▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Killing ideals softly

Barnabás Farkas (TU Wien)

joint work with Lyubomyr Zdomskyy (TU Wien)

SETTOP 2018

• An ideal \mathcal{I} on ω is tall if $\forall H \in [\omega]^{\omega} \ \mathcal{I} \cap [H]^{\omega} \neq \emptyset$.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Destroying ideals

- An ideal \mathcal{I} on ω is tall if $\forall H \in [\omega]^{\omega} \ \mathcal{I} \cap [H]^{\omega} \neq \emptyset$.
- We say that P can destroy *I* if it can destroy its tallness, that is, P adds an *H* ∈ [ω]^ω such that
 p ⊩"|A ∩ *H*| < ω for every A ∈ *I*^V" for some p ∈ P.

- An ideal \mathcal{I} on ω is tall if $\forall H \in [\omega]^{\omega} \ \mathcal{I} \cap [H]^{\omega} \neq \emptyset$.
- We say that P can destroy *I* if it can destroy its tallness, that is, P adds an *H* ∈ [ω]^ω such that
 p ⊩"|A ∩ *H*| < ω for every A ∈ *I*^V" for some p ∈ P.

• Why \mathcal{I}^{V} ?

- An ideal \mathcal{I} on ω is tall if $\forall H \in [\omega]^{\omega} \ \mathcal{I} \cap [H]^{\omega} \neq \emptyset$.
- We say that P can destroy *I* if it can destroy its tallness, that is, P adds an *H* ∈ [ω]^ω such that
 p ⊩"|A ∩ *H*| < ω for every A ∈ *I*^V" for some p ∈ P.
- Why I^V?
- $\bullet\,$ The associated cardinal invariants of a tall ${\cal I}$ are
 - $$\begin{split} \mathsf{non}([\omega]^{\omega},\mathcal{I}) &= \\ \min\left\{|\mathcal{X}|:\mathcal{X}\subseteq[\omega]^{\omega} \text{ and } \forall \ A\in\mathcal{I} \ \exists \ X\in\mathcal{X} \ |A\cap X|<\omega\right\},\\ \mathsf{cov}([\omega]^{\omega},\mathcal{I}) &= \\ \min\left\{|\mathcal{C}|:\mathcal{C}\subseteq\mathcal{I} \text{ and } \forall \ X\in[\omega]^{\omega} \ \exists \ A\in\mathcal{C} \ |X\cap A|=\omega\right\}. \end{split}$$

- An ideal \mathcal{I} on ω is tall if $\forall H \in [\omega]^{\omega} \ \mathcal{I} \cap [H]^{\omega} \neq \emptyset$.
- We say that P can destroy I if it can destroy its tallness, that is, P adds an H ∈ [ω]^ω such that
 p ⊩"|A ∩ H| < ω for every A ∈ I^V" for some p ∈ P.
- Why I^V?
- $\bullet\,$ The associated cardinal invariants of a tall ${\cal I}$ are
- $\begin{aligned} & \mathsf{non}([\omega]^{\omega}, \mathcal{I}) = \\ & \min \left\{ |\mathcal{X}| : \mathcal{X} \subseteq [\omega]^{\omega} \text{ and } \forall A \in \mathcal{I} \exists X \in \mathcal{X} |A \cap X| < \omega \right\}, \\ & \mathsf{cov}([\omega]^{\omega}, \mathcal{I}) = \\ & \min \left\{ |\mathcal{C}| : \mathcal{C} \subseteq \mathcal{I} \text{ and } \forall X \in [\omega]^{\omega} \exists A \in \mathcal{C} |X \cap A| = \omega \right\}. \end{aligned}$ • $\mathsf{cov}([\omega]^{\omega}, \mathcal{I}) > \omega.$

• The Cohen forcing C destroys

 $\mathbf{Nwd} = \big\{ \mathbf{A} \subseteq \mathbb{Q} : \mathbf{A} \text{ is nowhere dense} \big\}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Examples

• The Cohen forcing C destroys

 $\mathbf{Nwd} = \{ A \subseteq \mathbb{Q} : A \text{ is nowhere dense} \}.$

• The random forcing $\mathbb B$ destroys

$$\mathcal{I}_{1/n} = \left\{ A \subseteq \omega \setminus \{0\} : \sum_{n \in A} 1/n < \infty
ight\}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Examples

• The Cohen forcing $\mathbb C$ destroys

 $\mathbf{Nwd} = \big\{ A \subseteq \mathbb{Q} : A \text{ is nowhere dense} \big\}.$

• The random forcing $\mathbb B$ destroys

$$\mathcal{I}_{1/n} = \left\{ A \subseteq \omega \setminus \{0\} : \sum_{n \in A} 1/n < \infty
ight\}$$

but cannot destroy Nwd and

$$\mathcal{Z} = \big\{ \mathbf{A} \subseteq \omega \setminus \{\mathbf{0}\} : |\mathbf{A} \cap \mathbf{n}|/\mathbf{n} \to \mathbf{0} \big\};$$

and \mathbb{C} cannot destroy $\mathcal{I}_{1/n}$ and \mathcal{Z} .

