Global Chang's Conjecture and singular cardinals

Monroe Eskew (joint with Yair Hayut)

Kurt Gödel Research Center University of Vienna

July 5, 2018

Theorem (Löwenheim-Skolem)

Let \mathfrak{A} be an infinite model in a countable first-order language. For every infinite cardinal $\kappa \leq |\mathfrak{A}|$, there is an elementary $\mathfrak{B} \prec \mathfrak{A}$ of size κ .

Theorem (Löwenheim-Skolem)

Let \mathfrak{A} be an infinite model in a countable first-order language. For every infinite cardinal $\kappa \leq |\mathfrak{A}|$, there is an elementary $\mathfrak{B} \prec \mathfrak{A}$ of size κ .

Generalizing this, $(\kappa_1, \kappa_0) \twoheadrightarrow (\mu_1, \mu_0)$ says that for every structure \mathfrak{A} on κ_1 in a countable language, there is a substructure \mathfrak{B} of size μ_1 such that $|\mathfrak{B} \cap \kappa_0| = \mu_0$.

Theorem (Löwenheim-Skolem)

Let \mathfrak{A} be an infinite model in a countable first-order language. For every infinite cardinal $\kappa \leq |\mathfrak{A}|$, there is an elementary $\mathfrak{B} \prec \mathfrak{A}$ of size κ .

Generalizing this, $(\kappa_1, \kappa_0) \twoheadrightarrow (\mu_1, \mu_0)$ says that for every structure \mathfrak{A} on κ_1 in a countable language, there is a substructure \mathfrak{B} of size μ_1 such that $|\mathfrak{B} \cap \kappa_0| = \mu_0$.

If $\kappa_1 = \kappa_0^+$ and $\mu_1 = \mu_0^+$, this is equivalent to an analogue of Löwenheim-Skolem for a logic between first and second order. This logic includes a quantifier Qx, where $Qx\varphi(x)$ is valid when the number of x's satisfying $\varphi(x)$ is equal to the size of the model.

Lemma

Suppose $\kappa, \lambda \leq \delta$ and $\kappa^{\lambda} \geq \delta$. Then there is a structure \mathfrak{A} on δ such that for every $\mathfrak{B} \prec \mathfrak{A}$,

$$|\mathfrak{B} \cap \kappa|^{|\mathfrak{B} \cap \lambda|} \ge |\mathfrak{B} \cap \delta|.$$

Corollary

If
$$(\kappa_1, \kappa_0) \twoheadrightarrow (\mu_1, \mu_0)$$
, $\nu \leq \kappa_0$, and $\kappa_0^{\nu} \geq \kappa_1$, then $\mu_0^{\min(\mu_0, \nu)} \geq \mu_1$.

Lemma

Suppose $\kappa, \lambda \leq \delta$ and $\kappa^{\lambda} \geq \delta$. Then there is a structure \mathfrak{A} on δ such that for every $\mathfrak{B} \prec \mathfrak{A}$,

$$|\mathfrak{B} \cap \kappa|^{|\mathfrak{B} \cap \lambda|} \ge |\mathfrak{B} \cap \delta|.$$

Corollary

If
$$(\kappa_1, \kappa_0) \twoheadrightarrow (\mu_1, \mu_0)$$
, $\nu \leq \kappa_0$, and $\kappa_0^{\nu} \geq \kappa_1$, then $\mu_0^{\min(\mu_0, \nu)} \geq \mu_1$.

Global Chang's Conjecture

For all infinite cardinals $\mu < \kappa$ with $cf(\mu) \leq cf(\kappa)$, $(\kappa^+, \kappa) \twoheadrightarrow (\mu^+, \mu)$.

Theorem (E.-Hayut)

It is consistent relative to a huge cardinal that $(\kappa^+, \kappa) \twoheadrightarrow (\mu^+, \mu)$ holds whenever $\omega \leq \mu < \kappa$ and κ is regular.

Theorem (E.-Hayut)

It is consistent relative to a huge cardinal that $(\kappa^+, \kappa) \twoheadrightarrow (\mu^+, \mu)$ holds whenever $\omega \leq \mu < \kappa$ and κ is regular.

Theorem (E.-Hayut)

It is consistent relative to a huge cardinal that $(\aleph_{\omega+1}, \aleph_{\omega}) \twoheadrightarrow (\aleph_1, \aleph_0)$ while for all $n < m < \omega$, $(\aleph_{m+1}, \aleph_m) \twoheadrightarrow (\aleph_{n+1}, \aleph_n)$.

It turns out that this was optimal; it is the longest initial segment of cardinals on which GCC can hold.

We say $(\kappa_1, \kappa_0) \twoheadrightarrow_{\nu} (\mu_1, \mu_0)$ holds when for all \mathfrak{A} on κ_1 , there is $\mathfrak{B} \prec \mathfrak{A}$ of size μ_1 with $|\mathfrak{B} \cap \kappa_0| = \mu_0$, and $\nu \subseteq \mathfrak{B}$. This is preserved under ν^+ -c.c. forcing.

We say $(\kappa_1, \kappa_0) \twoheadrightarrow_{\nu} (\mu_1, \mu_0)$ holds when for all \mathfrak{A} on κ_1 , there is $\mathfrak{B} \prec \mathfrak{A}$ of size μ_1 with $|\mathfrak{B} \cap \kappa_0| = \mu_0$, and $\nu \subseteq \mathfrak{B}$. This is preserved under ν^+ -c.c. forcing.

