The Banach-Mazur game and the strong Choquet game in domain theory

Andrzej Kucharski

University of Silesia in Katowice joint paper with Judyta Bąk (arXiv:1806.00785)

Novi Sad 2017

Andrzej Kucharski

A partially ordered set (P, \sqsubseteq) is a dcpo (directed complete), if every directed subset $D \subseteq P$ has a least upper bound, denoted by $\bigsqcup D$. In a poset (P, \sqsubseteq) $a \ll b$ ("a is approximates b") if for each directed set $D \subseteq P$

$$b \sqsubseteq \bigsqcup D \Rightarrow \exists (d \in D) \ a \sqsubseteq d.$$

A dcpo P is said to be continuous if $\downarrow(a) = \{b \in P : b \ll a\}$ is directed and has $a = \bigsqcup(\downarrow(a))$ for each $a \in P$. A domain is continuous dcpo.

A subset U of a poset P is Scott-open if

- U is an upper set: $x \in U$ and $x \sqsubseteq y$ then $y \in U$,
- for every directed $D \subseteq P$ which has a supremum,

$$\Box D \in U \Rightarrow D \cap U \neq \emptyset$$

Domains were discovered in computer science by D. Scott in 1970.

When a space X is homeomorphic to the space $\max(P)$ for a domain (P, \sqsubseteq) with Scott topology inherited from P, Martin writes that X has a model, while Bennett and Lutzer write that X is domain representable.

- K. Martin, "Topological games in domain theory", 2003
- H. Benett, D. Lutzer, "Strong completness Properties in Topology", 2009

\mathbb{R} is domain representable

$$P = \{[a, b] : a \leq b\}$$
$$[a, b] \sqsubseteq [c, d] \Leftrightarrow [c, d] \subseteq [a, b]$$
$$[a, b] \ll [c, d] \Leftrightarrow [c, d] \subseteq (a, b)$$
$$\bigsqcup D = \bigcap D$$

for any directed set $D \subseteq P$

$$\max P = \{[x, x] : x \in \mathbb{R}\}$$

and $h: \max P \to \mathbb{R}$:

$$h([x,x]) = x$$

伺 ト く ほ ト く ほ トー

2

A locally compact Hausdorff space X is domain representable

$$P = \{K \subseteq X : \emptyset \neq K \text{ is compact}\}$$
$$K_1 \sqsubseteq K_2 \Leftrightarrow K_2 \subseteq K_1$$

$$K_1 \ll K_2 \Leftrightarrow K_2 \subseteq \mathsf{int}K_1$$
$$\bigsqcup D = \bigcap D$$

for any directed set $D \subseteq P$

$$\max P = \{\{x\} : x \in X\}$$

and $h: \max P \to X$

$$h(\{x\}) = x$$

伺 ト く ほ ト く ほ トー

э

• W. Fleissner, L. Yengulalp, "When Cp(X) is Domain Representable", 2013

∢ 臣 ≯

2

We say that a topological space X is F-Y (Fleissner-Yengulalp) countably domain representable if there is a triple (Q, \ll, B) such that

(D1)
$$B:Q
ightarrow au^*(X)$$
 and $\{B(q):q\in Q\}$ is a base for $au(X)$,

(D2)
$$\ll$$
 is a transitive relation on Q ,

(D3) for all
$$p, q \in Q$$
, $p \ll q$ implies $B(p) \supseteq B(q)$,

(D4) For all
$$x \in X$$
, a set $\{q \in Q : x \in B(q)\}$ is directed by \ll ,

$$(D5_{\omega_1})$$
 if $D \subseteq Q$ and (D, \ll) is countable and directed, then
 $\bigcap \{B(q) : q \in D\} \neq \emptyset.$

If the conditions (D1)-(D4) and a condition

(D5) if $D \subseteq Q$ and (D, \ll) is directed, then $\bigcap \{B(q) : q \in D\} \neq \emptyset$ are satisfied, we say that a space X is F-Y domain representable.

Theorem [Martin, 2003]

A metric space is a domain reresentable iff it is completely metrizable.

Theorem[Benett, Lutzer, 2006]

If a space is Čech complete, then it is domain representable.

Theorem[Benett, Lutzer, 2006]

If a space X is domain representable and a space Y is a G_{δ} -subspace of X, then Y is a domain representable space.