(日) (日) (日) (日) (日) (日) (日)

Examples

• The Cohen forcing $\mathbb C$ destroys

 $\mathbf{Nwd} = \big\{ A \subseteq \mathbb{Q} : A \text{ is nowhere dense} \big\}.$

• The random forcing $\mathbb B$ destroys

$$\mathcal{I}_{1/n} = \left\{ A \subseteq \omega \setminus \{0\} : \sum_{n \in A} 1/n < \infty
ight\}$$

but cannot destroy Nwd and

$$\mathcal{Z} = \big\{ \mathbf{A} \subseteq \omega \setminus \{\mathbf{0}\} : |\mathbf{A} \cap \mathbf{n}|/\mathbf{n} \to \mathbf{0} \big\};$$

and \mathbb{C} cannot destroy $\mathcal{I}_{1/n}$ and \mathcal{Z} .

• \mathbb{P} destroys $\operatorname{Fin} \otimes \operatorname{Fin} = \{A \subseteq \omega \times \omega : \forall^{\infty} n \ ((A)_n \text{ is finite})\}$ iff \mathbb{P} adds a dominating real.

• The Cohen forcing $\mathbb C$ destroys

 $\mathbf{Nwd} = \big\{ \mathbf{A} \subseteq \mathbb{Q} : \mathbf{A} \text{ is nowhere dense} \big\}.$

• The random forcing $\mathbb B$ destroys

$$\mathcal{I}_{1/n} = \left\{ \mathsf{A} \subseteq \omega \setminus \{\mathsf{0}\} : \sum_{n \in \mathsf{A}} 1/n < \infty
ight\}$$

but cannot destroy Nwd and

$$\mathcal{Z} = \big\{ \mathbf{A} \subseteq \omega \setminus \{\mathbf{0}\} : |\mathbf{A} \cap \mathbf{n}|/\mathbf{n} \to \mathbf{0} \big\};$$

and \mathbb{C} cannot destroy $\mathcal{I}_{1/n}$ and \mathcal{Z} .

- \mathbb{P} destroys $\operatorname{Fin} \otimes \operatorname{Fin} = \{A \subseteq \omega \times \omega : \forall^{\infty} n \ ((A)_n \text{ is finite})\}$ iff \mathbb{P} adds a dominating real.
- If ℙ adds new reals, then it destroys Conv= id{C ⊆ ℚ : C is convergent in ℝ}.

(ロ) (同) (三) (三) (三) (○) (○)

The Hrušák-Zapletal characterization

Let *I* be a σ -ideal on ${}^{\omega}$ 2 (or on ${}^{\omega}\omega$), then the **trace** of *I*, an ideal on ${}^{<\omega}$ 2 (on ${}^{<\omega}\omega$ resp.), is defined as follows:

$$\operatorname{tr}(I) = \left\{ A \subseteq {}^{<\omega}2 : \underbrace{\{x \in {}^{\omega}2 : \exists^{\infty} n \ x \upharpoonright n \in A\}}_{=[A]_{\delta}, \text{ the } G_{\delta} \text{-closure of } A} \in I \right\}.$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

The Hrušák-Zapletal characterization

Let *I* be a σ -ideal on ${}^{\omega}2$ (or on ${}^{\omega}\omega$), then the **trace** of *I*, an ideal on ${}^{<\omega}2$ (on ${}^{<\omega}\omega$ resp.), is defined as follows:

$$\operatorname{tr}(I) = \left\{ A \subseteq {}^{<\omega}2 : \underbrace{\{x \in {}^{\omega}2 : \exists^{\infty} n \ x \upharpoonright n \in A\}}_{=[A]_{\delta}, \text{ the } G_{\delta} \text{-closure of } A} \in I \right\}.$$

Notice that $\mathbb{P}_{I} := \text{Borel}(^{\omega}2) \setminus I$ destroys $\operatorname{tr}(I)$. For example, $\operatorname{tr}(\mathcal{M}) \simeq \operatorname{Nwd}$; $\operatorname{tr}(\mathcal{N})$ is a tall Borel P-ideal, $\mathcal{I}_{1/n} \subseteq \operatorname{tr}(\mathcal{N}) \subseteq \mathcal{Z}$; and $\operatorname{tr}(\mathcal{K}_{\sigma})$ is a coanalytic ideal.

The Hrušák-Zapletal characterization

Let *I* be a σ -ideal on ${}^{\omega}$ 2 (or on ${}^{\omega}\omega$), then the **trace** of *I*, an ideal on ${}^{<\omega}$ 2 (on ${}^{<\omega}\omega$ resp.), is defined as follows:

$$\operatorname{tr}(I) = \left\{ A \subseteq {}^{<\omega}2 : \underbrace{\{x \in {}^{\omega}2 : \exists^{\infty} n \ x \upharpoonright n \in A\}}_{=[A]_{\delta}, \text{ the } G_{\delta} \text{-closure of } A} \in I \right\}.$$

Notice that $\mathbb{P}_{I} := \text{Borel}(^{\omega}2) \setminus I$ destroys $\operatorname{tr}(I)$. For example, $\operatorname{tr}(\mathcal{M}) \simeq \operatorname{Nwd}$; $\operatorname{tr}(\mathcal{N})$ is a tall Borel P-ideal, $\mathcal{I}_{1/n} \subseteq \operatorname{tr}(\mathcal{N}) \subseteq \mathcal{Z}$; and $\operatorname{tr}(\mathcal{K}_{\sigma})$ is a coanalytic ideal.

