Set theory today A conference in honor of Georg Cantor

Omer Ben Neria · Jörg Brendle · David Chodounsky · James Cummings · Mirna Dzamonja · Oswaldo Guzman · Radek Honzik · Yurii Khomskii · Paul Larson · Diego Mejia · Julien Melleray · Heike Mildenberger · Luca Motto Ros · Grigor Sargsyan · Asger Törnquist · Todor Tsankov · Matteo Viale · Jindrich Zapletal

https://sites.google.com/view/set-theorytoday/startseite

ESTC2019 Advanced Class

Advanced Class - last week of June 2019, Vienna

6 Tutorials, four one hour lecture by Justin Moore, Jörg Brendle, Slawomir Solecki, Alexander Kechris, Hugh Woodin and Matteo Viale.

6-9 Thematic Discussion Sessions

ESTC2019 - first week of July 2019, Vienna

Invited speakers include Moti Gitik, Maryanthe Malliaris, Mirna Dzamonja, Boaz Tsaban, Piotr Koszmider, Justin Moore, Joerg Brendle, Slawomir Solecki, Alexander Kechris and Matteo Viale.

Ladder system uniformization on trees

Dániel T. Soukup

http://www.logic.univie.ac.at/~soukupd73/

Supported in part by FWF Grant I1921, OTKA 113047.

D. T. Soukup (KGRC)

Uniformization on trees

SETTOP 2018, Novi Sad

A ladder system on ω_1 is $\mathbf{C} = (C_{\alpha})_{\alpha \in \lim \omega_1}$ so that C_{α} is a cofinal subset of α in order type ω . A colouring of \mathbf{C} is $\mathbf{f} = (f_{\alpha})_{\alpha \in \lim \omega_1}$ so that $f_{\alpha} : C_{\alpha} \to \omega$.

An ω_1 -uniformization of f is a map $\varphi : \omega_1 \to \omega$ so that for any $\alpha \in \lim(\omega_1), \ \varphi(\xi) = f_{\alpha}(\xi)$ for almost all $\xi \in C_{\alpha}$. Possible restrictions: only 2-colourings, or each f_{α} is constant (monochromatic colouring).

D. T. Soukup (KGRC)

Uniformization on trees

SETTOP 2018, Novi Sad

A ladder system on ω_1 is $\mathbf{C} = (C_{\alpha})_{\alpha \in \lim \omega_1}$ so that C_{α} is a cofinal subset of α in order type ω . A colouring of \mathbf{C} is $\mathbf{f} = (f_{\alpha})_{\alpha \in \lim \omega_1}$ so that $f_{\alpha} : C_{\alpha} \to \omega$.

An ω_1 -uniformization of f is a map $\varphi : \omega_1 \to \omega$ so that for any $\alpha \in \lim(\omega_1), \ \varphi(\xi) = f_{\alpha}(\xi)$ for almost all $\xi \in C_{\alpha}$. Possible restrictions: only 2-colourings, or each f_{α} is constant (monochromatic colouring).

D. T. Soukup (KGRC)

Uniformization on trees

SETTOP 2018, Novi Sad

A ladder system on ω_1 is $C = (C_\alpha)_{\alpha \in \lim \omega_1}$ so that C_α is a cofinal subset of α in order type ω . A colouring of C is $f = (f_\alpha)_{\alpha \in \lim \omega_1}$ so that $f_\alpha : C_\alpha \to \omega$.

 ω_1

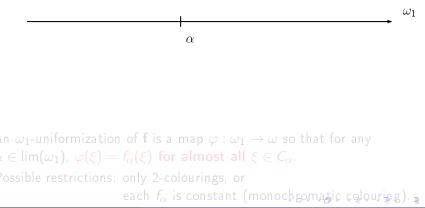
An ω_1 -uniformization of **f** is a map $\varphi : \omega_1 \to \omega$ so that for any $\alpha \in \lim(\omega_1), \ \varphi(\xi) = f_{\alpha}(\xi)$ for almost all $\xi \in C_{\alpha}$. Possible restrictions: only 2-colourings, or each f_{α} is constant (monochromatic colouring).

D. T. Soukup (KGRC)

Uniformization on trees

SETTOP 2018, Novi Sad

A ladder system on ω_1 is $C = (C_\alpha)_{\alpha \in \lim \omega_1}$ so that C_α is a cofinal subset of α in order type ω . A colouring of C is $f = (f_\alpha)_{\alpha \in \lim \omega_1}$ so that $f_\alpha : C_\alpha \to \omega$.

