Basis and antibasis results for actions of locally compact groups

Manuel Inselmann joint work with Benjamin Miller

Kurt Gödel Research Center for mathematical Logic Universiät Wien

July 4, 2018

Image: Image:

∃ >

Universiät Wien

Manuel Inselmann joint work with Benjamin Miller

X will be a Polish space and G will be a locally compact Polish group.

-

X will be a Polish space and G will be a locally compact Polish group.

A continuous action of G on X is a continuous map $G\times X\to X$ such that

•
$$1_G \cdot x = x$$
 for all $x \in X$,

•
$$g \cdot (h \cdot x) = (gh) \cdot x$$
 for all $x \in X$ and $g, h \in G$.

.∋...>

X will be a Polish space and G will be a locally compact Polish group.

A continuous action of G on X is a continuous map $G\times X\to X$ such that

- $1_G \cdot x = x$ for all $x \in X$,
- $g \cdot (h \cdot x) = (gh) \cdot x$ for all $x \in X$ and $g, h \in G$.

The induced orbit equivalence relation E_G^X on X is given by $x E_G^X y$ if there is a $g \in G$ such that $g \cdot x = y$.

・ロト ・回ト ・ ヨト ・

Motivation

Consider all continuous free actions of a locally compact group G on Polish spaces such that the induced orbit equivalence relation is non-smooth. Is there a small basis for these actions under G-embedibility? Similarly, is there such a basis for topologically weakly mixing actions, topologically strong mixing actions etc?

- * ロ * * @ * * 注 * * 注 * シッペ

Manuel Inselmann joint work with Benjamin Miller

Universiät Wien

• For non-empty open subsets U, V of X define: $\Delta(U, V) = \{g \in G \mid (g \cdot U) \cap V \neq \emptyset\}.$

・ロト ・回ト ・ヨト ・

- For non-empty open subsets U, V of X define: $\Delta(U, V) = \{g \in G \mid (g \cdot U) \cap V \neq \emptyset\}.$
- The action is topologically transitive if Δ(U, V) ≠ Ø for all non-empty open subsets U, V of X.

- For non-empty open subsets U, V of X define: $\Delta(U, V) = \{g \in G \mid (g \cdot U) \cap V \neq \emptyset\}.$
- The action is topologically transitive if Δ(U, V) ≠ Ø for all non-empty open subsets U, V of X.
- Let *F* be a subset of *P*(*G^d*). Then a continuous action of *G* on *X* is *F*-recurrent if Δ(*U*, *U*)^d ∈ *F* for all non-empty open subsets *U* of *X*.

- For non-empty open subsets U, V of X define: $\Delta(U, V) = \{g \in G \mid (g \cdot U) \cap V \neq \emptyset\}.$
- The action is topologically transitive if Δ(U, V) ≠ Ø for all non-empty open subsets U, V of X.
- Let *F* be a subset of *P*(*G^d*). Then a continuous action of *G* on *X* is *F*-recurrent if Δ(*U*, *U*)^d ∈ *F* for all non-empty open subsets *U* of *X*.
- If S is a subset of $\mathcal{P}(G^d)$, define $\mathcal{F}_S = \{F \in \mathcal{P}(G^d) \mid \forall S \in S \ F \cap S \neq \emptyset\}.$

< ロ > < 回 > < 回 > <</p>

An action of G on X is weakly mixing, if for all non-empty open subsets U_0, U_1, U_2, U_3 of X the set $\Delta(U_0, U_1) \cap \Delta(U_2, U_3)$ is non-empty.

Image: A math a math

An action of G on X is weakly mixing, if for all non-empty open subsets U_0, U_1, U_2, U_3 of X the set $\Delta(U_0, U_1) \cap \Delta(U_2, U_3)$ is non-empty. Equivalently, the diagonal product action of G on $X \times X$ is topologically transitive.

Image: A math a math

An action of G on X is weakly mixing, if for all non-empty open subsets U_0, U_1, U_2, U_3 of X the set $\Delta(U_0, U_1) \cap \Delta(U_2, U_3)$ is non-empty.

Equivalently, the diagonal product action of G on $X \times X$ is topologically transitive.

Let $D \subset G$ be a countable dense subgroup of G.

Let S be the family of subsets of G^2 of the form $S_{g,f} = \{(h, ghf) : h \in G)\}$ for $(g, f) \in D$.

Proposition

The action of G on X is weakly mixing iff it is \mathcal{F}_{S} -recurrent and topologically transitive.

(日) (同) (三) (

If the action is weakly mixing, then it is topologically transitive.

Universiät Wien

イロト イヨト イヨト イ

If the action is weakly mixing, then it is topologically transitive. Let $U \subseteq X$ be non-empty open and $(g, f) \in D^2$.

• • • • • • • •

.∃ ▶ . ∢

If the action is weakly mixing, then it is topologically transitive. Let $U \subseteq X$ be non-empty open and $(g, f) \in D^2$. Then $\Delta(U, U) \cap \Delta(f^{-1}U, gU) = \Delta(U, U) \cap g\Delta(U, U)f \neq \emptyset$, so $\Delta(U, U)^2 \cap S_{g,f} \neq \emptyset$.