Theorem

Assume that \mathbb{P}_{l} is proper and l satisfies the continuous reading of names. Then \mathbb{P}_{l} can destroy an ideal S iff $S \leq_{\mathrm{K}} \mathrm{tr}(l) \upharpoonright X$ for some $X \in \mathrm{tr}(l)^{+}$, that is, there are an $X \in \mathrm{tr}(l)^{+}$ and an $f : X \to \omega$ such that $f^{-1}[A] \in \mathrm{tr}(l)$ for every $A \in S$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

How large can the destroying set be?

Mathias-Prikry and Laver-Prikry

 $(s, F) \in \mathbb{M}(\mathcal{I}^*)$ if $s \in [\omega]^{<\omega}$ and $F \in \mathcal{I}^*$; $(s_0, F_0) \le (s_1, F_1)$ if s_0 end-extends s_1 in F_1 (i.e. $s_0 \setminus s_1 \subseteq F_1$) and $F_0 \subseteq F_1$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

How large can the destroying set be?

Mathias-Prikry and Laver-Prikry

 $(s, F) \in \mathbb{M}(\mathcal{I}^*)$ if $s \in [\omega]^{<\omega}$ and $F \in \mathcal{I}^*$; $(s_0, F_0) \leq (s_1, F_1)$ if s_0 end-extends s_1 in F_1 (i.e. $s_0 \setminus s_1 \subseteq F_1$) and $F_0 \subseteq F_1$.

 $T \in \mathbb{L}(\mathcal{I}^*)$ if $T \subseteq {}^{<\omega}\omega$ is a tree such that $\{n : t^{\frown}(n) \in T\} \in \mathcal{I}^*$ for every $t \in T$ above stem(T); $T_0 \leq T_1$ if $T_0 \subseteq T_1$.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

How large can the destroying set be?

Mathias-Prikry and Laver-Prikry

 $(s, F) \in \mathbb{M}(\mathcal{I}^*)$ if $s \in [\omega]^{<\omega}$ and $F \in \mathcal{I}^*$; $(s_0, F_0) \le (s_1, F_1)$ if s_0 end-extends s_1 in F_1 (i.e. $s_0 \setminus s_1 \subseteq F_1$) and $F_0 \subseteq F_1$.

 $T \in \mathbb{L}(\mathcal{I}^*)$ if $T \subseteq {}^{<\omega}\omega$ is a tree such that $\{n : t^{\frown}(n) \in T\} \in \mathcal{I}^*$ for every $t \in T$ above stem(T); $T_0 \leq T_1$ if $T_0 \subseteq T_1$.

Both $\mathbb{M}(\mathcal{I}^*)$ and $\mathbb{L}(\mathcal{I}^*)$ are σ -centered and destroy \mathcal{I} .

How large can the destroying set be?

Mathias-Prikry and Laver-Prikry

$$(s, F) \in \mathbb{M}(\mathcal{I}^*)$$
 if $s \in [\omega]^{<\omega}$ and $F \in \mathcal{I}^*$; $(s_0, F_0) \le (s_1, F_1)$ if s_0
end-extends s_1 in F_1 (i.e. $s_0 \setminus s_1 \subseteq F_1$) and $F_0 \subseteq F_1$.

 $T \in \mathbb{L}(\mathcal{I}^*)$ if $T \subseteq {}^{<\omega}\omega$ is a tree such that $\{n : t^{\frown}(n) \in T\} \in \mathcal{I}^*$ for every $t \in T$ above stem(T); $T_0 \leq T_1$ if $T_0 \subseteq T_1$.

Both $\mathbb{M}(\mathcal{I}^*)$ and $\mathbb{L}(\mathcal{I}^*)$ are σ -centered and destroy \mathcal{I} .

Observation

The $\mathbb{M}(\mathcal{I}^*)$ -generic set is \mathcal{I} -positive for $\mathcal{I} = Nwd, \mathcal{I}_{1/n}, \mathcal{Z}$, and Conv, and it belongs to \mathcal{I} for $\mathcal{I} = Fin \otimes Fin$.

How large can the destroying set be?

Mathias-Prikry and Laver-Prikry

$$(s, F) \in \mathbb{M}(\mathcal{I}^*)$$
 if $s \in [\omega]^{<\omega}$ and $F \in \mathcal{I}^*$; $(s_0, F_0) \le (s_1, F_1)$ if s_0
end-extends s_1 in F_1 (i.e. $s_0 \setminus s_1 \subseteq F_1$) and $F_0 \subseteq F_1$.

 $T \in \mathbb{L}(\mathcal{I}^*)$ if $T \subseteq {}^{<\omega}\omega$ is a tree such that $\{n : t^{\frown}(n) \in T\} \in \mathcal{I}^*$ for every $t \in T$ above stem(T); $T_0 \leq T_1$ if $T_0 \subseteq T_1$.

Both $\mathbb{M}(\mathcal{I}^*)$ and $\mathbb{L}(\mathcal{I}^*)$ are σ -centered and destroy \mathcal{I} .

Observation

The $\mathbb{M}(\mathcal{I}^*)$ -generic set is \mathcal{I} -positive for $\mathcal{I} = \operatorname{Nwd}, \mathcal{I}_{1/n}, \mathcal{Z}$, and Conv, and it belongs to \mathcal{I} for $\mathcal{I} = \operatorname{Fin} \otimes \operatorname{Fin}$. Moreover, no forcing notion can add a $\operatorname{Fin} \otimes \operatorname{Fin}$ -positive set which has finite intersection with all $A \in \operatorname{Fin} \otimes \operatorname{Fin} \cap V$.