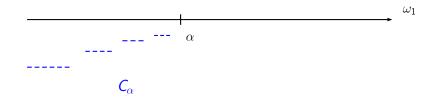


D. T. Soukup (KGRC)

Uniformization on trees

SETTOP 2018, Novi Sad

A ladder system on ω_1 is $\mathbf{C} = (C_\alpha)_{\alpha \in \lim \omega_1}$ so that C_α is a cofinal subset of α in order type ω . A colouring of \mathbf{C} is $\mathbf{f} = (f_\alpha)_{\alpha \in \lim \omega_1}$ so that $f_\alpha : C_\alpha \to \omega$.

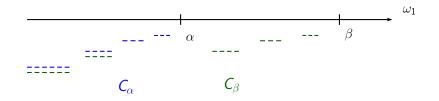


An ω_1 -uniformization of **f** is a map $\varphi : \omega_1 \to \omega$ so that for any $\alpha \in \lim(\omega_1), \ \varphi(\xi) = f_{\alpha}(\xi)$ **for almost all** $\xi \in C_{\alpha}$. Possible restrictions: only 2-colourings, or each f_{α} is constant (monochromatic colouring).

D. T. Soukup (KGRC)

Uniformization on trees

A ladder system on ω_1 is $C = (C_\alpha)_{\alpha \in \lim \omega_1}$ so that C_α is a cofinal subset of α in order type ω . A colouring of C is $f = (f_\alpha)_{\alpha \in \lim \omega_1}$ so that $f_\alpha : C_\alpha \to \omega$.

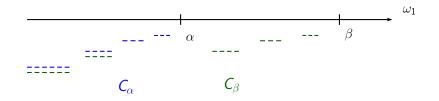


An ω_1 -uniformization of **f** is a map $\varphi : \omega_1 \to \omega$ so that for any $\alpha \in \lim(\omega_1), \ \varphi(\xi) = f_{\alpha}(\xi)$ **for almost all** $\xi \in C_{\alpha}$. Possible restrictions: only 2-colourings, or each f_{α} is constant (monochromatic colouring).

D. T. Soukup (KGRC)

Uniformization on trees

A ladder system on ω_1 is $\mathbf{C} = (C_\alpha)_{\alpha \in \lim \omega_1}$ so that C_α is a cofinal subset of α in order type ω . A colouring of \mathbf{C} is $\mathbf{f} = (f_\alpha)_{\alpha \in \lim \omega_1}$ so that $f_\alpha : C_\alpha \to \omega$.

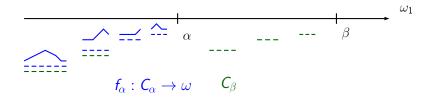


An ω_1 -uniformization of **f** is a map $\varphi : \omega_1 \to \omega$ so that for any $\alpha \in \lim(\omega_1), \ \varphi(\xi) = f_{\alpha}(\xi)$ for almost all $\xi \in C_{\alpha}$. Possible restrictions: only 2-colourings, or each f_{α} is constant (monochromatic colouring).

D. T. Soukup (KGRC)

Uniformization on trees

A ladder system on ω_1 is $\mathbf{C} = (C_\alpha)_{\alpha \in \lim \omega_1}$ so that C_α is a cofinal subset of α in order type ω . A colouring of \mathbf{C} is $\mathbf{f} = (f_\alpha)_{\alpha \in \lim \omega_1}$ so that $f_\alpha : C_\alpha \to \omega$.



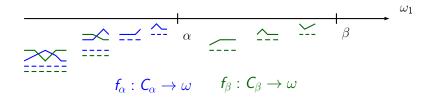
An ω_1 -uniformization of **f** is a map $\varphi : \omega_1 \to \omega$ so that for any $\alpha \in \lim(\omega_1), \ \varphi(\xi) = f_{\alpha}(\xi)$ for almost all $\xi \in C_{\alpha}$. Possible restrictions: only 2-colourings, or each f_{α} is constant (monochromatic colouring)

D. T. Soukup (KGRC)

Uniformization on trees

SETTOP 2018, Novi Sad

A ladder system on ω_1 is $\mathbf{C} = (C_\alpha)_{\alpha \in \lim \omega_1}$ so that C_α is a cofinal subset of α in order type ω . A colouring of \mathbf{C} is $\mathbf{f} = (f_\alpha)_{\alpha \in \lim \omega_1}$ so that $f_\alpha : C_\alpha \to \omega$.



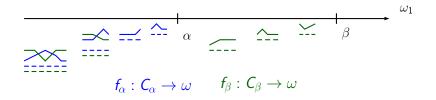
An ω_1 -uniformization of **f** is a map $\varphi : \omega_1 \to \omega$ so that for any $\alpha \in \lim(\omega_1), \ \varphi(\xi) = f_{\alpha}(\xi)$ for almost all $\xi \in C_{\alpha}$. Possible restrictions: only 2-colourings, or each f_{α} is constant (monochromatic colouring).