Lemma

Suppose
$$(\kappa_1, \kappa_0) \xrightarrow{\rightarrow}_{\nu} (\mu_1, \mu_0)$$
.
If $\kappa_0 = \mu_0^{+\nu}$, then $(\kappa_1, \kappa_0) \xrightarrow{\rightarrow}_{\mu_0} (\mu_1, \mu_0)$.
If $\lambda \leq \mu_0$ and there is $\kappa \leq \kappa_0$ such that $\kappa_0 = \kappa^{+\nu}$ and $\kappa^{\lambda} \leq \kappa_0$, then $(\kappa_1, \kappa_0) \xrightarrow{\rightarrow}_{\lambda} (\mu_1, \mu_0)$.

Lemma

Suppose
$$\mu^{<\nu} = \mu$$
, and $(\kappa^+, \kappa) \twoheadrightarrow (\mu^+, \mu)$. Then $(\kappa^+, \kappa) \twoheadrightarrow_{\nu} (\mu^+, \mu)$.

Scales

If κ is a singular cardinal, and $\langle \kappa_i : i < cf(\kappa) \rangle$ is an increasing sequence of regular carindals cofinal in κ , $\langle f_{\alpha} : \alpha < \lambda \rangle \subseteq \prod_{i < cf(\kappa)} \kappa_i$ is a *scale* for κ if it is increasing and dominating in the product (mod bounded). Shelah proved that singular κ always carry scales of length κ^+ .

Scales

If κ is a singular cardinal, and $\langle \kappa_i : i < cf(\kappa) \rangle$ is an increasing sequence of regular carindals cofinal in κ , $\langle f_{\alpha} : \alpha < \lambda \rangle \subseteq \prod_{i < cf(\kappa)} \kappa_i$ is a *scale* for κ if it is increasing and dominating in the product (mod bounded). Shelah proved that singular κ always carry scales of length κ^+ .

A scale $\langle f_{\alpha} : \alpha < \kappa^+ \rangle$ is good at α when there is a pointwise increasing sequence $\langle g_i : i < cf(\alpha) \rangle$ such that this sequence and $\langle f_{\beta} : \beta < \alpha \rangle$ are cofinal in each other. A scale is *bad at* α when it is not good at α .

A scale is simply called *good* if it is good at every α such that $cf(\alpha) > cf(\kappa)$.

Scales

If κ is a singular cardinal, and $\langle \kappa_i : i < cf(\kappa) \rangle$ is an increasing sequence of regular carindals cofinal in κ , $\langle f_{\alpha} : \alpha < \lambda \rangle \subseteq \prod_{i < cf(\kappa)} \kappa_i$ is a *scale* for κ if it is increasing and dominating in the product (mod bounded). Shelah proved that singular κ always carry scales of length κ^+ .

A scale $\langle f_{\alpha} : \alpha < \kappa^+ \rangle$ is good at α when there is a pointwise increasing sequence $\langle g_i : i < cf(\alpha) \rangle$ such that this sequence and $\langle f_{\beta} : \beta < \alpha \rangle$ are cofinal in each other. A scale is *bad at* α when it is not good at α .

A scale is simply called *good* if it is good at every α such that $cf(\alpha) > cf(\kappa)$.

Lemma (Folklore)

If κ is singular and $(\kappa^+, \kappa) \twoheadrightarrow_{cf(\kappa)} (\mu^+, \mu)$ and $\mu \ge cf(\kappa)$, then there is no good scale for κ . Moreover, every scale $\langle f_{\alpha} : \alpha < \kappa^+ \rangle$ for κ is bad at stationarily many α of cofinality μ^+ .

Conflict at singulars

Lemma (E.-Hayut)

Suppose κ is singular and $(\kappa^{++}, \kappa^{+}) \rightarrow (\kappa^{+}, \kappa)$. Then κ carries a good scale.

Lemma (E.-Hayut)

Suppose κ is singular and $(\kappa^{++}, \kappa^{+}) \twoheadrightarrow (\kappa^{+}, \kappa)$. Then κ carries a good scale.

We use a few known results. First due to Shelah: If $\mu < \kappa$ are regular, $S_{\mu}^{\kappa^+}$ is the union of κ sets each carrying a partial square.

Corollary

If κ is regular, then there is a sequence $\langle C_{\alpha} : \alpha < \kappa^+, cf(\alpha) < \kappa \rangle$ forming a "partial weak square."

Lemma (E.-Hayut)

Suppose κ is singular and $(\kappa^{++}, \kappa^{+}) \twoheadrightarrow (\kappa^{+}, \kappa)$. Then κ carries a good scale.

We use a few known results. First due to Shelah: If $\mu < \kappa$ are regular, $S_{\mu}^{\kappa^+}$ is the union of κ sets each carrying a partial square.

Corollary

If κ is regular, then there is a sequence $\langle C_{\alpha} : \alpha < \kappa^+, cf(\alpha) < \kappa \rangle$ forming a "partial weak square."

