Killing P-points made simple

David Chodounský

Institute of Mathematics CAS

joint work with Osvaldo Guzmán and Jonathan Verner

P-points

Definition

An ultrafilter \mathcal{U} on ω is a *P*-point if for every $\{U_i \mid i \in \omega\} \subset \mathcal{U}$ there exists $U \in \mathcal{U}$ such that $U \setminus U_i$ is finite for each $i \in \omega$.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

P-points do exist if

- (1956) CH (W. Rudin)
- (1970) MA (Booth)
- (1976) $\vartheta = \mathfrak{c}$ (Ketonen)
- (2004) $\Diamond(\mathfrak{r})$ (Moore–Hrušák–Džamonja)

P-points

Definition

An ultrafilter \mathcal{U} on ω is a *P*-point if for every $\{ U_i \mid i \in \omega \} \subset \mathcal{U}$ there exists $U \in \mathcal{U}$ such that $U \setminus U_i$ is finite for each $i \in \omega$.

P-points do exist if

- (1956) CH (W. Rudin)
- (1970) MA (Booth)
- (1976) $\mathfrak{d} = \mathfrak{c}$ (Ketonen)
- (2004) $\Diamond(\mathfrak{r})$ (Moore–Hrušák–Džamonja)

Non-existence

(1977) There is a generic extension with no P-points (Shelah).

Killing P-points

Shelah's Proposition

Let \mathcal{U} be a P-point. $\mathbf{G}(\mathcal{U})^{\omega}$ forces that \mathcal{U} cannot be extended to a P-point (in any further bounding extension).

Killing P-points

Shelah's Proposition

Let \mathcal{U} be a P-point. $\mathbf{G}(\mathcal{U})^{\omega}$ forces that \mathcal{U} cannot be extended to a P-point (in any further bounding extension).

The conditions of the *Silver forcing* **PS** are partial functions $p; \omega \rightarrow 2$ with co-infinite domain, the order is reversed inclusion.

Killing P-points

Shelah's Proposition

Let \mathcal{U} be a P-point. $\mathbf{G}(\mathcal{U})^{\omega}$ forces that \mathcal{U} cannot be extended to a P-point (in any further bounding extension).

The conditions of the *Silver forcing* **PS** are partial functions $p; \omega \rightarrow 2$ with co-infinite domain, the order is reversed inclusion.

Proposition (Ch-Guzmán)

Let \mathcal{U} be a non-principal ultrafilter. **PS** forces that \mathcal{U} cannot be extended to a P-point (in any further Sacks property extension).

Let \mathcal{U} be a non-principal ultrafilter. **PS** forces that \mathcal{U} cannot be extended to a P-point (in any further Sacks property extension).

Corollaries

• There is a *nice* model with no P-points.

Let \mathcal{U} be a non-principal ultrafilter. **PS** forces that \mathcal{U} cannot be extended to a P-point (in any further Sacks property extension).

Corollaries

- There is a *nice* model with no P-points.
- It is consistent that there are no P-points and the continuum c is arbitrarily large.

▲ロト ▲ □ ト ▲ □ ト ▲ □ ト ● ● の Q ()

Let \mathcal{U} be a non-principal ultrafilter. **PS** forces that \mathcal{U} cannot be extended to a P-point (in any further Sacks property extension).

Corollaries

- There is a *nice* model with no P-points.
- It is consistent that there are no P-points and the continuum c is arbitrarily large.
- The inequality $\operatorname{cof} \mathcal{N} < \operatorname{cov} v_0$ implies that there are no P-points.

$$v_0 = \{ A \subset 2^{\omega} \mid \forall p \in \mathbf{PS} \; \exists q \in \mathbf{PS}, q < p, [q] \cap A = \emptyset \}$$

Let \mathcal{U} be a non-principal ultrafilter. **PS** forces that \mathcal{U} cannot be extended to a P-point (in any further Sacks property extension).

Corollaries

- There is a *nice* model with no P-points.
- It is consistent that there are no P-points and the continuum c is arbitrarily large.
- The inequality $\operatorname{cof} \mathcal{N} < \operatorname{cov} v_0$ implies that there are no P-points.

$$v_0 = \{ A \subset 2^{\omega} \mid \forall p \in \mathbf{PS} \ \exists q \in \mathbf{PS}, q < p, [q] \cap A = \emptyset \}$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proposition

Let \mathcal{U} be a non-principal ultrafilter. \mathbf{PS}^{ω} forces that \mathcal{U} cannot be extended to a P-point.