D. T. Soukup (KGRC)

Uniformization on trees

SETTOP 2018, Novi Sad

A ladder system on ω_1 is $\mathbf{C} = (C_\alpha)_{\alpha \in \lim \omega_1}$ so that C_α is a cofinal subset of α in order type ω . A colouring of \mathbf{C} is $\mathbf{f} = (f_\alpha)_{\alpha \in \lim \omega_1}$ so that $f_\alpha : C_\alpha \to \omega$.



An ω_1 -uniformization of **f** is a map $\varphi : \omega_1 \to \omega$ so that for any $\alpha \in \lim(\omega_1), \ \varphi(\xi) = f_{\alpha}(\xi)$ for almost all $\xi \in C_{\alpha}$.

Possible restrictions: only 2-colourings, or

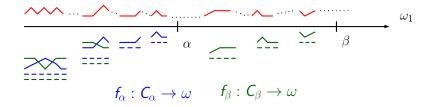
each f_{α} is constant (monochromatic colouring). $= -\infty_{\alpha}$

D. T. Soukup (KGRC)

Uniformization on trees

A ladder system on ω_1 is $\mathbf{C} = (C_\alpha)_{\alpha \in \lim \omega_1}$ so that C_α is a cofinal subset of α in order type ω . A colouring of \mathbf{C} is $\mathbf{f} = (f_\alpha)_{\alpha \in \lim \omega_1}$ so that $f_\alpha : C_\alpha \to \omega$.

$$arphi:\omega_1
ightarrow\omega$$



An ω_1 -uniformization of **f** is a map $\varphi : \omega_1 \to \omega$ so that for any $\alpha \in \lim(\omega_1), \ \varphi(\xi) = f_{\alpha}(\xi)$ for almost all $\xi \in C_{\alpha}$.

Possible restrictions: only 2-colourings, or

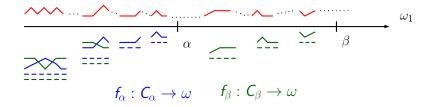
each f_{α} is constant (monochromatic colouring). $= -\infty$

D. T. Soukup (KGRC)

Uniformization on trees

A ladder system on ω_1 is $\mathbf{C} = (C_\alpha)_{\alpha \in \lim \omega_1}$ so that C_α is a cofinal subset of α in order type ω . A colouring of \mathbf{C} is $\mathbf{f} = (f_\alpha)_{\alpha \in \lim \omega_1}$ so that $f_\alpha : C_\alpha \to \omega$.

$$arphi:\omega_1
ightarrow\omega$$



An ω_1 -uniformization of **f** is a map $\varphi : \omega_1 \to \omega$ so that for any $\alpha \in \lim(\omega_1), \ \varphi(\xi) = f_{\alpha}(\xi)$ for almost all $\xi \in C_{\alpha}$. Possible restrictions: only 2-colourings, or each f_{α} is constant (monochromatic colouring).

D. T. Soukup (KGRC)

Uniformization on trees

 MA_{\aleph_1} implies that any ladder system colouring has an ω_1 -uniformization.

 $2^{\aleph_0} < 2^{\aleph_1}$ implies that any ladder system has a monochromatic 2-colouring without ω_1 -uniformization.

The motivation to study these objects come from the Whitehead-and related algebraic problems, various topological questions (e.g. normal Moore-space conjecture), the study of **forcing axioms that allow CH**.

 MA_{\aleph_1} implies that any ladder system colouring has an ω_1 -uniformization.

 $2^{\aleph_0} < 2^{\aleph_1}$ implies that any ladder system has a monochromatic 2-colouring without ω_1 -uniformization.

Devlin, Shelah 1978

The motivation to study these objects come from the Whitehead-and related algebraic problems, various topological questions (e.g. normal Moore-space conjecture), the study of **forcing axioms that allow CH**.

 MA_{\aleph_1} implies that any ladder system colouring has an ω_1 -uniformization.

 $2^{\aleph_0} < 2^{\aleph_1}$ implies that any ladder system has a monochromatic 2-colouring without ω_1 -uniformization.

Devlin, Shelah 1978

The motivation to study these objects come from the Whitehead-and related algebraic problems, various topological questions (e.g. normal Moore-space conjecture), the study of **forcing axioms that allow CH**.

 MA_{\aleph_1} implies that any ladder system colouring has an $\omega_1\text{-uniformization}$.

 $2^{\aleph_0} < 2^{\aleph_1}$ implies that any ladder system has a monochromatic 2-colouring without ω_1 -uniformization.