Lemma (Foreman-Magidor)

For all κ , there is a structure \mathfrak{A} on κ^{++} such that any $\mathfrak{B} \prec \mathfrak{A}$ witnessing $(\kappa^{++}, \kappa^{+}) \twoheadrightarrow_{\kappa} (\kappa^{+}, \kappa)$ has $cf(\mathfrak{B} \cap \kappa^{+}) = cf(\kappa)$.

We use Chang's Conjecture to transfer the partial weak square on κ^{++} to one on κ^{+} that is defined at every ordinal of cofinality $> cf(\kappa)$.

We use Chang's Conjecture to transfer the partial weak square on κ^{++} to one on κ^{+} that is defined at every ordinal of cofinality $> cf(\kappa)$.

How? If $\mathfrak{B} \prec (H_{\kappa^{+2}}, \in, \langle \mathcal{C}_{\alpha} : \alpha < \kappa^{++} \rangle)$ witnesses CC, then:

• ot
$$(\mathfrak{B} \cap \kappa^{++}) = \kappa^+$$
.

$$|\mathcal{C}_{\alpha} \cap \mathfrak{B}| \leq \kappa \text{ for all } \alpha \in \mathfrak{B} \cap \kappa^{++}.$$

$$C \cap \mathfrak{B} = C \text{ for any } C \in \mathcal{C}_{\alpha} \in \mathfrak{B}.$$

• $\mathfrak{B} \cap \alpha$ is cofinal in α iff $cf(\alpha) \neq \kappa^+$.

We use Chang's Conjecture to transfer the partial weak square on κ^{++} to one on κ^{+} that is defined at every ordinal of cofinality $> cf(\kappa)$.

How? If $\mathfrak{B} \prec (H_{\kappa^{+2}}, \in, \langle \mathcal{C}_{\alpha} : \alpha < \kappa^{++} \rangle)$ witnesses CC, then:

• ot
$$(\mathfrak{B} \cap \kappa^{++}) = \kappa^+$$
.

$$|\mathcal{C}_{\alpha} \cap \mathfrak{B}| \leq \kappa \text{ for all } \alpha \in \mathfrak{B} \cap \kappa^{++}.$$

$$\ \, {\mathfrak S} \, C \cap {\mathfrak B} = C \ \text{for any} \ C \in {\mathcal C}_\alpha \in {\mathfrak B}.$$

• $\mathfrak{B} \cap \alpha$ is cofinal in α iff $cf(\alpha) \neq \kappa^+$.

This is enough to carry out the well-known construction of a good scale from weak square.

Singular Global Chang's Conjecture

For all infinite $\mu < \kappa$ of the same cofinality, $(\kappa^+, \kappa) \twoheadrightarrow (\mu^+, \mu)$.

Singular Global Chang's Conjecture

For all infinite $\mu < \kappa$ of the same cofinality, $(\kappa^+, \kappa) \twoheadrightarrow (\mu^+, \mu)$.

Theorem (E.-Hayut)

It is consistent relative to large cardinals that the Singular GCC holds below $\aleph_{\omega^\omega}.$

Singular Global Chang's Conjecture

For all infinite $\mu < \kappa$ of the same cofinality, $(\kappa^+, \kappa) \twoheadrightarrow (\mu^+, \mu)$.

Theorem (E.-Hayut)

It is consistent relative to large cardinals that the Singular GCC holds below $\aleph_{\omega^{\omega}}$.

Theorem (E.-Hayut)

Assume GCH. Suppose $\alpha < \beta$ are countable limit ordinals and κ is $\kappa^{+\beta+1}$ -supercompact. Then there is a forcing extension in which $(\aleph_{\beta+1}, \aleph_{\beta}) \twoheadrightarrow (\aleph_{\alpha+1}, \aleph_{\alpha}).$

The proof of the second consistency result breaks into cases depending on the "tail types" α and β . For ordinals $\alpha \ge \beta$, let $\alpha - \beta$ be the unique γ such that $\alpha = \beta + \gamma$. For an ordinal α , let $\tau(\alpha)$ (the tail of α) be $\min_{\beta < \alpha} (\alpha - \beta)$. Let $\iota(\alpha)$ be the least β such that $\alpha = \beta + \tau(\alpha)$. An ordinal α is indecomposable iff $\alpha = \tau(\alpha)$, and all tails are indecomposable.

The proof of the second consistency result breaks into cases depending on the "tail types" α and β . For ordinals $\alpha \ge \beta$, let $\alpha - \beta$ be the unique γ such that $\alpha = \beta + \gamma$. For an ordinal α , let $\tau(\alpha)$ (the tail of α) be $\min_{\beta < \alpha} (\alpha - \beta)$. Let $\iota(\alpha)$ be the least β such that $\alpha = \beta + \tau(\alpha)$. An ordinal α is indecomposable iff $\alpha = \tau(\alpha)$, and all tails are indecomposable.