Let \mathcal{U} be a filter (base). How to prove that \mathcal{U} is not extendible to a P-point?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Let \mathcal{U} be a filter (base). How to prove that \mathcal{U} is not extendible to a *P*-point? Find sequence of finite partitions of ω . $\langle \mathscr{D}_n = \langle D_n^0, D_n^1, \dots, D_n^{\ell(n)} \rangle + n \in \omega \rangle$ such that for each selector $c \colon \omega \to \omega$ each pseudo-intersection of $\langle D_n^{c(n)} \rangle$ belongs to \mathcal{U}^* .

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ・ つ へ つ

Let \mathcal{U} be a filter (base). *How to prove that* \mathcal{U} *is not extendible to a P-point?* Find sequence of finite partitions of ω . $\langle \mathscr{D}_n = \langle D_n^0, D_n^1, \dots, D_n^{\ell(n)} \rangle \mid n \in \omega \rangle$ such that for each selector $c \colon \omega \to \omega$ each pseudo-intersection of $\langle D_n^{c(n)} \rangle$ belongs to \mathcal{U}^* .

How to show that each pseudo-intersection of a sequence $\langle D_n | n \in \omega \rangle$ is in \mathcal{U}^* ?

Let \mathcal{U} be a filter (base). How to prove that \mathcal{U} is not extendible to a P-point? Find sequence of finite partitions of ω . $\langle \mathscr{D}_n = \langle D_n^0, D_n^1, \dots, D_n^{\ell(n)} \rangle + n \in \omega \rangle$ such that for each selector $c : \omega \to \omega$ each pseudo-intersection of $\langle D_n^{c(n)} \rangle$ belongs to \mathcal{U}^* .

How to show that each pseudo-intersection of a sequence $\langle D_n | n \in \omega \rangle$ is in \mathcal{U}^* ?

For each $f: \omega \to \omega$ find an increasing sequence $\langle b_n \in \omega \mid n \in \omega \rangle$ such that $f(n) < b_n$ and $\bigcup_{n \in \omega} (D_n \cap [b_n, b_{n+1})) \in \mathcal{U}^*$. The conditions of the *Silver forcing* **PS** are partial functions $p; \omega \rightarrow 2$ with co-infinite domain, the order is reversed inclusion.

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Proposition

Let \mathcal{U} be a non-principal ultrafilter. \mathbf{PS}^{ω} forces that \mathcal{U} cannot be extended to a P-point. The conditions of the *Silver forcing* **PS** are partial functions $p; \omega \rightarrow 2$ with co-infinite domain, the order is reversed inclusion.

Proposition

Let \mathcal{U} be a non-principal ultrafilter. \mathbf{PS}^{ω} forces that \mathcal{U} cannot be extended to a P-point.

Fact

The forcing \mathbf{PS}^{ω} is proper and has the Sacks property.

I.e. for every $p \in \mathbf{PS}$ and for every \dot{c} such that $p \Vdash \dot{c} \in \omega^{\omega}$ there is $q \leq p$ and $\{ C_n \in [\omega]^{n+1} \mid n \in \omega \}$ such that $q \Vdash \dot{c}(n) \in C_n$.

The conditions of the *Silver forcing* **PS** are partial functions $p; \omega \rightarrow 2$ with co-infinite domain, the order is reversed inclusion.

Proposition

Let \mathcal{U} be a non-principal ultrafilter. \mathbf{PS}^{ω} forces that \mathcal{U} cannot be extended to a P-point.

Fact

The forcing \mathbf{PS}^{ω} is proper and has the Sacks property.

I.e. for every $p \in \mathbf{PS}$ and for every \dot{c} such that $p \Vdash \dot{c} \in \omega^{\omega}$ there is $q \leq p$ and $\{ C_n \in [\omega]^{n+1} \mid n \in \omega \}$ such that $q \Vdash \dot{c}(n) \in C_n$.

Lemma

If $m > n^2$, then for each $C \in [m]^n$ there exists $s \in m$ such that $C \cap (C - \{s\}) = \emptyset \mod m$.

Independent reals

For
$$r \in [\omega]^{\omega}$$
 let $I_n(r) = \{ x \in \omega : |x \cap r| = n \}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Independent reals

For
$$r \in [\omega]^{\omega}$$
 let $\mathbf{I}_n(r) = \{ x \in \omega \mid |x \cap r| = n \}$
 $D_n^k(r) = \bigcup \{ \mathbf{I}_j(r) \mid j \equiv k \mod n \}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Independent reals

For
$$r \in [\omega]^{\omega}$$
 let $\mathbf{I}_n(r) = \{ x \in \omega : |x \cap r| = n \}$
 $D_n^k(r) = \bigcup \{ \mathbf{I}_j(r) : j \equiv k \mod n \}$

Fact

Let $k < n \neq 1$, and r be a Silver generic real over V. Then $D_n^k(r)$ is an independent real over V. I.e. $D_n^k(r) \cap A \neq \emptyset$ for each $A \in [\omega]^{\omega} \cap V$.