How large can the destroying set be?

Mathias-Prikry and Laver-Prikry

$$(s, F) \in \mathbb{M}(\mathcal{I}^*)$$
 if $s \in [\omega]^{<\omega}$ and $F \in \mathcal{I}^*$; $(s_0, F_0) \le (s_1, F_1)$ if s_0
end-extends s_1 in F_1 (i.e. $s_0 \setminus s_1 \subseteq F_1$) and $F_0 \subseteq F_1$.

 $T \in \mathbb{L}(\mathcal{I}^*)$ if $T \subseteq {}^{<\omega}\omega$ is a tree such that $\{n : t^{\frown}(n) \in T\} \in \mathcal{I}^*$ for every $t \in T$ above stem(T); $T_0 \leq T_1$ if $T_0 \subseteq T_1$.

Both $\mathbb{M}(\mathcal{I}^*)$ and $\mathbb{L}(\mathcal{I}^*)$ are σ -centered and destroy \mathcal{I} .

Observation

The $\mathbb{M}(\mathcal{I}^*)$ -generic set is \mathcal{I} -positive for $\mathcal{I} = \operatorname{Nwd}, \mathcal{I}_{1/n}, \mathcal{Z}$, and Conv, and it belongs to \mathcal{I} for $\mathcal{I} = \operatorname{Fin} \otimes \operatorname{Fin}$. Moreover, no forcing notion can add a $\operatorname{Fin} \otimes \operatorname{Fin}$ -positive set which has finite intersection with all $A \in \operatorname{Fin} \otimes \operatorname{Fin} \cap V$.

The $\mathbb{L}(\mathcal{I}^*)$ -generic is \mathcal{I} -positive for $\mathcal{I} = Nwd$, Conv, and it belongs to \mathcal{I} for $\mathcal{I} = \mathcal{I}_{1/n}, \mathcal{Z}$, Fin \otimes Fin.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

+-destroying ideals

Definition

We say that P can +-destroy the Borel ideal *I*, if P adds an *H* ∈ *I*⁺ such that

 $p \Vdash ||A \cap \dot{H}| < \omega$ for every $A \in \mathcal{I}^{V}$ for some $p \in \mathbb{P}$.

(日) (日) (日) (日) (日) (日) (日)

+-destroying ideals

Definition

- We say that P can +-destroy the Borel ideal *I*, if P adds an *H* ∈ *I*⁺ such that
 p ⊩"|*A* ∩ *H*| < ω for every *A* ∈ *I*^V" for some *p* ∈ P.
- The associated cardinal invariants are

 $\begin{aligned} \mathsf{non}(\mathcal{I}^+, \mathcal{I}) &= \\ \min \left\{ |\mathcal{P}| : \mathcal{P} \subseteq \mathcal{I}^+ \text{ and } \forall A \in \mathcal{I} \exists P \in \mathcal{P} |A \cap P| < \omega \right\}, \\ \mathsf{cov}(\mathcal{I}^+, \mathcal{I}) &= \\ \min \left\{ |\mathcal{C}| : \mathcal{C} \subseteq \mathcal{I} \text{ and } \forall P \in \mathcal{I}^+ \exists A \in \mathcal{C} |P \cap A| = \omega \right\}. \end{aligned}$

+-destroying ideals

Definition

- We say that P can +-destroy the Borel ideal I, if P adds an H ∈ I⁺ such that
 p ⊩"|A ∩ H| < ω for every A ∈ I^V" for some p ∈ P.
- The associated cardinal invariants are

$$\begin{aligned} \mathsf{non}(\mathcal{I}^+, \mathcal{I}) &= \\ \min\left\{ |\mathcal{P}| : \mathcal{P} \subseteq \mathcal{I}^+ \text{ and } \forall \ \mathbf{A} \in \mathcal{I} \ \exists \ \mathbf{P} \in \mathcal{P} \ |\mathbf{A} \cap \mathbf{P}| < \omega \right\}, \\ \mathsf{cov}(\mathcal{I}^+, \mathcal{I}) &= \\ \min\left\{ |\mathcal{C}| : \mathcal{C} \subseteq \mathcal{I} \text{ and } \forall \ \mathbf{P} \in \mathcal{I}^+ \ \exists \ \mathbf{A} \in \mathcal{C} \ |\mathbf{P} \cap \mathbf{A}| = \omega \right\}. \end{aligned}$$

Observation

• If \mathcal{I} can be +-destroyed then $cov(\mathcal{I}^+, \mathcal{I}) > \omega$.