Devlin, Shelah 1978

The motivation to study these objects come from the Whitehead-and related algebraic problems, various topological questions (e.g. normal Moore-space conjecture), the study of forcing axioms that allow CH.

- ω_1 itself is a tree of height ω_1 ;
- Aronszajn-trees: all the levels and chains are countable;
- Suslin-trees: all the antichains and chains are countable;
- ∂Q, the set of all well ordered t ⊂ Q which have a maximum with the initial segment relation;
 - its levels have size continuum, but chains are countable;
 - special: the union of countably many antichains.

We say $S \subseteq T$ is a subtree if S is downward closed and pruned.

- ω_1 itself is a tree of height ω_1 ;
- Aronszajn-trees: all the levels and chains are countable;
- Suslin-trees: all the antichains and chains are countable;
- ∂Q, the set of all well ordered t ⊂ Q which have a maximum with the initial segment relation;
 - its levels have size continuum, but chains are countable;
 - special: the union of countably many antichains.

We say $S \subseteq T$ is a subtree if S is downward closed and pruned.

- ω_1 itself is a tree of height ω_1 ;
- Aronszajn-trees: all the levels and chains are countable;
- Suslin-trees: all the antichains and chains are countable;
- ∂Q, the set of all well ordered t ⊂ Q which have a maximum with the initial segment relation;
 - its levels have size continuum, but chains are countable;
 - special: the union of countably many antichains.

We say $S \subseteq T$ is a subtree if S is downward closed and pruned.

- ω_1 itself is a tree of height ω_1 ;
- Aronszajn-trees: all the levels and chains are countable;
- Suslin-trees: all the antichains and chains are countable;
- ∂Q, the set of all well ordered t ⊂ Q which have a maximum with the initial segment relation;
 - its levels have size continuum, but chains are countable;
 - special: the union of countably many antichains.

We say $S \subseteq T$ is a subtree if S is downward closed and pruned.

- ω_1 itself is a tree of height ω_1 ;
- Aronszajn-trees: all the levels and chains are countable;
- Suslin-trees: all the antichains and chains are countable;
- ∂Q, the set of all well ordered t ⊂ Q which have a maximum with the initial segment relation;
 - its levels have size continuum, but chains are countable;
 - special: the union of countably many antichains.

We say $S \subseteq T$ is a subtree if S is downward closed and pruned.

- ω_1 itself is a tree of height ω_1 ;
- Aronszajn-trees: all the levels and chains are countable;
- Suslin-trees: all the antichains and chains are countable;
- *σ*Q, the set of all well ordered t ⊂ Q which have a maximum with the initial segment relation;
 - its levels have size continuum, but chains are countable;
 - special: the union of countably many antichains.

We say $S \subseteq T$ is a subtree if S is downward closed and pruned.

- ω_1 itself is a tree of height ω_1 ;
- Aronszajn-trees: all the levels and chains are countable;
- Suslin-trees: all the antichains and chains are countable;
- *σ*Q, the set of all well ordered t ⊂ Q which have a maximum with the initial segment relation;
 - its levels have size continuum, but chains are countable;
 - special: the union of countably many antichains.

We say $S \subseteq T$ is a subtree if S is downward closed and pruned.

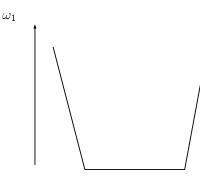
- ω_1 itself is a tree of height ω_1 ;
- Aronszajn-trees: all the levels and chains are countable;
- Suslin-trees: all the antichains and chains are countable;
- *σ*Q, the set of all well ordered t ⊂ Q which have a maximum with the initial segment relation;
 - its levels have size continuum, but chains are countable;
 - special: the union of countably many antichains.

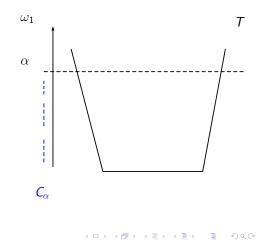
We say $S \subseteq T$ is a subtree if S is downward closed and pruned.

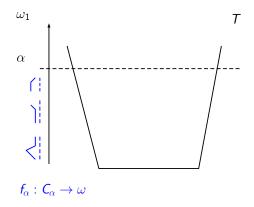
- ω_1 itself is a tree of height ω_1 ;
- Aronszajn-trees: all the levels and chains are countable;
- Suslin-trees: all the antichains and chains are countable;
- *σ*Q, the set of all well ordered t ⊂ Q which have a maximum with the initial segment relation;
 - its levels have size continuum, but chains are countable;
 - special: the union of countably many antichains.

We say $S \subseteq T$ is a subtree if S is downward closed and pruned.