Lemma

Let $\eta < \kappa$ be such that $\kappa^{+\eta}$ is a strong limit cardinal and κ is $\kappa^{+\eta+1}$ -supercompact, as witnessed by an embedding $j: V \to M$. If \mathcal{U} is the ultrafilter on κ derived from j, then there is $A \in \mathcal{U}$ such that for every $\alpha < \beta$ in $A \cup \{\kappa\}$ and every iteration $\mathbb{P} * \dot{\mathbb{Q}}$ of size $< \beta^{+\eta}$, such that \mathbb{P} is $\alpha^{+\eta+1}$ -Knaster and $\Vdash_{\mathbb{P}} \dot{\mathbb{Q}}$ is $(\alpha^{+\eta+1}, \alpha^{+\eta+1})$ -distributive,

$$\Vdash_{\mathbb{P}\ast\dot{\mathbb{Q}}}(\beta^{+\eta+1},\beta^{+\eta})\twoheadrightarrow_{\alpha^{+\eta}}(\alpha^{+\eta+1},\alpha^{+\eta}).$$

<u>Case 1</u>: $\tau(\alpha) = \tau(\beta) = \gamma$, or $\alpha = 0$. Let $A \subseteq \kappa$ be given by the lemma (with respect to γ). Let $\delta = \iota(\beta) - \alpha$. Let $\zeta < \eta$ be in A, and force with $\operatorname{Col}(\zeta^{+\gamma+\delta+2}, \eta)$.

By the lemma we have $(\eta^{+\gamma+1}, \eta^{+\gamma}) \twoheadrightarrow_{\zeta^{+\gamma}} (\zeta^{+\gamma+1}, \zeta^{+\gamma})$. Next, If $\alpha = 0$, force with $Col(\omega, \zeta^{+\gamma})$, and if $\alpha > 0$, force with $Col(\aleph_{\iota(\alpha)+1}, \zeta)$.

<u>Case 1</u>: $\tau(\alpha) = \tau(\beta) = \gamma$, or $\alpha = 0$. Let $A \subseteq \kappa$ be given by the lemma (with respect to γ). Let $\delta = \iota(\beta) - \alpha$. Let $\zeta < \eta$ be in A, and force with $\operatorname{Col}(\zeta^{+\gamma+\delta+2}, \eta)$.

By the lemma we have $(\eta^{+\gamma+1}, \eta^{+\gamma}) \twoheadrightarrow_{\zeta^{+\gamma}} (\zeta^{+\gamma+1}, \zeta^{+\gamma})$. Next, If $\alpha = 0$, force with $Col(\omega, \zeta^{+\gamma})$, and if $\alpha > 0$, force with $Col(\aleph_{\iota(\alpha)+1}, \zeta)$.

For the other cases, we will use a variation on the Gitik-Sharon forcing. Suppose $\gamma < \delta$ are ordinals of countable cofinality, with $\tau(\delta) > \gamma$, and κ is $\kappa^{+\gamma}$ -supercompact. The forcing we call $\mathbb{P}(\mu^{+\delta}, \kappa^{+\gamma})$ is (μ, μ) -distributive, turns κ into $\mu^{+\delta}$, collapses all cardinals in the interval $(\kappa, \kappa^{+\gamma}]$, and have the $\kappa^{+\gamma+1}$ -c.c. <u>Case 1</u>: $\tau(\alpha) = \tau(\beta) = \gamma$, or $\alpha = 0$. Let $A \subseteq \kappa$ be given by the lemma (with respect to γ). Let $\delta = \iota(\beta) - \alpha$. Let $\zeta < \eta$ be in A, and force with $\operatorname{Col}(\zeta^{+\gamma+\delta+2}, \eta)$.

By the lemma we have $(\eta^{+\gamma+1}, \eta^{+\gamma}) \twoheadrightarrow_{\zeta^{+\gamma}} (\zeta^{+\gamma+1}, \zeta^{+\gamma})$. Next, If $\alpha = 0$, force with $Col(\omega, \zeta^{+\gamma})$, and if $\alpha > 0$, force with $Col(\aleph_{\iota(\alpha)+1}, \zeta)$.

For the other cases, we will use a variation on the Gitik-Sharon forcing. Suppose $\gamma < \delta$ are ordinals of countable cofinality, with $\tau(\delta) > \gamma$, and κ is $\kappa^{+\gamma}$ -supercompact. The forcing we call $\mathbb{P}(\mu^{+\delta}, \kappa^{+\gamma})$ is (μ, μ) -distributive, turns κ into $\mu^{+\delta}$, collapses all cardinals in the interval $(\kappa, \kappa^{+\gamma}]$, and have the $\kappa^{+\gamma+1}$ -c.c.

Let $\langle \gamma_i : i < \omega \rangle$ and $\langle \delta_i : i < \omega \rangle$ be increasing cofinal sequences in γ and δ respectively, with $\gamma < \delta_0$. Since $\tau(\delta) > \gamma$, we may assume that for all i, $\delta_i + \gamma < \delta_{i+1}$. Let $\delta'_0 = \delta_0$ and for each i > 0, let $\delta'_{i+1} = \delta_{i+1} - \delta_i$.