+-destroying ideals

Definition

- We say that P can +-destroy the Borel ideal I, if P adds an H ∈ I⁺ such that
 p ⊩"|A ∩ H| < ω for every A ∈ I^V" for some p ∈ P.
- The associated cardinal invariants are

$$\begin{split} \mathsf{non}(\mathcal{I}^+, \mathcal{I}) &= \\ \min \left\{ |\mathcal{P}| : \mathcal{P} \subseteq \mathcal{I}^+ \text{ and } \forall \ \mathbf{A} \in \mathcal{I} \ \exists \ \mathbf{P} \in \mathcal{P} \ |\mathbf{A} \cap \mathbf{P}| < \omega \right\}, \\ \mathsf{cov}(\mathcal{I}^+, \mathcal{I}) &= \\ \min \left\{ |\mathcal{C}| : \mathcal{C} \subseteq \mathcal{I} \text{ and } \forall \ \mathbf{P} \in \mathcal{I}^+ \ \exists \ \mathbf{A} \in \mathcal{C} \ |\mathbf{P} \cap \mathbf{A}| = \omega \right\}. \end{split}$$

Observation

- If \mathcal{I} can be +-destroyed then $cov(\mathcal{I}^+, \mathcal{I}) > \omega$.
- $\mathsf{non}(\mathcal{I}^+, \mathcal{I}) \ge \mathsf{non}([\omega]^{\omega}, \mathcal{I}) \text{ and } \mathsf{cov}(\mathcal{I}^+, \mathcal{I}) \le \mathsf{cov}([\omega]^{\omega}, \mathcal{I}).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Examples

 $\operatorname{Conv} = \{ \boldsymbol{A} \subseteq \mathbb{Q} : |\boldsymbol{A}'| < \omega \}$

We know that $non([\omega]^{\omega}, Conv) = \omega$ and $cov([\omega]^{\omega}, Conv) = \mathfrak{c}$.

(1)
$$\operatorname{non}(\operatorname{Conv}^+, \operatorname{Conv}) = \omega$$
 and $\operatorname{cov}(\operatorname{Conv}^+, \operatorname{Conv}) = \mathfrak{c}$.

(2) If \mathbb{P} adds new reals then it +-destroys Conv.

 $Conv = \{ A \subseteq \mathbb{Q} : |A'| < \omega \}$

We know that $non([\omega]^{\omega}, Conv) = \omega$ and $cov([\omega]^{\omega}, Conv) = \mathfrak{c}$.

(1)
$$\operatorname{non}(\operatorname{Conv}^+, \operatorname{Conv}) = \omega$$
 and $\operatorname{cov}(\operatorname{Conv}^+, \operatorname{Conv}) = \mathfrak{c}$.

(2) If \mathbb{P} adds new reals then it +-destroys Conv.

Problem

Which Borel ideals are (+-)destroyed by adding any new reals?

 $Conv = \{ A \subseteq \mathbb{Q} : |A'| < \omega \}$

We know that $non([\omega]^{\omega}, Conv) = \omega$ and $cov([\omega]^{\omega}, Conv) = \mathfrak{c}$.

(1)
$$\operatorname{non}(\operatorname{Conv}^+, \operatorname{Conv}) = \omega$$
 and $\operatorname{cov}(\operatorname{Conv}^+, \operatorname{Conv}) = \mathfrak{c}$.

(2) If \mathbb{P} adds new reals then it +-destroys Conv.

Problem

Which Borel ideals are (+-)destroyed by adding any new reals?

$\mathcal{ED} = \{ \mathbf{A} \subseteq \omega \times \omega : \limsup_{n \in \omega} |(\mathbf{A})_n| < \infty \}$

We know that $\operatorname{non}([\omega]^{\omega}, \mathcal{ED}) = \omega$ and $\operatorname{cov}([\omega]^{\omega}, \mathcal{ED}) = \operatorname{non}(\mathcal{M})$. (1) $\operatorname{non}(\mathcal{ED}^+, \mathcal{ED}) = \operatorname{cov}(\mathcal{M})$ and $\operatorname{cov}(\mathcal{ED}^+, \mathcal{ED}) = \operatorname{non}(\mathcal{M})$. (2) \mathbb{P} +-destroys \mathcal{ED} iff \mathbb{P} destroys \mathcal{ED} iff \mathbb{P} adds an e.d. real.

 $\operatorname{Conv} = \{ \boldsymbol{A} \subseteq \mathbb{Q} : |\boldsymbol{A}'| < \omega \}$

We know that $non([\omega]^{\omega}, Conv) = \omega$ and $cov([\omega]^{\omega}, Conv) = \mathfrak{c}$.

(1)
$$\operatorname{non}(\operatorname{Conv}^+, \operatorname{Conv}) = \omega$$
 and $\operatorname{cov}(\operatorname{Conv}^+, \operatorname{Conv}) = \mathfrak{c}$.

(2) If \mathbb{P} adds new reals then it +-destroys Conv.

Problem

Which Borel ideals are (+-)destroyed by adding any new reals?

$\mathcal{ED} = \{ A \subseteq \omega \times \omega : \limsup_{n \in \omega} |(A)_n| < \infty \}$

We know that $\operatorname{non}([\omega]^{\omega}, \mathcal{ED}) = \omega$ and $\operatorname{cov}([\omega]^{\omega}, \mathcal{ED}) = \operatorname{non}(\mathcal{M})$.

- (1) $\operatorname{non}(\mathcal{ED}^+, \mathcal{ED}) = \operatorname{cov}(\mathcal{M})$ and $\operatorname{cov}(\mathcal{ED}^+, \mathcal{ED}) = \operatorname{non}(\mathcal{M})$.
- (2) \mathbb{P} +-destroys \mathcal{ED} iff \mathbb{P} destroys \mathcal{ED} iff \mathbb{P} adds an e.d. real.

Problem

Is it true that destroying an F_{σ} ideal implies +-destroying it?

$Nwd = \{A \subseteq \mathbb{Q} : int(\overline{A}) = \emptyset\}$

We know that non($[\omega]^{\omega}$, Nwd) = ω and cov($[\omega]^{\omega}$, Nwd) = cov(\mathcal{M}) (Balcar, Hernández-Hernández, Hrušák).

