Lelek fan and Poulsen simplex as Fraïssé limits

Aleksandra Kwiatkowska

University of Bonn
joint work with Wiesław Kubiś

June 22, 2016
Definitions

- \mathcal{C} a category whose objects are non-empty compact second countable metric spaces
Definitions

- \mathcal{C} a category whose objects are non-empty compact second countable metric spaces
- arrows are pairs of the form $\langle e, p \rangle$, where $e: K \to L$ is a continuous injection and $p: L \to K$ is a continuous surjection satisfying $p \circ e = \text{id}_K$, and usually some additional properties
Definitions

- \(\mathcal{C} \) a category whose **objects** are non-empty compact second countable metric spaces
- **arrows** are pairs of the form \(\langle e, p \rangle \), where \(e: K \to L \) is a continuous injection and \(p: L \to K \) is a continuous surjection satisfying \(p \circ e = \text{id}_K \), and usually some additional properties
- so the arrows are **retractions** onto \(K \)
Assume that each \(K \in \text{Ob}(\mathcal{C}) \) is equipped with a metric \(d_K \).

Given two \(\mathcal{C} \)-arrows \(f, g : K \to L \), \(f = \langle e, p \rangle \), \(g = \langle i, q \rangle \), we define

\[
d(f, g) = \begin{cases}
\max_{y \in L} d_K(p(y), q(y)) & \text{if } e = i, \\
+\infty & \text{otherwise}.
\end{cases}
\]
Definitions - metric

- Assume that each $K \in \text{Ob}(\mathcal{C})$ is equipped with a metric d_K.
- Given two \mathcal{C}-arrows $f, g : K \to L$, $f = \langle e, p \rangle$, $g = \langle i, q \rangle$, we define

 $$d(f, g) = \begin{cases}
 \max_{y \in L} d_K(p(y), q(y)) & \text{if } e = i, \\
 +\infty & \text{otherwise}.
 \end{cases}$$

- \mathcal{C} equipped with the metric d on each $\text{Hom}(K, L)$ is a metric category if $d(f_0 \circ g, f_1 \circ g) \leq d(f_0, f_1)$ and $d(h \circ f_0, h \circ f_1) \leq d(f_0, f_1)$, whenever the composition makes sense.
Definitions - amalgamation

- \mathcal{C} is **directed** if for every $A, B \in \mathcal{C}$ there is $C \in \mathcal{C}$ such that there exist arrows from A to C and from B to C.
Definitions - amalgamation

- C is **directed** if for every $A, B \in C$ there is $C \in C$ such that there exist arrows from A to C and from B to C.

- C has the **almost amalgamation property** if for every C-arrows $f : A \to B$, $g : A \to C$, for every $\varepsilon > 0$, there exist C-arrows $f' : B \to D$, $g' : C \to D$ such that $d(f' \circ f, g' \circ g) < \varepsilon$.

- C has the **strict amalgamation property** if we can have f' and g' as above satisfying $f' \circ f = g' \circ g$.

- **Aleksandra Kwiatkowska**

Lelek fan and Poulsen simplex as Fraïssé limits
• \mathcal{C} is **directed** if for every $A, B \in \mathcal{C}$ there is $C \in \mathcal{C}$ such that there exist arrows from A to C and from B to C.

• \mathcal{C} has the **almost amalgamation property** if for every \mathcal{C}-arrows $f : A \to B$, $g : A \to C$, for every $\varepsilon > 0$, there exist \mathcal{C}-arrows $f' : B \to D$, $g' : C \to D$ such that $d(f' \circ f, g' \circ g) < \varepsilon$.

• \mathcal{C} has the **strict amalgamation property** if we can have f' and g' as above satisfying $f' \circ f = g' \circ g$.
\mathcal{C} is separable if there is a countable subcategory \mathcal{F} such that

1. for every $X \in \text{Ob}(\mathcal{C})$ there are $A \in \text{Ob}(\mathcal{F})$ and a \mathcal{C}-arrow $f : X \rightarrow A$;

2. for every \mathcal{C}-arrow $f : A \rightarrow Y$ with $A \in \text{Ob}(\mathcal{F})$, for every $\varepsilon > 0$ there exists an \mathcal{C}-arrow $g : Y \rightarrow B$ and an \mathcal{F}-arrow $u : A \rightarrow B$ such that $d(g \circ f, u) < \varepsilon$.
The general setting
The Lelek fan
The Poulsen simplex
More applications to the Lelek fan

Definitions - Fraïssé sequence

\mathcal{C}-sequence $\bar{U} = \langle U_m; u^n_m \rangle$ is a Fraïssé sequence if the following holds:

(F) Given $\varepsilon > 0$, $m \in \omega$, and an arrow $f : U_m \to F$, where $F \in \text{Ob}(\mathcal{C})$, there exist $m < n$ and an arrow $g : F \to U_n$ such that $d(g \circ f, u^n_m) < \varepsilon$.
Theorem (Kubiś)