For each $n < \omega$, let U_n be a normal measure on $\mathcal{P}_{\kappa}(\kappa^{+\gamma_n})$. For each n, let $j_n : V \to M_n \cong \text{Ult}(V, U_n)$ be the ultrapower embedding. By the closure of the ultrapowers and GCH, we may choose an M_n -generic $G_n \subseteq \text{Col}(\kappa^{\delta'_n+2}, j_n(\kappa))^{M_n}$. Conditions in the forcing are sequences $\langle f_0, x_1, f_1, \dots, x_{n-1}, f_{n-1}, F_n, F_{n+1}, \dots \rangle$,

For each $n < \omega$, let U_n be a normal measure on $\mathcal{P}_{\kappa}(\kappa^{+\gamma_n})$. For each n, let $j_n : V \to M_n \cong \text{Ult}(V, U_n)$ be the ultrapower embedding. By the closure of the ultrapowers and GCH, we may choose an M_n -generic $G_n \subseteq \text{Col}(\kappa^{\delta'_n+2}, j_n(\kappa))^{M_n}$. Conditions in the forcing are sequences $\langle f_0, \chi_1, f_1, \ldots, \chi_{n-1}, f_{n-1}, F_n, F_{n+1}, \ldots \rangle$,

For each $n < \omega$, let U_n be a normal measure on $\mathcal{P}_{\kappa}(\kappa^{+\gamma_n})$. For each n, let $j_n : V \to M_n \cong \text{Ult}(V, U_n)$ be the ultrapower embedding. By the closure of the ultrapowers and GCH, we may choose an M_n -generic $G_n \subseteq \text{Col}(\kappa^{\delta'_n+2}, j_n(\kappa))^{M_n}$. Conditions in the forcing are sequences $\langle f_0, \chi_1, f_1, \ldots, \chi_{n-1}, f_{n-1}, F_n, F_{n+1}, \ldots \rangle$,

For each $n < \omega$, let U_n be a normal measure on $\mathcal{P}_{\kappa}(\kappa^{+\gamma_n})$. For each n, let $j_n : V \to M_n \cong \text{Ult}(V, U_n)$ be the ultrapower embedding. By the closure of the ultrapowers and GCH, we may choose an M_n -generic $G_n \subseteq \text{Col}(\kappa^{\delta'_n+2}, j_n(\kappa))^{M_n}$. Conditions in the forcing are sequences $\langle f_0, x_1, f_1, \ldots, x_{n-1}, f_{n-1}, F_n, F_{n+1}, \ldots \rangle$,

<u>Case 2</u>: $\tau(\alpha) > \tau(\beta) = \gamma$. Again, we have $\iota(\beta) \ge \alpha$, so let $\delta = \iota(\beta) - \alpha$. Let $A \subseteq \kappa$ be given by the lemma (with respect to γ). Find $\nu < \mu$ in A such that ν is $\nu^{+\gamma}$ -supercompact. Let $G \subseteq \operatorname{Col}(\nu^{+\gamma+\delta+2}, \mu)$ be generic over V. In V[G], $(\mu^{+\gamma+1}, \mu^{+\gamma}) \twoheadrightarrow_{\nu^{+\gamma}} (\nu^{+\gamma+1}, \nu^{+\gamma})$ holds, and ν is still $\nu^{+\gamma}$ -supercompact.

Then let $H \subseteq \mathbb{P}(\omega^{+\alpha}, \nu^{+\gamma})$ be generic over V[G]. In V[G][H], CC is preserved, $\nu = \aleph_{\alpha}$ and $\mu^{+\gamma} = \aleph_{\alpha+\delta+\gamma} = \aleph_{\beta}$.

<u>Case 3</u>: $0 < \tau(\alpha) = \gamma < \tau(\beta)$. Let $\delta = \beta - \iota(\alpha)$. Let $A \subseteq \kappa$ be given by the lemma. Force with $\mathbb{P}((\aleph_{\iota(\alpha)+1})^{+\delta}, \kappa^{+\gamma})$. Let p_0 be a condition of length 1 deciding some $\lambda \in A$ to be the first Prikry point. Let $p_1 \leq^* p_0$ decide the statement $\sigma := "(\kappa^+, \kappa) \twoheadrightarrow (\lambda^{+\gamma+1}, \lambda^{+\gamma})$." We claim that $p_1 \Vdash \sigma$. It is forced that $\lambda^{+\gamma} = \aleph_{\alpha}$ and $\kappa = \aleph_{\iota(\alpha)+\delta} = \aleph_{\beta}$. <u>Case 3</u>: $0 < \tau(\alpha) = \gamma < \tau(\beta)$. Let $\delta = \beta - \iota(\alpha)$. Let $A \subseteq \kappa$ be given by the lemma. Force with $\mathbb{P}((\aleph_{\iota(\alpha)+1})^{+\delta}, \kappa^{+\gamma})$. Let p_0 be a condition of length 1 deciding some $\lambda \in A$ to be the first Prikry point. Let $p_1 \leq^* p_0$ decide the statement $\sigma := "(\kappa^+, \kappa) \twoheadrightarrow (\lambda^{+\gamma+1}, \lambda^{+\gamma})$." We claim that $p_1 \Vdash \sigma$. It is forced that $\lambda^{+\gamma} = \aleph_{\alpha}$ and $\kappa = \aleph_{\iota(\alpha)+\delta} = \aleph_{\beta}$.

Let $\langle U_n : n < \omega \rangle$ and $\langle G_n : n < \omega \rangle$ be the sequences of normal ultrafilters and generic filters over ultrapowers used in the construction of $\mathbb{P} = \mathbb{P}((\aleph_{\iota(\alpha)+1})^{+\delta}, \kappa^{+\gamma})$. Let us define an iteration of ultrapowers.