$Nwd = \{A \subseteq \mathbb{Q} : int(\overline{A}) = \emptyset\}$

We know that $non([\omega]^{\omega}, Nwd) = \omega$ and $cov([\omega]^{\omega}, Nwd) = cov(\mathcal{M})$ (Balcar, Hernández-Hernández, Hrušák).

(1) (Keremedis) non(Nwd⁺, Nwd) = ω and cov(Nwd⁺, Nwd) = add(\mathcal{M}).

$Nwd = \{ A \subseteq \mathbb{Q} : int(\overline{A}) = \emptyset \}$

We know that $non([\omega]^{\omega}, Nwd) = \omega$ and $cov([\omega]^{\omega}, Nwd) = cov(\mathcal{M})$ (Balcar, Hernández-Hernández, Hrušák).

- (1) (Keremedis) non(Nwd⁺, Nwd) = ω and cov(Nwd⁺, Nwd) = add(\mathcal{M}).
- (2a) If ℙ adds Cohen reals then it destroys Nwd. If ℙ +-destroys Nwd then it adds dominating and Cohen reals.

$\overline{\text{Nwd}} = \{A \subseteq \mathbb{Q} : \operatorname{int}(\overline{A}) = \emptyset\}$

We know that $non([\omega]^{\omega}, Nwd) = \omega$ and $cov([\omega]^{\omega}, Nwd) = cov(\mathcal{M})$ (Balcar, Hernández-Hernández, Hrušák).

- (1) (Keremedis) non(Nwd⁺, Nwd) = ω and cov(Nwd⁺, Nwd) = add(\mathcal{M}).
- (2a) If P adds Cohen reals then it destroys Nwd. If P +-destroys Nwd then it adds dominating and Cohen reals.
- (2b) If P adds a Cohen real and ⊩_P"Q adds a dominating real", then P * Q +-destroys Nwd.

$\overline{\text{Nwd}} = \{A \subseteq \mathbb{Q} : \operatorname{int}(\overline{A}) = \emptyset\}$

We know that $non([\omega]^{\omega}, Nwd) = \omega$ and $cov([\omega]^{\omega}, Nwd) = cov(\mathcal{M})$ (Balcar, Hernández-Hernández, Hrušák).

- (1) (Keremedis) non(Nwd⁺, Nwd) = ω and cov(Nwd⁺, Nwd) = add(\mathcal{M}).
- (2a) If P adds Cohen reals then it destroys Nwd. If P +-destroys Nwd then it adds dominating and Cohen reals.
- (2b) If P adds a Cohen real and ⊩_P"Q adds a dominating real", then P * Q +-destroys Nwd.
- (2c) If \mathbb{P} has the Laver property then \mathbb{P} cannot destroy Nwd and $\mathbb{P} * \mathbb{C}$ cannot +-destroy Nwd.

Covering properties

Reformulation

Let S be a Borel ideal and I a σ -ideal on a Polish space X such that \mathbb{P}_I is proper. Then the following holds:

 P_I cannot destroy S iff whenever (B_n)_{n∈ω} is an infinite-fold cover of an *I*-positive set by Borel sets, that is,

 $\{x \in X : \{n \in \omega : x \in B_n\} \text{ is infinite}\} \in I^+,$

then there is an $S \in S$ such that $(B_n)_{n \in S}$ is an infinite-fold cover of an *I*-positive set.

Covering properties

Reformulation

Let S be a Borel ideal and I a σ -ideal on a Polish space X such that \mathbb{P}_I is proper. Then the following holds:

 P_I cannot destroy S iff whenever (B_n)_{n∈ω} is an infinite-fold cover of an *I*-positive set by Borel sets, that is,

 $\{x \in X : \{n \in \omega : x \in B_n\} \text{ is infinite}\} \in I^+,$

then there is an $S \in S$ such that $(B_n)_{n \in S}$ is an infinite-fold cover of an *I*-positive set.

 P_I cannot +destroy S iff whenever (B_n)_{n∈ω} is an S⁺-fold cover of an *I*-positive set by Borel sets, that is,

 $\{x \in X : \{n \in \omega : x \in B_n\} \in S^+\} \in I^+,$

then there is an $S \in S$ such that $(B_n)_{n \in S}$ is an infinite-fold cover of an *I*-positive set.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

Forcing with $\mathbb{M}(\mathcal{I}^*)$ and $\mathbb{L}(\mathcal{I}^*)$

Theorem

Let \mathcal{I} be a tall Borel ideal. Then the following are equivalent: (a) The $\mathbb{M}(\mathcal{I}^*)$ -generic +-destroys \mathcal{I} . (b) $\mathbb{M}(\mathcal{I}^*)$ +-destroys \mathcal{I} . (c) \mathcal{I} can be +-destroyed. (d) $\text{cov}(\mathcal{I}^+, \mathcal{I}) > \omega$.

Forcing with $\mathbb{M}(\mathcal{I}^*)$ and $\mathbb{L}(\mathcal{I}^*)$

Theorem

Let \mathcal{I} be a tall Borel ideal. Then the following are equivalent: (a) The $\mathbb{M}(\mathcal{I}^*)$ -generic +-destroys \mathcal{I} . (b) $\mathbb{M}(\mathcal{I}^*)$ +-destroys \mathcal{I} . (c) \mathcal{I} can be +-destroyed. (d) $\text{cov}(\mathcal{I}^+, \mathcal{I}) > \omega$.