(日) (同) (日) (日)

If the action is weakly mixing, then it is topologically transitive. Let $U \subseteq X$ be non-empty open and $(g, f) \in D^2$. Then $\Delta(U, U) \cap \Delta(f^{-1}U, gU) = \Delta(U, U) \cap g\Delta(U, U)f \neq \emptyset$, so $\Delta(U, U)^2 \cap S_{g,f} \neq \emptyset$. If the action is topologically transitive and \mathcal{F}_S -recurrent, take non-empty open sets U_0, U_1, U_2, U_3 and find (by topological transitivity) a non-empty open set V and $f_i \in D$ for i < 4 such that $f_i V \subseteq U_i$ for i < 4.

イロト イヨト イヨト イ

If the action is weakly mixing, then it is topologically transitive. Let $U \subseteq X$ be non-empty open and $(g, f) \in D^2$. Then $\Delta(U, U) \cap \Delta(f^{-1}U, gU) = \Delta(U, U) \cap g\Delta(U, U)f \neq \emptyset$, so $\Delta(U, U)^2 \cap S_{g,f} \neq \emptyset.$ If the action is topologically transitive and \mathcal{F}_{S} -recurrent, take non-empty open sets U_0, U_1, U_2, U_3 and find (by topological transitivity) a non-empty open set V and $f_i \in D$ for i < 4 such that $f_i V \subseteq U_i$ for i < 4. Note that the fact that $\Delta(V,V)^2 \cap S_{f_1^{-1}f_2,f_2^{-1}f_0}
eq \emptyset$ shows that $\Delta(f_0 V, f_1 V) \cap \Delta(f_1 V, f_2 V) \neq \emptyset.$

(日) (同) (三) (

Cocycle

- Let E be an equivalence relation on X. A cocycle ρ is a map from E to G such that ρ(x, z) = ρ(x, y)ρ(y, z) for all x E y E z.
- For a cocycle ρ : E → G the equivalence relation E_ρ is defined by x E_ρ y iff x E y and ρ(x, y) = 1.

Suppose d > 0 and $\lambda : d \times \mathbb{N} \to G$. Define for $n \in \mathbb{N}$ and $s \in (d \times 2)^n \lambda_s = \lambda_{(s(0)(0),0)}^{s(0)(1)} \dots \lambda_{(s(n-1)(0),n-1)}^{s(n-1)(1)}$. Define a cocycle $\rho_{\lambda} : I_G \times E_0 | (d \times 2)^{\mathbb{N}} \to G$ by $\rho_{\lambda}((g, s^{\frown} x), (h, t^{\frown} x)) = g \lambda_s \lambda_t^{-1} h^{-1}$ for $s, t \in (d \times 2)^n$ and $x \in (d \times 2)^{\mathbb{N}}$.

Lemma

Suppose G is a locally compact Polish group, X is a locally compact Polish space, G acts continuously on X, E is a Borel equivalence relation containing E_X^G , $\rho : E \to G$ is a Borel cocycle such that $\rho(g \cdot x, x) = g$ for all $g \in G$ and $x \in X$. Suppose furthermore, that the E_{ρ} -saturation of every open set $U \subseteq X$ is open and that E_{ρ} is closed in $X \times X$. Than the quotient topology on X/E_{ρ} is locally compact and Polish and the induced action of G on X/E_{ρ} is continuous.

Theorem (Miller, I.)

Suppose that d > 1 and S is a countable set of subsets of G^d . Then for every topologically transitive and \mathcal{F}_S -recurrent free action with non-smooth induced orbit equivalence relation, there is a sequence $\lambda : d \times \mathbb{N} \to G$ such that E_{ρ_λ} is closed, the action of Gon $G \times (d \times 2)^{\mathbb{N}} / E_{\rho_\lambda}$ embeds into the action of G on X and is \mathcal{F} -transitive. Furthermore, there are continuum many pairwise incompatible actions with these properties.

Image: Image:

Corollary (Miller, I.)

For every topologically weakly mixing action of G with no open orbit, there is a sequence $\lambda : 2 \times \mathbb{N} \to G$ such that $E_{\rho_{\lambda}}$ is closed, the action of G on $G \times (2 \times 2)^{\mathbb{N}} / E_{\rho_{\lambda}}$ embeds into the action of G on X and is topologically weakly mixing. Furthermore, there are continuum many pairwise incompatible actions with these properties. In addition, if G is abelian, then there is a regular and σ -finite measure on $G \times (2 \times 2)^{\mathbb{N}} / E_{\rho_{\lambda}}$ for which the action of G is weakly mixing.

- The action of G on X is topologically mixing if it is topological transitive and *F_{mixing}*-recurrent, where *F_{mixing}* = {*F* ⊆ *G* : *F^c* is precompact}.
- X is mildly mixing if every diagonal product action with a topological transitive action is again topological transitive.

< □ > < 同 >

Thank you!

▲□▶▲圖▶▲臣▶▲臣▶ 臣 のQ@

Manuel Inselmann joint work with Benjamin Miller

Universiät Wien