Borel ideals

Jan Grebík

Institute of Mathematics of the Czech Academy of Sciences

SETTOP 2018

We use the natural identification $\mathcal{P}(\mathbb{N}) \simeq 2^{\mathbb{N}}$ and view all operations and relations such as \subseteq , \cap , $[_]^{<\omega}$, etc, as defined on $2^{\mathbb{N}}$.

Defintion

A family $\mathcal{I}\subseteq 2^{\mathbb{N}}$ is called an ideal on \mathbb{N} if the following holds

• if
$$x, y \in \mathcal{I}$$
 then $x \cup y \in \mathcal{I}$,

• if
$$y \subseteq x$$
 and $x \in \mathcal{I}$ then $y \in \mathcal{I}$.

We say that an ideal \mathcal{I} on \mathbb{N} is *tall* if for every infinite $x \in 2^{\mathbb{N}}$ there is an infinite $y \subseteq x$ such that $y \in \mathcal{I}$.

Given two ideals \mathcal{I}, \mathcal{J} on \mathbb{N} we say that $\mathcal{I} \leq_{K} \mathcal{J}$ if there is a function $f : \mathbb{N} \to \mathbb{N}$ such that $f^{-1}(I) \in \mathcal{J}$, for every $I \in \mathcal{I}$.

Question(Hrušák)

Is there a tall Borel ideal minimal among all tall Borel ideals in the Katětov order $\leq_{\mathcal{K}}$?

Observation

Let ${\mathcal I}$ be an ideal on ${\mathbb N}$ containing ${\textbf{FIN}}.$ Then

- ► FIN $\leq_{K} \mathcal{I}$,
- $\mathcal{I} \leq_{\mathcal{K}} \mathbf{FIN}$ if and only if \mathcal{I} is not tall.

We say that an ideal \mathcal{I} on \mathbb{N} is F_{σ} , Borel, Σ_1^1 , etc, if \mathcal{I} is such as a subset of the Polish space $2^{\mathbb{N}}$. Let $A \subseteq 2^{\mathbb{N}}$ then define

$$\mathcal{I}_A = \{ x \in \mathbb{N} : \exists y_0 \dots y_{n-1} \in A \ x \subseteq \bigcup_{i < n} y_i \}.$$

If A is Borel then \mathcal{I}_A is Σ_1^1 and if A is closed then \mathcal{I}_A is F_{σ} .

Proposition

For every F_{σ} ideal \mathcal{I} there is a closed set K such that $\mathcal{I}_{K} = \mathcal{I}$.

We may view the hyperspace $K(2^{\mathbb{N}})$ as the space of codes of F_{σ} ideals.

$$K\in K(2^{\mathbb{N}}) \leftrightarrow \mathcal{I}_K$$

Theorem(G.-Hrušák)

Let \mathcal{I} be a $\mathbf{\Sigma}_1^1$ tall ideal on \mathbb{N} . Then there is a F_{σ} ideal \mathcal{J} such that

 $\mathcal{I} \not\leq_{\mathsf{K}} \mathcal{J}.$

Proof.

Let $\mathcal{T} \subseteq \mathcal{K}(2^{\mathbb{N}})$ be a set of all closed subsets of $2^{\mathbb{N}}$ that code tall F_{σ} ideal.

- Use the work of Becker-Kahane-Louveau to show that the set \mathcal{T} is Π_2^1 -complete.
- The set $\{K \in K(2^{\mathbb{N}}) : \mathcal{I} \leq_{K} \mathcal{I}_{K}\}$ is Σ_{2}^{1} .

Let \mathcal{I} be a Σ_1^1 (or Borel) tall ideal. Is there a reasonable way how to find any Borel tall ideal \mathcal{J} such that $\mathcal{I} \not\leq_K \mathcal{J}$? This leads (us) to the following notion:

Definition

We say that an ideal $\mathcal I$ on $\mathbb N$ has a $\mathit{selector}$ if there is a Borel map $S:2^\mathbb N\to 2^\mathbb N$ such that

•
$$S(x) \subseteq x$$
 for every $x \in 2^{\mathbb{N}}$,

•
$$x \in \mathcal{I}$$
 for every $x \in 2^{\mathbb{N}}$,

• if $x \in 2^{\mathbb{N}}$ is infinite then S(x) is infinite.

Remark

If $\ensuremath{\mathcal{I}}$ has selector then it is tall and the tallness is witnessed effectively.

Definition

Let $c: 2^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ be a Borel function. We define \mathcal{I}_c to be an ideal on $2^{<\mathbb{N}}$ generated by

antichains,

•
$$\{x \upharpoonright m : m \in c(x)^{-1}(n)\}$$
 for every $x \in 2^{\mathbb{N}}$ and every $n \in \mathbb{N}$,

►
$$A \subseteq \{x \upharpoonright m : m \in \mathbb{N}\}$$
 where $x \in \mathbb{N}$ and for every $n \in \mathbb{N}$ is $|A \cap c(x)^{-1}(n)| = 1$.

Theorem(G.-Hrušák)

Let \mathcal{I} be an ideal on \mathbb{N} that has a selector. Then there is a Borel function $c: 2^{\mathbb{N}} \to \mathbb{N}^{\mathbb{N}}$ such that $\mathcal{I} \not\leq_{\mathcal{K}} \mathcal{I}_{c}$.