We say that a topological space X is F-Y (Fleissner-Yengulalp) countably π -domain representable if there is a triple (Q, \ll, B) such that

- $(\pi D1)$ $B: Q \to \tau^*(X)$ and $\{B(q): q \in Q\}$ is a π -base for $\tau(X)$,
- $(\pi D2) \ll$ is a transitive relation on Q,
- $(\pi D3)$ for all $p,q \in Q$, $p \ll q$ implies $B(p) \supseteq B(q)$,
- $(\pi D4)$ if $q, p \in Q$ satisfy $B(q) \cap B(p) \neq \emptyset$, there exists $r \in Q$ satisfying $p, q \ll r$,
- $(\pi D5_{\omega_1})$ if $D \subseteq Q$ and (D, \ll) is countable and directed, then $\bigcap \{B(q) : q \in D\} \neq \emptyset.$

If the conditions $(\pi D1)$ – $(\pi D4)$ and a condition

 $(\pi D5)$ if $D \subseteq Q$ and (D, \ll) is directed, then $\cap \{B(q): q \in D\}
eq \emptyset$

are satisfied, we say that a space X is F-Y π -domain representable.

(4)部長 (4)語(5) (4)語(5) (5) 語

We say that a topological space X is F-Y (Fleissner-Yengulalp) countably π -domain representable if there is a triple (Q, \ll, B) such that

- $(\pi D1)$ $B: Q \to \tau^*(X)$ and $\{B(q): q \in Q\}$ is a π -base for $\tau(X)$,
- $(\pi \mathsf{D2}) \ll$ is a transitive relation on Q,
- $(\pi D3)$ for all $p,q \in Q$, $p \ll q$ implies $B(p) \supseteq B(q)$,
- $(\pi D4)$ if $q, p \in Q$ satisfy $B(q) \cap B(p) \neq \emptyset$, there exists $r \in Q$ satisfying $p, q \ll r$,
- $(\pi D5_{\omega_1})$ if $D \subseteq Q$ and (D, \ll) is countable and directed, then $\bigcap \{B(q) : q \in D\} \neq \emptyset.$

If the conditions $(\pi D1)-(\pi D4)$ and a condition

 $(\pi D5)$ if $D \subseteq Q$ and (D, \ll) is directed, then $\bigcap \{B(q) : q \in D\} \neq \emptyset$

are satisfied, we say that a space X is F-Y π -domain representable.

▲御▶ ▲理▶ ▲理▶ …

There exists a space, which it is F-Y countably domain representable (F-Y countably π -domain representable) but it is not F-Y π -domain representable (not F-Y domain representable.) We consider a space

$$X = \Sigma(\{0,1\}^{\omega_1}) = \{x \in \{0,1\}^{\omega_1} : |\operatorname{supp} x| \leqslant \omega\},\$$

where supp $x = \{\alpha \in A : x(\alpha) = 1\}$ for $x \in \{0, 1\}^A$, with the topology (ω_1 -box topology) generated by a base

$$\mathcal{B} = \{ \operatorname{pr}_{A}^{-1}(x) : A \in [\omega_1]^{\leqslant \omega}, x \in \{0, 1\}^A \},\$$

where $\operatorname{pr}_{\mathcal{A}}: \Sigma(\{0,1\}^{\omega_1}) \to \{0,1\}^{\mathcal{A}}$ is a projection.

$$Q = \mathcal{B} = \{ \operatorname{pr}_{A}^{-1}(x) : A \in [\omega_1]^{\leqslant \omega}, x \in \{0, 1\}^A \},$$

 $B : Q \to Q$

be the identity.

A relation \ll is defined in the following way

$$\operatorname{pr}_{A}^{-1}(x) \ll \operatorname{pr}_{B}^{-1}(y) \Leftrightarrow \operatorname{pr}_{A}^{-1}(x) \supseteq \operatorname{pr}_{B}^{-1}(y),$$

for any $\operatorname{pr}_A^{-1}(x), \operatorname{pr}_B^{-1}(y) \in \mathcal{B}.$

Two players α and β alternately choose open nonempty sets with $\beta \quad U_0 \qquad U_1$

 α V_0 V_1 Player α wins this play if $\bigcap_{n=1}^{\infty} V_n \neq \emptyset$. Otherwise β wins. Denoted this game by BM(X).

. . .

< 47 ▶

A strategy for the player α in the game BM(X) or Ch(X) is a rule for choosing what to play on each round given the full information of moves up until that point.

A winning strategy for the palyer α is a strategy that produces a win for that player α in any game when playing according to that startegy.

Theorem [Martin, 2003]

If a space X is domain representable, then the player α has a winning strategy in Ch(X).

Theorem[Fleissner, Yengulalp, 2015]

If a space X is F-Y countably domain representable, then the player α has a winning strategy in Ch(X).

Theorem[J.Bąk, A. K.]

If the player α has a winning strategy in Ch(X), then X is F-Y countably domain representable.

Theorem[J.Bąk, A. K.]

The player α has a winning strategy in the BM(X) iff X is F-Y countably π - domain representable.

Thank You for Your attention!

Andrzej Kucharski