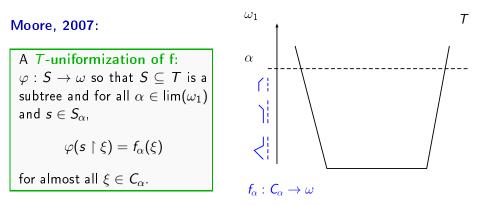
Suppose that **C** is a ladder system on ω_1 with a colouring **f**. Let T be a tree of height \aleph_1 .







Suppose that **C** is a ladder system on ω_1 with a colouring **f**. Let T be a tree of height \aleph_1 .

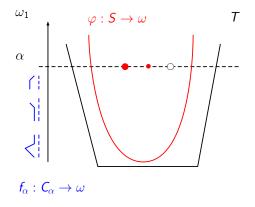


Suppose that **C** is a ladder system on ω_1 with a colouring **f**. Let T be a tree of height \aleph_1 .

Moore, 2007:

A *T*-uniformization of f: $\varphi: S \to \omega$ so that $S \subseteq T$ is a subtree and for all $\alpha \in \lim(\omega_1)$ and $s \in S_{\alpha}$, $\varphi(s \upharpoonright \xi) = f_{\alpha}(\xi)$

for almost all $\xi \in C_{\alpha}$.

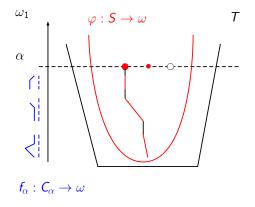


Suppose that **C** is a ladder system on ω_1 with a colouring **f**. Let T be a tree of height \aleph_1 .

Moore, 2007:

A *T*-uniformization of f: $\varphi: S \to \omega$ so that $S \subseteq T$ is a subtree and for all $\alpha \in \lim(\omega_1)$ and $s \in S_{\alpha}$, $\varphi(s \upharpoonright \xi) = f_{\alpha}(\xi)$

for almost all $\xi \in C_{\alpha}$.

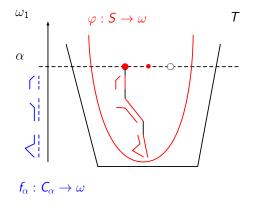


Suppose that **C** is a ladder system on ω_1 with a colouring **f**. Let T be a tree of height \aleph_1 .

Moore, 2007:

A *T*-uniformization of f: $\varphi: S \to \omega$ so that $S \subseteq T$ is a subtree and for all $\alpha \in \lim(\omega_1)$ and $s \in S_{\alpha}$, $\varphi(s \upharpoonright \xi) = f_{\alpha}(\xi)$

for almost all $\xi \in C_{\alpha}$.

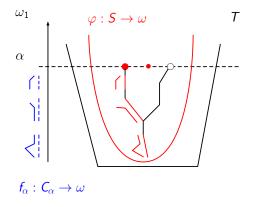


Suppose that **C** is a ladder system on ω_1 with a colouring **f**. Let T be a tree of height \aleph_1 .

Moore, 2007:

A *T*-uniformization of f: $\varphi: S \to \omega$ so that $S \subseteq T$ is a subtree and for all $\alpha \in \lim(\omega_1)$ and $s \in S_{\alpha}$, $\varphi(s \upharpoonright \xi) = f_{\alpha}(\xi)$

for almost all $\xi \in C_{\alpha}$.

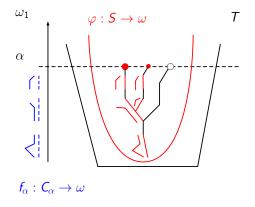


Suppose that **C** is a ladder system on ω_1 with a colouring **f**. Let T be a tree of height \aleph_1 .

Moore, 2007:

A *T*-uniformization of f: $\varphi: S \to \omega$ so that $S \subseteq T$ is a subtree and for all $\alpha \in \lim(\omega_1)$ and $s \in S_{\alpha}$, $\varphi(s \upharpoonright \xi) = f_{\alpha}(\xi)$

for almost all $\xi \in C_{\alpha}$.



A linear order L is minimal if L embeds into all its suborders of size |L|.

- the only minimal linear orders of size \aleph_0 are $\pm \omega$;
- under PFA, Baumgartner: any ℵ₁-dense set of reals is minimal and Todorcevic: there are minimal A-lines;
- **Baumgartner:** under \diamondsuit^+ , there are minimal A-lines.

Consistently, the only minimal linear orders of size \aleph_1 are $\pm \omega_1.$

Consistently, CH holds and for any Atree T, any ladder system colouring has a T-uniformization.

Moore, 2007

A linear order L is minimal if L embeds into all its suborders of size |L|.

