Finite big Ramsey degrees in countable universal structures

Dragan Mašulović

Department of Mathematics and Informatics University of Novi Sad, Serbia

SETTOP 2018, July 2nd

 \mathcal{U} — a countably infinite structure

 \mathcal{A} — a finite structure

 \mathcal{U} — a countably infinite structure

 \mathcal{A} — a finite structure

 \mathcal{U} — a countably infinite structure

 \mathcal{A} — a finite structure

 \mathcal{U} — a countably infinite structure

 \mathcal{A} — a finite structure

 \mathcal{U} — a countably infinite structure

 \mathcal{A} — a finite structure

Definition. $T \in \mathbb{N}$ is a big Ramsey degree of \mathcal{A} in \mathcal{U} if for all $k \ge 2$ we have that $\mathcal{U} \longrightarrow (\mathcal{U})_{k,T}^{\mathcal{A}}$.

 $\mathcal{U} \longrightarrow (\mathcal{U})_{k,T}^{\mathcal{A}}$ in this talk:

For every coloring $\chi : \text{Emb}(\mathcal{A}, \mathcal{U}) \to k$ there is a $w \in \text{Emb}(\mathcal{U}, \mathcal{U})$ such that $|\chi(w \circ \text{Emb}(\mathcal{A}, \mathcal{U}))| \leq T$

NB. Coloring embeddings VS coloring substructures

 \mathcal{U} — a countably infinite structure

 \mathcal{A} — a finite structure

$$\mathcal{T}(\mathcal{A},\mathcal{U}) = egin{cases} \mathcal{T}, & ext{if such an integer exists}, \ \infty, & ext{otherwise}. \end{cases}$$

Finite big Ramsey degrees in some Fraïssé limits:

- ► Finite chains ... in ℚ [Devlin 1979]
- ► Finite graphs ... in the Rado graph *R* [Sauer 2006]
- ► Finite S-ultrametric spaces . . . in the "Urysohn space" Y_S [Van Thé 2008]
- ► Finite local orders ... in S(2) [Laflamme, Van Thé, Sauer 2010]
- ► Finite triangle-free graphs ... in the Henson graph H₃ [PREVIOUS LECTURE]

In this talk: focus on structures which are not Fraïssé limits.

In this talk: focus on structures which are not Fraïssé limits.

Why?

In this talk: focus on structures which are not Fraïssé limits.

Why?

Ramsey's Theorem.

For all $m \ge 1$ and $k \ge 2$ and for every coloring $\chi : [\omega]^m \to k$ there is an infinite $S \subseteq \omega$ such that $|\chi([S]^m)| = 1$.

In other words,

$$T(m, \omega) = 1$$
, for all $m \ge 1$.

Frank P. Ramsey

Image courtesy of Wikipedia

In this talk: focus on structures which are not Fraïssé limits.

Why?

For all $m \ge 1$:

$$T(m,\omega) = 1$$
 VS $T(m,\mathbb{Q}) = \left(\frac{d}{dx}\right)^{2m-1}$ tg(0)

A piggyback result

Theorem. Assume the following:

- ► *F* is a countably infinite relational structure
- ► Age(*F*) has the strong amalgamation property
- K = {(A, ≺) : A ∈ Age(F) and ≺ is a linear order on A such that (A, ≺) is finite or has order type ω}
- \square is a linear order on F of order type ω .

Then:

- ▶ Age(\mathcal{F}, \sqsubset) = K.
- If A has finite big Ramsey degree in F then (A, ≺) has finite big Ramsey degree in (F, □).

A piggyback result

Corollary.

- Every finite linearly ordered graph has finite big Ramsey degree in (R, □), where □ is a linear order on R of order type ω.
- Every finite permutation has finite big Ramsey degree in the permutation (Q, <, □), where < is the usual ordering of the rationals and □ is a linear order on Q of order type ω.

NB. A *linearly ordered graph* is a pair (G, <) where G is a graph and < is a linear order on the vertices of G.

NB. A *permutation* is a structure $(A, <_1, <_2)$ where $<_1$ and $<_2$ are linear orders on A.

Acyclic digraphs

Theorem. There exists a countably infinite acyclic digraph \mathcal{D} such that every finite acyclic digraph \mathcal{A} has finite big Ramsey degree in \mathcal{D} .

A class of posets

Theorem. Let **K** be a class of all finite linearly ordered posets which omit

There exists a countably infinite linearly ordered poset \mathcal{P} such that every $\mathcal{A} \in \mathbf{K}$ has finite big Ramsey degree in \mathcal{P} .

NB. A linearly ordered poset = (A, \leq, \prec) where (A, \leq) is a poset and \prec is a linear extension of \leq .

A class of metric spaces

Every finite distance set $S = \{0 = s_0 < s_1 < \cdots < s_n\} \subseteq \mathbb{R}$ splits naturally into *blocks*:

Definition. A distance set S is compact if

 $x \approx y \Leftrightarrow |x - y| \leqslant s_1$, for all $x, y \in S$.