Theorem

Let \mathcal{I} be a tall Borel ideal. Then the following are equivalent: (a) The $\mathbb{L}(\mathcal{I}^*)$ -generic +-destroys \mathcal{I} . (b) $\operatorname{non}(\mathcal{I}^+, \mathcal{I}) = \omega$.

◆□▶ ◆□▶ ◆ □▶ ◆ □ ◆ ○ ◆ ○ ◆ ○ ◆

Forcing with $\mathbb{M}(\mathcal{I}^*)$ and $\mathbb{L}(\mathcal{I}^*)$

Theorem

Let \mathcal{I} be a tall Borel ideal. Then the following are equivalent: (a) The $\mathbb{M}(\mathcal{I}^*)$ -generic +-destroys \mathcal{I} . (b) $\mathbb{M}(\mathcal{I}^*)$ +-destroys \mathcal{I} . (c) \mathcal{I} can be +-destroyed. (d) $\text{cov}(\mathcal{I}^+, \mathcal{I}) > \omega$.

Theorem

Let \mathcal{I} be a tall Borel ideal. Then the following are equivalent: (a) The $\mathbb{L}(\mathcal{I}^*)$ -generic +-destroys \mathcal{I} . (b) $\operatorname{non}(\mathcal{I}^+, \mathcal{I}) = \omega$.

Proofs: Apply Laflamme's characterization of winning strategies in the games $G(\mathcal{I}^*, [\omega]^{<\omega}, \mathcal{I}^+)$ and $G(\mathcal{I}^*, \omega, \mathcal{I}^+)$.

Theorem

 $\mathbb{L}(\mathcal{Z}^*)$ cannot +-destroy \mathcal{Z} .

Theorem

$\mathbb{L}(\mathcal{Z}^*)$ cannot +-destroy \mathcal{Z} .

Proof: Let \dot{X} be a name for a \mathcal{Z} -positive set, $T_0 \in \mathbb{L}(\mathcal{Z}^*)$, and $\varepsilon > 0$ such that $T_0 \Vdash \limsup_{n \in \omega} |\dot{X} \cap [2^n, 2^{n+1})|/2^n > \varepsilon$. We show that there is an $A \in \mathcal{Z}$ such that $T_0 \Vdash |\dot{X} \cap A| = \omega$.

Theorem

$\mathbb{L}(\mathcal{Z}^*)$ cannot +-destroy \mathcal{Z} .

Proof: Let \dot{X} be a name for a \mathcal{Z} -positive set, $T_0 \in \mathbb{L}(\mathcal{Z}^*)$, and $\varepsilon > 0$ such that $T_0 \Vdash \limsup_{n \in \omega} |\dot{X} \cap [2^n, 2^{n+1})|/2^n > \varepsilon$. We show that there is an $A \in \mathcal{Z}$ such that $T_0 \Vdash |\dot{X} \cap A| = \omega$. There is a sequence $(\dot{F}_m)_{m \in \omega}$ s.t. $T_0 \Vdash \ddot{F}_m \subseteq \dot{X} \cap [2^n, 2^{n+1})$ and $|\dot{F}_m|/2^n > \varepsilon$ for some *n*, and $\max(\dot{F}_m) < \min(\dot{F}_{m+1})^n$.

Theorem

$\mathbb{L}(\mathcal{Z}^*)$ cannot +-destroy \mathcal{Z} .

Proof: Let \dot{X} be a name for a \mathcal{Z} -positive set, $T_0 \in \mathbb{L}(\mathcal{Z}^*)$, and $\varepsilon > 0$ such that $T_0 \Vdash \limsup_{n \in \omega} |\dot{X} \cap [2^n, 2^{n+1})|/2^n > \varepsilon$. We show that there is an $A \in \mathcal{Z}$ such that $T_0 \Vdash |\dot{X} \cap A| = \omega$. There is a sequence $(\dot{F}_m)_{m \in \omega}$ s.t. $T_0 \Vdash \ddot{F}_m \subseteq \dot{X} \cap [2^n, 2^{n+1})$ and $|\dot{F}_m|/2^n > \varepsilon$ for some *n*, and $\max(\dot{F}_m) < \min(\dot{F}_{m+1})^n$. An $s \in \text{Split}(T_0)$ favors $\dot{F}_m = E$ if

 $\forall T \leq T_0 (\text{stem}(T) = \mathbf{s} \longrightarrow \exists T' \leq T T' \Vdash \dot{F}_m = \mathbf{E}).$

Define ρ_m ($m \in \omega$) on Split(T_0): $\rho_m(s) = 0$ if there is an E_m^s such that *s* favors $\dot{F}_m = E_m^s$; and $\rho_m(s) = \alpha > 0$ if $\rho_m(s) \not< \alpha$ and $\{n : \rho_m(s^{\frown}(n)) < \alpha\} \in \mathcal{Z}^+$. Then dom(ρ_m) = Split(T_0) and (w.l.o.g.) $\rho_m(s) > 0$ for every $m \ge |s|$.