- the only minimal linear orders of size \aleph_0 are $\pm \omega$;
- under PFA, Baumgartner: any ℵ₁-dense set of reals is minimal and Todorcevic: there are minimal A-lines;
- **Baumgartner:** under \Diamond^+ , there are minimal A-lines.

Consistently, the only minimal linear orders of size \aleph_1 are $\pm \omega_1$.

Consistently, CH holds and for any Atree T, any ladder system colouring has a T-uniformization.

Moore, 2007

A linear order L is minimal if L embeds into all its suborders of size |L|.

- the only minimal linear orders of size \aleph_0 are $\pm \omega$;
- under PFA, Baumgartner: any ℵ₁-dense set of reals is minimal and Todorcevic: there are minimal A-lines;
- **Baumgartner:** under \diamondsuit^+ , there are minimal A-lines.

Consistently, the only minimal linear orders of size \aleph_1 are $\pm \omega_1$.

Consistently, CH holds and for any Atree T, any ladder system colouring has a T-uniformization.

Moore, 2007

A linear order L is minimal if L embeds into all its suborders of size |L|.

- the only minimal linear orders of size \aleph_0 are $\pm \omega$;
- under PFA, Baumgartner: any ℵ₁-dense set of reals is minimal and Todorcevic: there are minimal A-lines;
- **Baumgartner:** under ◇⁺, there are minimal A-lines.

Consistently, the only minimal linear orders of size \aleph_1 are $\pm \omega_1$.

Consistently, CH holds and for any Atree T, any ladder system colouring has a T-uniformization.

Moore, 2007

A linear order L is minimal if L embeds into all its suborders of size |L|.

- the only minimal linear orders of size \aleph_0 are $\pm \omega$;
- under PFA, Baumgartner: any ℵ₁-dense set of reals is minimal and Todorcevic: there are minimal A-lines;
- **Baumgartner:** under \Diamond^+ , there are minimal A-lines.

Consistently, the only minimal linear orders of size \aleph_1 are $\pm \omega_1$.

Consistently, CH holds and for any Atree T, any ladder system colouring has a T-uniformization.

Moore, 2007

A linear order L is minimal if L embeds into all its suborders of size |L|.

- the only minimal linear orders of size \aleph_0 are $\pm \omega$;
- under PFA, Baumgartner: any ℵ₁-dense set of reals is minimal and Todorcevic: there are minimal A-lines;
- **Baumgartner:** under \Diamond^+ , there are minimal A-lines.

Consistently, the only minimal linear orders of size \aleph_1 are $\pm \omega_1$.

Consistently, CH holds and for any Atree T, any ladder system colouring has a T-uniformization.

Moore, 2007

A linear order L is minimal if L embeds into all its suborders of size |L|.

- the only minimal linear orders of size \aleph_0 are $\pm \omega$;
- under PFA, Baumgartner: any ℵ₁-dense set of reals is minimal and Todorcevic: there are minimal A-lines;
- **Baumgartner:** under ◇⁺, there are minimal A-lines.

Consistently, the only minimal linear orders of size \aleph_1 are $\pm \omega_1$.

Consistently, CH holds and for any Atree T, any ladder system colouring has a T-uniformization.

Moore, 2007

Baumgartner 1982/2017

Question: does a single Suslin-tree or \diamondsuit suffice for the construction?

Consistently, there is a Suslin-tree and the only minimal linear orders of size \aleph_1 are $\pm \omega_1$.

- (V = L) take a full Suslin-tree R,
- with a Jensen-type iteration, for each ladder system colouring f and A-tree T so that ⊢_R"T is A-tree", we force a T-uniformization for f;
- CH and "R is Suslin" can be preserved by the iteration.

Baumgartner 1982/2017

Copyright: G. M. Bergman

Question: does a single Suslin-tree or \diamond suffice for the construction?

Consistently, there is a Suslin-tree and the only minimal linear orders of size \aleph_1 are $\pm \omega_1$.

DTS 2018

• (V = L) take a full Suslin-tree R,

 with a Jensen-type iteration, for each ladder system colouring f and A-tree T so that ⊢_R"T is A-tree", we force a T-uniformization for f;

• CH and "*R* is Suslin" can be preserved by the iteration.

Baumgartner 1982/2017

Copyright: G. M. Bergman

Question: does a single Suslin-tree or \diamondsuit suffice for the construction?

Consistently, there is a Suslin-tree and the only minimal linear orders of size \aleph_1 are $\pm \omega_1$.

- (V = L) take a full Suslin-tree R,
- with a Jensen-type iteration, for each ladder system colouring f and A-tree T so that ⊢_R"T is A-tree", we force a T-uniformization for f;
- CH and "*R* is Suslin" can be preserved by the iteration.