Let \mathcal{C} be a directed metric category with objects and arrows as before that has the almost amalgamation property. The following conditions are equivalent:

(a) \mathcal{C} is separable.
(b) \mathcal{C} has a Fraïssé sequence.
The general setting
The Lelek fan
The Poulsen simplex
More applications to the Lelek fan

Consequences

Theorem (Kubiś)

Under assumptions of the previous theorem and separability we have:

1. **Uniqueness** There exists exactly one Fraïssé sequence \(\vec{U} \) (up to an isomorphism).
2. **Universality** For every sequence \(\vec{X} \) in \(C \) there is an arrow \(f : \vec{X} \to \vec{U} \).
3. **Almost homogeneity** For every \(A, B \in \text{Ob}(C) \) and for all arrows \(i : A \to \vec{U}, j : B \to \vec{U} \), for every \(C \)-arrow \(f : A \to B \), for every \(\varepsilon > 0 \), there exists an isomorphism \(H : \vec{U} \to \vec{U} \) such that \(d(j \circ f, H \circ i) < \varepsilon \).

In our examples we will have almost homogeneity for sequences in \(C \) as well.
The general setting

The Lelek fan

The Poulsen simplex

More applications to the Lelek fan

Lelek fan

- C – the Cantor set
Lelek fan

- C – the Cantor set
- **Cantor fan** V is the cone over the Cantor set:
 $C \times [0, 1]/C \times \{1\}$
The general setting

The Lelek fan

The Poulsen simplex

More applications to the Lelek fan

Lelek fan

- \(C \) – the Cantor set
- **Cantor fan** \(V \) is the cone over the Cantor set: \(C \times [0, 1]/C \times \{1\} \)
- **Lelek fan** \(\mathbb{L} \) is a non-trivial closed connected subset of \(V \) containing the top point, which has a dense set of endpoints in \(\mathbb{L} \)
Lelek fan

The general setting
The Lelek fan
The Poulsen simplex
More applications to the Lelek fan

Lelek fan and Poulsen simplex as Fraïssé limits
About the Lelek fan

- Lelek fan was constructed by Lelek in 1960
About the Lelek fan

- Lelek fan was constructed by Lelek in 1960
- Lelek fan is unique: any two are homeomorphic (Bula-Oversteegen 1990 and Charatonik 1989)
Geometric fans

Definition

A geometric fan is a closed connected subset of the Cantor fan containing the top point.
The category \mathcal{F}

- **Objects** are finite geometric fans, metric inherited from \mathbb{R}^2.
The category \mathcal{F}

- **Objects** are finite geometric fans, metric inherited from \mathbb{R}^2.
- $f : F \to G$ is **affine** if $f(\lambda \cdot x) = \lambda \cdot f(x)$ for every $x \in F$, $\lambda \in [0, 1)$.
- $f : F \to G$ is a **stable embedding** if it is a one-to-one affine map such that endpoints are mapped to endpoints.
The category \mathcal{F}

- **Objects** are finite geometric fans, metric inherited from \mathbb{R}^2.
- $f : F \rightarrow G$ is **affine** if $f(\lambda \cdot x) = \lambda \cdot f(x)$ for every $x \in F$, $\lambda \in [0, 1)$.
- $f : F \rightarrow G$ is a **stable embedding** if it is a one-to-one affine map such that endpoints are mapped to endpoints.
- An arrow from F to G is a pair $\langle e, p \rangle$ such that $e : F \rightarrow G$ is a stable embedding, $p : G \rightarrow F$ is a 1-Lipschitz affine surjection and $p \circ e = \text{id}_F$.
Properties

- Geometric fans = inverse limits of sequences in \mathcal{F}
- The category \mathcal{F} is directed and has the strict amalgamation property
- \mathcal{F} is a separable metric category
Fraïssé sequences

Theorem (Kubiś - K)

Let \tilde{U} be a sequence in \mathfrak{F} and let U_∞ be its inverse limit. The following properties are equivalent:

(a) The set of endpoints $E(U_\infty)$ is dense in U_∞.

(b) \tilde{U} is a Fraïssé sequence.
Consequences

- **uniqueness** of a Fraïssé sequence
 The Lelek fan is a unique smooth fan whose set of end-points is dense.