Let $N_0 = V$. Given a commuting system of elementary embeddings $j_{m,m'}: N_m \to N_{m'}$ for $m \le m' \le n$, let $j_{n,n+1}: N_n \to \text{Ult}(N_n, j_{0,n}(U_{n+1})) = N_{n+1}$ be the ultrapower embedding, and let $j_{m,n+1} = j_{n,n+1} \circ j_{m,n}$ for m < n. For each $n < \omega$, let $j_{n,\omega}: N_n \to N_{\omega}$ be the direct limit embedding. N_{ω} is well-founded.

Let stem $(p_1) = \langle f_0 x_1, f_1 \rangle$, and let $C_0 \times C_1 \subseteq \text{Col}(\aleph_{\alpha+1}, \lambda) \times \text{Col}(\lambda^{+\delta_0+2}, \kappa)$ be generic over V containing (f_0, f_1) . Let $y_1 = j_{0,\omega}(x_1)$. For n > 1, let $x_n = j_{n-1,n}[j_{0,n-1}(\kappa^{+\gamma_n})]$, and let $y_n = j_{n,\omega}(x_n)$. Let $C_n = j_{0,n-1}(G_n)$.

Let stem $(p_1) = \langle f_0 x_1, f_1 \rangle$, and let $C_0 \times C_1 \subseteq \text{Col}(\aleph_{\alpha+1}, \lambda) \times \text{Col}(\lambda^{+\delta_0+2}, \kappa)$ be generic over V containing (f_0, f_1) . Let $y_1 = j_{0,\omega}(x_1)$. For n > 1, let $x_n = j_{n-1,n}[j_{0,n-1}(\kappa^{+\gamma_n})]$, and let $y_n = j_{n,\omega}(x_n)$. Let $C_n = j_{0,n-1}(G_n)$.

Claim 1: $\langle C_0, y_1, C_1, y_2, C_2, \ldots \rangle$ generates a generic for $j_{0,\omega}(\mathbb{P})$ over N_{ω} .

Let stem $(p_1) = \langle f_0 x_1, f_1 \rangle$, and let $C_0 \times C_1 \subseteq \text{Col}(\aleph_{\alpha+1}, \lambda) \times \text{Col}(\lambda^{+\delta_0+2}, \kappa)$ be generic over V containing (f_0, f_1) . Let $y_1 = j_{0,\omega}(x_1)$. For n > 1, let $x_n = j_{n-1,n}[j_{0,n-1}(\kappa^{+\gamma_n})]$, and let $y_n = j_{n,\omega}(x_n)$. Let $C_n = j_{0,n-1}(G_n)$. **Claim 1:** $\langle C_0, y_1, C_1, y_2, C_2, \ldots \rangle$ generates a generic for $j_{0,\omega}(\mathbb{P})$ over N_{ω} .

Claim 2: Let G be the generated filter for $j_{0,\omega}(\mathbb{P})$. Then $N_{\omega}[G]$ is closed under κ -sequences from $V[C_0][C_1]$.

Let stem $(p_1) = \langle f_0 x_1, f_1 \rangle$, and let $C_0 \times C_1 \subseteq \text{Col}(\aleph_{\alpha+1}, \lambda) \times \text{Col}(\lambda^{+\delta_0+2}, \kappa)$ be generic over V containing (f_0, f_1) . Let $y_1 = j_{0,\omega}(x_1)$. For n > 1, let $x_n = j_{n-1,n}[j_{0,n-1}(\kappa^{+\gamma_n})]$, and let $y_n = j_{n,\omega}(x_n)$. Let $C_n = j_{0,n-1}(G_n)$.

Claim 1: $\langle C_0, y_1, C_1, y_2, C_2, \ldots \rangle$ generates a generic for $j_{0,\omega}(\mathbb{P})$ over N_{ω} .

Claim 2: Let G be the generated filter for $j_{0,\omega}(\mathbb{P})$. Then $N_{\omega}[G]$ is closed under κ -sequences from $V[C_0][C_1]$.

By GCH and some counting arguments, $j_{0,\omega}(\kappa) = \kappa^{+\gamma}$ and $j_{0,\omega}(\kappa^{+\gamma+1}) = \kappa^{+\gamma+1}$.

Let stem $(p_1) = \langle f_0 x_1, f_1 \rangle$, and let $C_0 \times C_1 \subseteq \text{Col}(\aleph_{\alpha+1}, \lambda) \times \text{Col}(\lambda^{+\delta_0+2}, \kappa)$ be generic over V containing (f_0, f_1) . Let $y_1 = j_{0,\omega}(x_1)$. For n > 1, let $x_n = j_{n-1,n}[j_{0,n-1}(\kappa^{+\gamma_n})]$, and let $y_n = j_{n,\omega}(x_n)$. Let $C_n = j_{0,n-1}(G_n)$.

Claim 1: $\langle C_0, y_1, C_1, y_2, C_2, \ldots \rangle$ generates a generic for $j_{0,\omega}(\mathbb{P})$ over N_{ω} .

Claim 2: Let G be the generated filter for $j_{0,\omega}(\mathbb{P})$. Then $N_{\omega}[G]$ is closed under κ -sequences from $V[C_0][C_1]$.

By GCH and some counting arguments, $j_{0,\omega}(\kappa) = \kappa^{+\gamma}$ and $j_{0,\omega}(\kappa^{+\gamma+1}) = \kappa^{+\gamma+1}$.