Baumgartner 1982/2017

Copyright: G. M. Bergman

Question: does a single Suslin-tree or \diamondsuit suffice for the construction?

Consistently, there is a Suslin-tree and the only minimal linear orders of size \aleph_1 are $\pm \omega_1$.

- (V = L) take a full Suslin-tree R,
- with a Jensen-type iteration, for each ladder system colouring f and A-tree T so that ⊨_R"T is A-tree", we force a T-uniformization for f;
- CH and "*R* is Suslin" can be preserved by the iteration.

Baumgartner 1982/2017

Copyright: G. M. Bergman

Question: does a single Suslin-tree or \diamondsuit suffice for the construction?

Consistently, there is a Suslin-tree and the only minimal linear orders of size \aleph_1 are $\pm \omega_1$.

DTS 2018

• (V = L) take a full Suslin-tree R,

 with a Jensen-type iteration, for each ladder system colouring f and A-tree T so that ⊢_R"T is A-tree", we force a T-uniformization for f;

• CH and "*R* is Suslin" can be preserved by the iteration.

Baumgartner 1982/2017

Copyright: G. M. Bergman

Question: does a single Suslin-tree or \diamondsuit suffice for the construction?

Consistently, there is a Suslin-tree and the only minimal linear orders of size \aleph_1 are $\pm \omega_1$.

- (V = L) take a full Suslin-tree R,
- with a Jensen-type iteration, for each ladder system colouring f and A-tree T so that ⊩_R"T is A-tree", we force a T-uniformization for f;
- CH and "*R* is Suslin" can be preserved by the iteration.

Baumgartner 1982/2017

Copyright: G. M. Bergman

Question: does a single Suslin-tree or \diamondsuit suffice for the construction?

Consistently, there is a Suslin-tree and the only minimal linear orders of size \aleph_1 are $\pm \omega_1$.

- (V = L) take a full Suslin-tree R,
- with a Jensen-type iteration, for each ladder system colouring f and A-tree T so that $\Vdash_R T$ is A-tree", we force a T-uniformization for f;
- CH and "*R* is Suslin" can be preserved by the iteration.

 $2^{\aleph_0} < 2^{\aleph_1} \Rightarrow$ Any l.s. **C** has a monochrom. 2-colouring without ω_1 -uniformization.

$$2^{\aleph_0} < 2^{\aleph_1} \Rightarrow$$
 for any Suslin-tree T and any C, there is a monochrom. 2-colouring without T -uniformization.

$$\diamond \Rightarrow$$
 any A-tree *T* there is a C
and a monochrom. 2-colouring with-
out *T*-uniformization.

 $\diamond \Rightarrow$ **any A-tree** *T* **and any C** there is a 2-colouring without *T*-uniformization.

Consistently, for any A-tree T and any C, there is a monochrom. 2-colouring without T-uniformization.

DTS 2018

SETTOP 2018, Novi Sad

 $2^{\aleph_0} < 2^{\aleph_1} \Rightarrow$ Any l.s. **C** has a monochrom. 2-colouring without ω_1 -uniformization.

$$2^{\aleph_0} < 2^{\aleph_1} \Rightarrow$$
 for any Suslin-tree T and any C, there is a monochrom. 2-colouring without T -uniformization.

$$\diamond \Rightarrow$$
 any A-tree *T* there is a C
and a monochrom. 2-colouring with-
out *T*-uniformization.

 $\diamondsuit \Rightarrow$ **any A-tree** *T* **and any C** there is a 2-colouring without *T*-uniformization.

Consistently, for any A-tree T and any C, there is a monochrom. 2-colouring without T-uniformization.

 $2^{\aleph_0} < 2^{\aleph_1} \Rightarrow \text{Any I.s. } \mathbf{C}$ has a monochrom. 2-colouring without ω_1 -uniformization. Consistently, CH and any I.s. colouring has a *T*-uniformization for any A-tree *T*.

 $2^{\aleph_0} < 2^{\aleph_1} \Rightarrow$ for any Suslin-tree T and any C, there is a monochrom. 2-colouring without T-uniformization.

 $\diamond \Rightarrow$ any A-tree *T* there is a C and a monochrom. 2-colouring without *T*-uniformization.

 $\diamond \Rightarrow$ **any A-tree** *T* **and any C** there is a 2-colouring without *T*-uniformization.

Consistently, for any A-tree T and any C, there is a monochrom. 2-colouring without T-uniformization.