s favors $\dot{F}_m = E$: $\forall T \leq T_0 (\text{stem}(T) = s \longrightarrow T \nvDash \dot{F}_m \neq E)$. $\varrho_m(s) = 0$: $\exists E_m^s (s \text{ favors } \dot{F}_m = E_m^s)$; and $\varrho_m(s) = \alpha > 0$: $\varrho_m(s) \not< \alpha$ and $\{n : \varrho_m(s^{\frown}(n)) < \alpha\} \in \mathcal{Z}^+$.

s favors
$$\dot{F}_m = E$$
: $\forall T \leq T_0 \text{ (stem}(T) = s \longrightarrow T \nvDash \dot{F}_m \neq E \text{)}$.
 $\varrho_m(s) = 0$: $\exists E_m^s (s \text{ favors } \dot{F}_m = E_m^s);$
and $\varrho_m(s) = \alpha > 0$: $\varrho_m(s) \not< \alpha$ and $\{n : \varrho_m(s^\frown(n)) < \alpha\} \in \mathcal{Z}^+$.
If $\varrho_m(s) = 1$ then define
 $f_{m,s} : Y_{m,s} = \{n : \varrho_m(s^\frown(n)) = 0\} \rightarrow \bigcup_{n \in \omega} \{E \subseteq P_n : |E|/2^n > \varepsilon\},$
 $f_{m,s}(n) = E_m^{s^\frown n}$, i.e. $s^\frown(n)$ favors $\dot{F}_m = f_{m,s}(n)$ (and $Y_{m,s} \in \mathcal{Z}^+$).
There is an $A \in \mathcal{Z}$ s.t. $Y'_{m,s} = \{n \in Y_{m,s} : A \cap f_{m,s}(n) \neq \emptyset\} \in \mathcal{Z}^+$
whenever $\varrho_m(s) = 1$. We claim that $T_0 \Vdash |\dot{X} \cap A| = \omega$.

s favors $F_m = E$: $\forall T \leq T_0$ (stem $(T) = s \longrightarrow T \nvDash F_m \neq E$). $\rho_m(s) = 0$: $\exists E_m^s$ (s favors $F_m = E_m^s$); and $\rho_m(s) = \alpha > 0$: $\rho_m(s) \not < \alpha$ and $\{n : \rho_m(s^{\frown}(n)) < \alpha\} \in \mathbb{Z}^+$. If $\rho_m(s) = 1$ then define $f_{m.s}: \mathbf{Y}_{m.s} = \{ n: \varrho_m(s^{\frown}(n)) = 0 \} \rightarrow \bigcup_{n \in \omega} \{ E \subseteq P_n: |E|/2^n > \varepsilon \},\$ $f_{m,s}(n) = E_m^{s \frown n}$, i.e. $s \frown (n)$ favors $F_m = f_{m,s}(n)$ (and $Y_{m,s} \in \mathbb{Z}^+$). There is an $A \in \mathcal{Z}$ s.t. $Y'_{m,s} = \{n \in Y_{m,s} : A \cap f_{m,s}(n) \neq \emptyset\} \in \mathcal{Z}^+$ whenever $\rho_m(s) = 1$. We claim that $T_0 \Vdash |X \cap A| = \omega$. Let $T \leq T_0$, stem(T) = t, and $M \in \omega$. Fix an $m \geq M$, |t|, then $\rho_m(t) > 0$ and hence there is a $s \in T \cap t^{\uparrow}$ of *m*-rank 1, and so an $n \in Y'_{m,s}$ such that $s^{\frown}(n) \in T$.

s favors $F_m = E$: $\forall T \leq T_0$ (stem $(T) = s \longrightarrow T \nvDash F_m \neq E$). $\rho_m(s) = 0$: $\exists E_m^s (s \text{ favors } F_m = E_m^s);$ and $\varrho_m(s) = \alpha > 0$: $\varrho_m(s) \not < \alpha$ and $\{n : \varrho_m(s^{\frown}(n)) < \alpha\} \in \mathbb{Z}^+$. If $\rho_m(s) = 1$ then define $f_{m,s}: Y_{m,s} = \{ n : \varrho_m(s^{\frown}(n)) = 0 \} \rightarrow \bigcup_{n \in \omega} \{ E \subseteq P_n : |E|/2^n > \varepsilon \},\$ $f_{m,s}(n) = E_m^{s \frown n}$, i.e. $s \frown (n)$ favors $F_m = f_{m,s}(n)$ (and $Y_{m,s} \in \mathbb{Z}^+$). There is an $A \in \mathcal{Z}$ s.t. $Y'_{m,s} = \{n \in Y_{m,s} : A \cap f_{m,s}(n) \neq \emptyset\} \in \mathcal{Z}^+$ whenever $\rho_m(s) = 1$. We claim that $T_0 \Vdash |X \cap A| = \omega$. Let $T \leq T_0$, stem(T) = t, and $M \in \omega$. Fix an $m \geq M$, |t|, then $\rho_m(t) > 0$ and hence there is a $s \in T \cap t^{\uparrow}$ of *m*-rank 1, and so an $n \in Y'_{m,s}$ such that $s^{\frown}(n) \in T$. As $s^{\frown}(n)$ favors $F_m = f_{m,s}(n)$, there is a $T' \leq T \upharpoonright (s^{\frown}(n))$ which forces $F_m = f_{m,s}(n)$, and we know that $A \cap f_{m,s}(n) \neq \emptyset$ and of course $f_{m,s}(n) \subseteq \omega \setminus M$.

Thank you for your attention!