By the lemma, $V[C_0][C_1] \models (\kappa^{+\gamma+1}, \kappa^{+\gamma}) \twoheadrightarrow (\lambda^{+\gamma+1}, \lambda^{+\gamma})$. Let $\mathfrak{A} \in N_{\omega}[G]$ be an algebra on $\kappa^{+\gamma+1} = (j_{0,\omega}(\kappa)^+)^{N_{\omega}[G]}$. In $V[C_0][C_1]$, there is $\mathfrak{B} \prec \mathfrak{A}$ of size $\lambda^{+\gamma+1}$ such that $|\mathfrak{B} \cap \kappa^{+\gamma}| = \lambda^{+\gamma}$. By the closure of $N_{\omega}[G], \mathfrak{B} \in N_{\omega}[G]$.

Let stem $(p_1) = \langle f_0 x_1, f_1 \rangle$, and let $C_0 \times C_1 \subseteq \text{Col}(\aleph_{\alpha+1}, \lambda) \times \text{Col}(\lambda^{+\delta_0+2}, \kappa)$ be generic over V containing (f_0, f_1) . Let $y_1 = j_{0,\omega}(x_1)$. For n > 1, let $x_n = j_{n-1,n}[j_{0,n-1}(\kappa^{+\gamma_n})]$, and let $y_n = j_{n,\omega}(x_n)$. Let $C_n = j_{0,n-1}(G_n)$.

Claim 1: $\langle C_0, y_1, C_1, y_2, C_2, \ldots \rangle$ generates a generic for $j_{0,\omega}(\mathbb{P})$ over N_{ω} .

Claim 2: Let G be the generated filter for $j_{0,\omega}(\mathbb{P})$. Then $N_{\omega}[G]$ is closed under κ -sequences from $V[C_0][C_1]$.

By GCH and some counting arguments, $j_{0,\omega}(\kappa) = \kappa^{+\gamma}$ and $j_{0,\omega}(\kappa^{+\gamma+1}) = \kappa^{+\gamma+1}$.

By the lemma, $V[C_0][C_1] \models (\kappa^{+\gamma+1}, \kappa^{+\gamma}) \twoheadrightarrow (\lambda^{+\gamma+1}, \lambda^{+\gamma})$. Let $\mathfrak{A} \in N_{\omega}[G]$ be an algebra on $\kappa^{+\gamma+1} = (j_{0,\omega}(\kappa)^+)^{N_{\omega}[G]}$. In $V[C_0][C_1]$, there is $\mathfrak{B} \prec \mathfrak{A}$ of size $\lambda^{+\gamma+1}$ such that $|\mathfrak{B} \cap \kappa^{+\gamma}| = \lambda^{+\gamma}$. By the closure of $N_{\omega}[G], \mathfrak{B} \in N_{\omega}[G]$.

By elementarity, p_1 forces $(\kappa^+, \kappa) \twoheadrightarrow (\lambda^{+\gamma+1}, \lambda^{+\gamma})$.

Singular GCC below $\aleph_{\omega^{\omega}}$

A cardinal δ is called *Woodin for supercompactness* when for every $A \subseteq \delta$ there is $\kappa < \delta$ such that for all $\lambda \in (\kappa, \delta)$, there is a normal κ -complete ultrafilter U on $\mathcal{P}_{\kappa}(\lambda)$ such that $j_U(A) \cap \lambda = A \cap \lambda$.

Like Woodin cardinals, Woodin for supercompactness cardinals need not be even weakly compact, but they have higher consistency strength than supercompact cardinals. Every almost-huge cardinal is Woodin for supercompactness.

Singular GCC below $\aleph_{\omega^{\omega}}$

A cardinal δ is called *Woodin for supercompactness* when for every $A \subseteq \delta$ there is $\kappa < \delta$ such that for all $\lambda \in (\kappa, \delta)$, there is a normal κ -complete ultrafilter U on $\mathcal{P}_{\kappa}(\lambda)$ such that $j_U(A) \cap \lambda = A \cap \lambda$.

Like Woodin cardinals, Woodin for supercompactness cardinals need not be even weakly compact, but they have higher consistency strength than supercompact cardinals. Every almost-huge cardinal is Woodin for supercompactness.

Lemma

Suppose GCH and δ is $\delta^{+\omega+1}$ -supercompact and Woodin for supercompactness. Then there is a model in which GCH holds, there is a supercompact cardinal κ , and there is some some ordinal $\alpha_0 < \kappa$ such that for all $\beta > \alpha \ge \alpha_0$, $(\beta^{+\omega+1}, \beta^{+\omega}) \twoheadrightarrow (\alpha^{+\omega+1}, \alpha^{+\omega})$. Furthermore, such instances of Chang's Conjecture are preserved by forcing over this model with any $(\alpha^{+\omega+1}, \alpha^{+\omega+1})$ -distributive forcing of size $< \beta^{+\omega}$.

- Starting from a model as above, we introduce a Radinized version of Gitik-Sharon forcing, which adds a club of ordertype ω^{ω} of former large cardinals, using a $(+\omega^2)$ -supercompactness measure. We go as far as we can with "converting ordinal addition into ordinal multiplication."
- We define some classes of forcings inductively. GS₁ is the collection of forcings of the form $\mathbb{P}(\mu^{+\omega^2}, \kappa^{+\omega})$.