Remark

- \mathcal{I}_c is always Borel,
- ► the function c = H ∘ S ∘ Θ where S is the selector and H, Θ are two Borel functions fixed in advance.

All the known examples of tall Borel ideals admit a selector: Random ideal, Solecki ideal, FIN \times FIN, \ldots Moreover this notion is closed upwards in $\leq_{\mathcal{K}}$.

Question

Does every tall Borel ideal admit a selector?

Theorem(G.-Uzcátegui)

Let $S \subseteq K(2^{\mathbb{N}})$ be the set of those closed subsets of $2^{\mathbb{N}}$ such that \mathcal{I}_K has a selector. Then S is Σ_2^1 .

Corollary

There is a tall F_{σ} ideal \mathcal{I} without a selector.

Proof of Corollary.

Note that we have $S \subseteq T$ and T is Π_2^1 -complete.

Let $c : [\mathbb{N}]^2 \to 2$. Let \mathcal{I} be generated by all monochromatic subsets of \mathbb{N} . Then \mathcal{I} is F_{σ} and by the Ramsey's Theorem it is tall. Since the "standard" proof of Ramsey's Theorem is "enough Borel" we can use it to find a selector for \mathcal{I} . More generally we have.

Proposition

Let $n \in \mathbb{N}$. There is a Borel function $S : 2^{[\mathbb{N}]^n} \times [\mathbb{N}]^{\mathbb{N}} \to [\mathbb{N}]^{\mathbb{N}}$ such that $S(\mathcal{F}, x)$ is \mathcal{F} -monochromatic and $S(\mathcal{F}, x) \subseteq x$.

Question

What other Ramsey statements have "Borel proof" (Borel way of choosing the monochromatic infinite subset)?

Let $s \in [\mathbb{N}]^{\leq \mathbb{N}}$ and $t \in [\mathbb{N}]^{\leq \mathbb{N}}$. We write $s \sqsubseteq t$ when there is $n \in \omega$ such that $s = t \cap \{0, 1, \dots, n\}$ and we say that s is an initial segment of t.

Theorem (Galvin)

Let $\mathcal{F} \subseteq [\mathbb{N}]^{<\mathbb{N}}$ and $x \in [\mathbb{N}]^{\mathbb{N}}$. Then there is an infinite $y \subseteq x$ such that one of the following holds

• for all
$$z \in [y]^{\mathbb{N}}$$
 there is $s \in \mathcal{F}$ such that $s \sqsubseteq z$,

$$\blacktriangleright [y]^{<\mathbb{N}} \cap \mathcal{F} = \emptyset.$$

A special type of subsets of $[\mathbb{N}]^{<\mathbb{N}}$ is as follows. We say that $\mathcal{B}\subseteq [\mathbb{N}]^{<\mathbb{N}}$ is a *front* if

- every two elements of \mathcal{B} are \sqsubseteq -incomparable,
- every $x \in [\mathbb{N}]^{\mathbb{N}}$ has an initial segment in \mathcal{B} .

Theorem (Nash-Williams)

Let \mathcal{B} be a front on \mathbb{N} and $\mathcal{F} \subseteq \mathcal{B}$. Then for every infinite $x \in [\mathbb{N}]^{\mathbb{N}}$ there is an infinite $y \subseteq x$ such that one of the following holds

$$\blacktriangleright [y]^{<\mathbb{N}} \cap \mathcal{B} \subseteq \mathcal{F}$$

$$\blacktriangleright [y]^{<\mathbb{N}} \cap \mathcal{F} = \emptyset.$$

Theorem (G.-Uzcátegui)

Let \mathcal{B} be a front and $\mathcal{F} \subseteq \mathcal{B}$. There is a Borel map $S : [\mathbb{N}]^{\mathbb{N}} \to [\mathbb{N}]^{\mathbb{N}}$ such that $S(x) \subseteq x$ and S(x) satisfies the conclusion of the Nash-Williams's Theorem.

Proof.

The proof goes by induction on the rank of the front.

Let $K \in K(2^{\mathbb{N}})$ be hereditary (closed under subsets) and tall. Define $\mathcal{F}_{K} = \{s \in [\mathbb{N}]^{<\mathbb{N}} : s \notin K\}$. It can be easily verified that for \mathcal{F}_{K} is the first possibility of Galvin's Theorem never satisfied and that the set of all \mathcal{F}_{K} -monochromatic subsets is exactly K.

Theorem (G.-Uzcátegui)

There is $\mathcal{F} \subseteq [\mathbb{N}]^{<\mathbb{N}}$ such that there is no Borel function $S : [\mathbb{N}]^{\mathbb{N}} \to [\mathbb{N}]^{\mathbb{N}}$ such that $S(x) \subseteq x$ and S(x) satisfies the conclusion of the Galvin's Theorem.

Proof.

Take some tall F_{σ} ideal \mathcal{I} that does not have a selector. Pick any $K \in K(2^{\mathbb{N}})$ such that $\mathcal{I} = \mathcal{I}_{K}$ and K is hereditary. Then \mathcal{F}_{K} works as desired.

Thank you.