{ nnc } \mathcal{R}_{\iota'}^{\text{ext}} \big).$

Lemma

(Existence of positive diagonal lower bounds) Let \mathcal{U} be an Milliken-Taylor ultrafilter, \mathcal{E} be a P-point, $\Phi(\mathcal{U}) \not\leq_{\mathrm{RB}} \mathcal{E}$. Let $\mathbb{Q} = \mathbb{M}(\mathcal{U})$ and let μ be the name for the generic real. Let $\bar{X} = \langle X_n : n \in \omega \rangle$ be a sequence of \mathbb{Q} -names for elements of $(\mathrm{Fin})^{\omega}$ such that

$$\mathbb{Q} \Vdash (\forall n \in \omega) (X_n \in (\mathcal{U} \upharpoonright \mu)^+ \land X_{n+1} \sqsubseteq X_n).$$

Lemma continued

Then

$$\tilde{D} = \left\{ \langle t, (s, \bar{a}) \rangle : (s, \bar{a}) \in \mathbb{Q} \land (\exists k \in \omega) (\exists t_0 < t_1 < \dots < t_{k-1} \in [\operatorname{Fin}]_{<}^k) \\ \left(t_{k-1} < t_k = t \land (s, \bar{a}) \Vdash ``t_0 = \min_{\operatorname{Fin}} (X_0 \upharpoonright \mu) \land \right) \\ \bigwedge_{i < k} t_{i+1} = \min_{\operatorname{Fin}} ((X_{\max(t_i)+1} \upharpoonright \mu) \operatorname{past} t_i)'') \right\}$$

fulfils

$$\mathbb{Q} \Vdash \tilde{D} \in (\mathcal{U} \upharpoonright \mu)^+ \land \tilde{D} \sqsubseteq X_0 \land (\forall t \in \tilde{D})((\tilde{D} \text{ past } t) \sqsubseteq X_{\max(t)+1}).$$

Proposition

Let \mathcal{E} be a filter over ω , and let \mathcal{V} and \mathcal{W} be two filters over ω that are not nearly coherent to \mathcal{E} . If \mathcal{V} is nearly coherent to \mathcal{W} , then there is $E \in \mathcal{E}$ such that $f_E(\mathcal{V}) \cup f_E(\mathcal{W})$ is a filter subbase.

Theorem

Suppose that $\mathbb{P}_{\beta}, \overline{\mathcal{R}}_{\beta}$ are as above \mathbb{P}_{α} is the countable support limit of $\langle \mathbb{P}_{\beta}, \mathbb{M}_{k}(\overline{\mathcal{R}}_{\beta}) : \beta < \alpha \rangle$. In $\mathbf{V}^{\mathbb{P}_{\alpha}}$, for any $\iota \in PP$, the set of positive sets

$$\left(\bigcup_{\gamma<\alpha}(\mathcal{R}_{\gamma,\iota}\cup\{\mu_{\gamma,i}\})\right)^+$$

forms a happy family that avoids \mathcal{E} and the happy families are pairwise nnc.

Theorem

Let \mathcal{E} be a P-point and assume CH and let $k \geq 1$ and let $PP \subseteq \{(i,x) : x = \min, \max, i = 1, \dots, k\}$. Then there is a countable support iteration iteration of proper iterands $\mathbb{P} = \langle \mathbb{P}_{\alpha}, \mathbb{M}_k(\bar{\mathcal{R}}_{\beta}) : \beta < \omega_2, \alpha \leq \omega_2 \rangle$ that in the extension there exactly |PP| + 1 near-coherence classes of ultrafilters. Namely, one class is represented by a P-point of character ω_1 and |PP| classes represented by the Ramsey ultrafilters

$$\mathcal{R}_{i,x} = \bigcup \{ \mathcal{R}_{i,x,\alpha} : \alpha < \omega_2 \},\$$

 $(i,x) \in PP.$

Proposition

- We let $\mathbb{Q}_{\text{pure}} = (\operatorname{Fin}_{k}^{\omega}(\bar{\mathcal{R}}), \sqsubseteq_{k}^{*})$ and we let
- $\mathcal{U} = \{ \langle \bar{a}, \check{a} \rangle : \bar{a} \in \mathbb{Q}_{pure} \}.$ Then the following holds:
 - (1) \mathbb{Q}_{pure} is ω -closed.
 - (2) $\mathbb{M}_k(\bar{\mathcal{R}})$ is densely embedded into $\mathbb{Q}_{\text{pure}} * \mathbb{M}_k(\mathcal{U})$.
 - (3) \mathbb{Q}_{pure} forces that \mathcal{U} is a Gowers-Milliken-Taylor ultrafilter with $\hat{\min}_i(\mathcal{U}) = \mathcal{R}_{i,\min}$ and $\hat{\max}_j(\mathcal{U}) = \mathcal{R}_{j,\max}$.
 - (4) \mathbb{Q}_{pure} forces that $\Phi(\mathcal{U})$ is nnc to any filter from the ground model that is nnc \mathcal{R}_{ι} , $\iota \in PP$.

In 1987 Blass conjectured that the existence of two non-isomorphic Ramsey ultrafilters does not imply the existence of a Milliken–Taylor ultrafilter.

Theorem

For any k, PP, $\overline{\mathcal{R}}$ in the forcing extensions from the main theorem, is there is no Gowers-Milliken-Taylor ultrafilter over $\operatorname{Fin}_{k'}$ for any $k' \geq 1$.

Reason: If \mathcal{V} is an Milliken–Taylor ultrafilter, then this holds for \mathbb{P}_{α} -part in $\mathbf{V}^{\mathbb{P}_{\alpha}}$ for club many $\alpha < \omega_2$. Under CH, the core $\Phi(\mathcal{V}) \cap \mathbf{V}^{\mathbb{P}_{\alpha}}$ contains a tree of 2^{ω_1} near coherence classes.