• There is a $\kappa > \omega$ such that $\operatorname{crit}(\langle U_{\alpha}, K_{\alpha} : \alpha < \omega \cdot n \rangle) = \kappa$.

• There is a $\kappa > \omega$ such that $\operatorname{crit}(\langle U_{\alpha}, K_{\alpha} : \alpha < \omega \cdot n \rangle) = \kappa$.

2 For $\omega \leq \alpha < \omega \cdot n$, U_{α} is a normal ultrafilter on $\mathcal{P}_{\kappa}(H_{\kappa^{+\alpha+1}})$.

- There is a $\kappa > \omega$ such that $\operatorname{crit}(\langle U_{\alpha}, K_{\alpha} : \alpha < \omega \cdot n \rangle) = \kappa$.
- **2** For $\omega \leq \alpha < \omega \cdot n$, U_{α} is a normal ultrafilter on $\mathcal{P}_{\kappa}(H_{\kappa^{+\alpha+1}})$.
- For $1 \le m \le n$, $\omega \cdot (m-1) \le \alpha < \omega \cdot m$, if $j_{\alpha} : V \to M_{\alpha}$ is the ultrapower embedding from U_{α} , then K_{α} is $\operatorname{Col}(\kappa^{+\omega \cdot m+2}, j_{\alpha}(\kappa))^{M_{\alpha}}$ -generic over M_{α} .

- There is a $\kappa > \omega$ such that $\operatorname{crit}(\langle U_{\alpha}, K_{\alpha} : \alpha < \omega \cdot n \rangle) = \kappa$.
- **2** For $\omega \leq \alpha < \omega \cdot n$, U_{α} is a normal ultrafilter on $\mathcal{P}_{\kappa}(H_{\kappa^{+\alpha+1}})$.
- For $1 \le m \le n$, $\omega \cdot (m-1) \le \alpha < \omega \cdot m$, if $j_{\alpha} : V \to M_{\alpha}$ is the ultrapower embedding from U_{α} , then K_{α} is $\operatorname{Col}(\kappa^{+\omega \cdot m+2}, j_{\alpha}(\kappa))^{M_{\alpha}}$ -generic over M_{α} .

Suppose n > 1, we have defined GS_m for m < n, and we have functions $\phi_m : H_\theta \to \{\emptyset\} \cup GS_m$, where $\phi_m(\mu, d) \neq \emptyset$ only if μ is regular and d is an appropriate sequence of filters of length $\omega \cdot m$.

Conditions take the form:

$$p = \langle f_0, e_1, (x_1, d_1, a_1), f_1, \ldots, e_\ell, (x_\ell, d_\ell, a_\ell), f_\ell, \vec{F} \rangle.$$

F is a sequence of functions (F_α : α < ω · n) such that for each α, dom F_α ∈ U_α and [F_α]_{U_α} ∈ K_α.

Singular GCC below $\aleph_{\omega^{\omega}}$

Finally, we define GS_{ω} by diagonally weaving together the GS_n . This gets what we want. For the argument, we iterate ultrapowers ω^n many times, for each *n*.

Singular GCC below $leph_{\omega^\omega}$

Finally, we define GS_{ω} by diagonally weaving together the GS_n . This gets what we want. For the argument, we iterate ultrapowers ω^n many times, for each *n*.

Why do we run out of steam at ω^{ω} ?

We need a model with a supercompact and lots of long intervals of cardinals on which SGCC holds. But the longest we can get these is ω² (containing ω many singulars).

Singular GCC below $\aleph_{\omega^{\omega}}$

Finally, we define GS_{ω} by diagonally weaving together the GS_n . This gets what we want. For the argument, we iterate ultrapowers ω^n many times, for each *n*.

Why do we run out of steam at ω^{ω} ?

- We need a model with a supercompact and lots of long intervals of cardinals on which SGCC holds. But the longest we can get these is ω² (containing ω many singulars).
- When we choose points x_i in the supercompact Prikry sequence, we must use collapses that have closure above the support of the ultrafilter U_i. We keep increasing the supports of the ultrafilters, both to collapsing some singular above, and to choose some lower-order GS forcing to put in between. So eventually we exhaust the intervals where SGCC holds in the prep model.

Singular GCC below $\aleph_{\omega^{\omega}}$

Finally, we define GS_{ω} by diagonally weaving together the GS_n . This gets what we want. For the argument, we iterate ultrapowers ω^n many times, for each *n*.

Why do we run out of steam at ω^{ω} ?

- We need a model with a supercompact and lots of long intervals of cardinals on which SGCC holds. But the longest we can get these is ω² (containing ω many singulars).
- When we choose points x_i in the supercompact Prikry sequence, we must use collapses that have closure above the support of the ultrafilter U_i. We keep increasing the supports of the ultrafilters, both to collapsing some singular above, and to choose some lower-order GS forcing to put in between. So eventually we exhaust the intervals where SGCC holds in the prep model.
- **③** Or perhaps it is due to some mystical property of ω^{ω} . After all...

Question

Is it consistent that SGCC holds everywhere below \aleph_{ω_1} ?

Question

Is it consistent that SGCC holds everywhere below \aleph_{ω_1} ?

Thank you for your attention!