Let $S^+ = S \setminus B_1$:

A class of metric spaces

Definition. A finite *S*⁺-metric space \mathcal{L} spans an *S*-metric space \mathcal{M} if the partition $\{A_1, A_2, \ldots, A_m\}$ of *M* into B_1 -balls has a transversal $a_1 \in A_1, a_2 \in A_2, \ldots, a_m \in A_m$ such that $\mathcal{M}{\upharpoonright}_{\{a_1, a_2, \ldots, a_m\}} \cong \mathcal{L}$.

A class of metric spaces

Theorem. Let

- ► S be a compact distance set,
- \mathcal{L} be a finite S^+ -metric space, and
- $\mathbf{K}_{S,\mathcal{L}}$ be the class of all finite S-met. spaces spanned by \mathcal{L} .

Then there exists a countably infinite S-metric space $\mathcal{U}_{S,\mathcal{L}}$ such that every $\mathcal{M} \in \mathbf{K}_{S,\mathcal{L}}$ has finite big Ramsey degree in $\mathcal{U}_{S,\mathcal{L}}$.

In other words,

Every finite S-metric space \mathcal{M} has finite big Ramsey degree in $\mathcal{U}_{S,\mathcal{L}}$ for every S⁺-metric space \mathcal{L} which spans \mathcal{M} .

Let \mathbb{C} be a category and $A, B, C \in Ob(\mathbb{C})$.

 $C \longrightarrow (B)_k^A$ if:

for every mapping χ : hom(A, C) $\rightarrow k$ there is a \mathbb{C} -morphism $w : B \rightarrow C$ such that $|\chi(w \cdot hom(A, B))| = 1$.

A category \mathbb{C} has the Ramsey property if:

for all $k \ge 2$ and all $A, B \in Ob(\mathbb{C})$ such that $hom(A, B) \ne \emptyset$ there is a $C \in Ob(\mathbb{C})$ satisfying $C \longrightarrow (B)_k^A$

Let \mathbb{C} be a category and $A, B, C \in Ob(\mathbb{C})$.

 $C \longrightarrow (B)_k^A$ if:

for every mapping χ : hom(A, C) $\rightarrow k$ there is a \mathbb{C} -morphism $w : B \rightarrow C$ such that $|\chi(w \cdot hom(A, B))| = 1$.

 $T \in \mathbb{N}$ is a big Ramsey degree of A in U if: for all $k \ge 2$ we have that $U \longrightarrow (U)_{k,T}^{A}$.

Theorem. Let

- ▶ B and C be categories,
- $B \in \mathsf{Ob}(\mathbb{B})$ and $C \in \mathsf{Ob}(\mathbb{C})$,
- there is a forgetful functor $U : \overline{Age}_{\mathbb{B}}(B) \to \overline{Age}_{\mathbb{C}}(C)$,
- U(B) = C;
- if U(B') = C then hom_B $(B, B') \neq \emptyset$; and
- ► for every $f \in \hom_{\mathbb{C}}(C, C)$ there is a $B' \in Ob(\mathbb{B})$ such that U(B') = C and $f \in \hom_{\mathbb{B}}(B', B)$.

Then $T_{\mathbb{B}}(A,B) \leqslant T_{\mathbb{C}}(U(A),C)$ for all $A \in \overline{\operatorname{Age}}_{\mathbb{B}}(B)$.

NB. $\overline{\text{Age}}_{\mathbb{C}}(C) = \{A \in \text{Ob}(\mathbb{C}) : \text{hom}(A, C) \neq \emptyset\}$

Theorem. Let

- ▶ C be a category whose every morphism is monic,
- ▶ B be a (not necessarily full) subcategory of C,
- ▶ $B \in Ob(\mathbb{B})$ and $C \in Ob(\mathbb{C})$ be such that $hom_{\mathbb{C}}(B, C) \neq \emptyset$,
- ► $A \in \overline{Age}_{\mathbb{B}}(B)$
- For every (A, B)-diagram F : ∆ → Age_B(B) the following holds: if F has a commuting cocone in Age_C(C) whose tip is C, then F has a commuting cocone in Age_B(B).

Then $T_{\mathbb{B}}(A, B) \leq T_{\mathbb{C}}(A, C)$.

Theorem. In other words,

(jointly with Branislav Šobot)

Finite chains have finite big Ramsey deg's both in ω and in \mathbb{Q} .

Question: What other countable chains C have the property that $T(m, C) < \infty$ for all *m*?

(jointly with Branislav Šobot)

Finite chains have finite big Ramsey deg's both in ω and in \mathbb{Q} .

Question: What other countable chains C have the property that $T(m, C) < \infty$ for all *m*?

Fact. If \mathcal{U} and \mathcal{V} are emb-equivalent structures then $T(\mathcal{A},\mathcal{U}) = T(\mathcal{A},\mathcal{V})$ for all finite $\mathcal{A} \in Age(\mathcal{U}) = Age(\mathcal{V})$.

Non-scattered countable chains \checkmark

NB. \mathcal{U} and \mathcal{V} are emb-equivalent if $\mathcal{U} \hookrightarrow \mathcal{V}$ and $\mathcal{V} \hookrightarrow \mathcal{U}$.

(jointly with Branislav Šobot)

Finite chains have finite big Ramsey deg's both in ω and in \mathbb{Q} .

Question: What other countable chains C have the property that $T(m, C) < \infty$ for all *m*?

Goal: Prove that scattered countable chains also have the property.