DTS 2018

A B K A B K

 $2^{\aleph_0} < 2^{\aleph_1} \Rightarrow \text{Any I.s. } \mathbf{C}$ has a monochrom. 2-colouring without ω_1 -uniformization. Consistently, CH and any I.s. colouring has a *T*-uniformization for any A-tree *T*.

 $2^{\aleph_0} < 2^{\aleph_1} \Rightarrow$ for any Suslin-tree T and any C, there is a monochrom. 2-colouring without T-uniformization.

 $\diamond \Rightarrow$ any A-tree *T* there is a C and a monochrom. 2-colouring without *T*-uniformization.

 $\diamond \Rightarrow$ any A-tree T and any C there is a 2-colouring without T-uniformization.

Consistently, for any A-tree T and any C, there is a monochrom. 2-colouring without T-uniformization.

DTS 2018

10 / 12

 $2^{\aleph_0} < 2^{\aleph_1} \Rightarrow \text{Any I.s. } \mathbf{C}$ has a monochrom. 2-colouring without ω_1 -uniformization. Consistently, CH and any I.s. colouring has a *T*-uniformization for any A-tree *T*.

 $2^{\aleph_0} < 2^{\aleph_1} \Rightarrow$ for any Suslin-tree T and any C, there is a monochrom. 2-colouring without T-uniformization.

 $\diamond \Rightarrow$ any A-tree *T* there is a C and a monochrom. 2-colouring without *T*-uniformization.

 $\diamond \Rightarrow$ any A-tree T and any C there is a 2-colouring without Tuniformization. Consistently, for any A-tree T and any C, there is a monochrom. 2-colouring without T-uniformization.

DTS 2018

10 / 12

A B K A B K

 $2^{\aleph_0} < 2^{\aleph_1} \Rightarrow \text{Any I.s. } \mathbf{C}$ has a monochrom. 2-colouring without ω_1 -uniformization. Consistently, CH and any I.s. colouring has a *T*-uniformization for any A-tree *T*.

 $2^{\aleph_0} < 2^{\aleph_1} \Rightarrow$ for any Suslin-tree T and any C, there is a monochrom. 2-colouring without T-uniformization.

 $\diamond \Rightarrow$ any A-tree *T* there is a C and a monochrom. 2-colouring without *T*-uniformization.

$$\diamond \Rightarrow$$
 any A-tree T and any C there is a 2-colouring without T-uniformization.

Consistently, for any A-tree T and any C, there is a monochrom. 2-colouring without T-uniformization.

DTS 2018

Unexpected uniformization results

 $\diamond \Rightarrow$ any A-tree T and I.s. **C** there is a 2-colouring without T-uniformization.

 \diamond^+ implies that for any ladder system **C**, there is an A-tree T so that any monochromatic colouring of **C** has a T-uniformization.

Without any extra assumptions (in ZFC):

There is a map $\varphi : \overline{\sigma} \mathbb{Q} \to \omega$ so that for any ladder system colouring f there is an A-tree $T \subseteq \overline{\sigma} \mathbb{Q}$ so that $\varphi \upharpoonright T$ is a *T*-uniformization of f.

DTS 2018

Unexpected uniformization results

 $\diamond \Rightarrow$ any A-tree T and I.s. **C** there is a 2-colouring without T-uniformization.

\diamond^+ implies that for any ladder system **C**, there is an A-tree T so that any monochromatic colouring of **C** has a T-uniformization.

Without any extra assumptions (in ZFC):

There is a map $\varphi : \overline{\sigma} \mathbb{Q} \to \omega$ so that for any ladder system colouring f there is an A-tree $T \subseteq \overline{\sigma} \mathbb{Q}$ so that $\varphi \upharpoonright T$ is a *T*-uniformization of f.

DTS 2018

Unexpected uniformization results

 $\diamond \Rightarrow$ any A-tree T and I.s. **C** there is a 2-colouring without T-uniformization.

 \diamond^+ implies that for any ladder system **C**, there is an A-tree T so that any monochromatic colouring of **C** has a T-uniformization.

Without any extra assumptions (in ZFC):

There is a map $\varphi : \overline{\sigma}\mathbb{Q} \to \omega$ so that for any ladder system colouring **f** there is an A-tree $T \subseteq \overline{\sigma}\mathbb{Q}$ so that $\varphi \upharpoonright T$ is a *T*-uniformization of **f**.

DTS 2018

James E. Baumgartner

March 23, 1943 – December 28, 2011

For more details and open problems:

D. T. Soukup, Ladder system uniformization on trees I & II, prerint, arXiv: 1806.03867

D. T. Soukup, A model with Suslin trees but no minimal uncountable linear orders other than ω_1 and $-\omega_1$, submitted to the Israel Journal of Math., arXiv: 1803.03583.