- **universality** with respect to all geometric fans
 For every geometric fan F there are a stable embedding e into the Lelek fan \mathbb{L} and a 1-Lipschitz affine retraction p from \mathbb{L} onto F such that $p \circ e = \text{id}_F$.
almost homogeneity with respect to all geometric fans
Let F be a geometric fan and let $f, g : \mathbb{L} \to F$ be continuous affine surjections. Then for every $\varepsilon > 0$ there is a homeomorphism $h : \mathbb{L} \to \mathbb{L}$ such that for every $x \in \mathbb{L}$, $d_F (f \circ h(x), g(x)) < \varepsilon$.
Consequences

- **almost homogeneity** with respect to all geometric fans

Let F be a geometric fan and let $f, g : \mathbb{L} \to F$ be continuous affine surjections. Then for every $\varepsilon > 0$ there is a homeomorphism $h : \mathbb{L} \to \mathbb{L}$ such that for every $x \in \mathbb{L}$, $d_F(f \circ h(x), g(x)) < \varepsilon$.

Remark

In 2015, Bartošová and Kwiatkowska obtained uniqueness, universality, and almost homogeneity of the Lelek fan in the context of the projective Fraïssé theory.
Extreme points

Definition

A point x in a compact convex set K of a topological vector space is an **extreme point** if whenever $x = \lambda y + (1 - \lambda)z$ for some $\lambda \in [0, 1]$, $y, z \in K$, then $\lambda = 0$ or $\lambda = 1$.

The set of extreme points of K is denoted by $\text{ext } K$.

Aleksandra Kwiatkowska
Lelek fan and Poulsen simplex as Fraïssé limits
Simplices

Definition

A **simplex** is a non-empty compact convex and metrizable set K in a locally convex linear topological space such that every $x \in K$ has a unique probability measure μ supported on $\text{ext } K$ and such that

$$f(x) = \int_K f \, d\mu$$

for every continuous affine function $f : K \to \mathbb{R}$.
Finite-dimensional simplices

Example

Finite-dimensional simplex Δ_n

$$\{ x \in \mathbb{R}^{n+1} : \sum_{i=1}^{n+1} x(i) = 1 \text{ and } x(i) \geq 0 \text{ for every } i = 1, \ldots, n+1 \}$$

In particular, Δ_0 is a singleton, Δ_1 is a closed interval, and Δ_2 is a triangle.
The Poulsen simplex

Definition

The **Poulsen simplex** is a simplex that has a dense set of extreme points.
The Poulsen simplex

Definition

The **Poulsen simplex** is a simplex that has a dense set of extreme points.

Remark

The Poulsen simplex was first constructed by Poulsen in ’61.
The Poulsen simplex

Definition

The **Poulsen simplex** is a simplex that has a dense set of extreme points.

Remark

The Poulsen simplex was first constructed by Poulsen in '61.

Remark

Uniqueness was proved by Lindenstrauss, Olsen, and Sternfeld in '78.
The category \mathcal{S}

- **Objects** are finite-dimensional simplices.
The category \mathcal{S}

- **Objects** are finite-dimensional simplices.
- $p: L \to K$ is **affine** if for any $x, y \in L$ and $\lambda \in [0, 1]$ we have $p(\lambda x + (1 - \lambda)y) = \lambda p(x) + (1 - \lambda)p(y)$.
- **Stable embedding** is a one-to-one affine map such that extreme points are mapped to extreme points.
The category \(\mathcal{S} \)

- **Objects** are finite-dimensional simplices.
- \(p: L \to K \) is **affine** if for any \(x, y \in L \) and \(\lambda \in [0, 1] \) we have
 \[
 p(\lambda x + (1 - \lambda)y) = \lambda p(x) + (1 - \lambda)p(y).
 \]
- **Stable embedding** is a one-to-one affine map such that extreme points are mapped to extreme points.
- **An arrow** from \(K \) to \(L \) is a pair \(\langle e, p \rangle \) such that \(e: K \to L \) is a stable embedding, \(p: L \to K \) is an affine projection and \(p \circ e = \text{id}_K \).
Theorem (Lazar-Lindenstrauss ’71)

Metrizable simplices are, up to affine homeomorphisms, precisely the limits of inverse sequences in \mathcal{S}.

- The category \mathcal{S} is directed and has the strict amalgamation property
- \mathcal{S} is a separable metric category
Theorem (Kubiś - K)

Let \tilde{U} be a sequence in \mathfrak{S} and let K be its inverse limit. The following properties are equivalent:

(a) The set $\text{ext } K$ is dense in K.
(b) \tilde{U} is a Fraïssé sequence.
Consequences

- **uniqueness** of a Fraïssé sequence
 The Poulsen simplex \mathbb{P} is unique, up to affine homeomorphisms.

- **universality** with respect to all simplices
 Every metrizable simplex is affinely homeomorphic to a face of \mathbb{P}.
Consequences

- **almost homogeneity** with respect to all simplices
 Let F be a simplex and let $f, g : \mathbb{P} \rightarrow F$ be affine and continuous. Then for every $\varepsilon > 0$ there is an affine homeomorphism $H : \mathbb{P} \rightarrow \mathbb{P}$ such that for every $x \in \mathbb{P}$, $d_F(f \circ H(x), g(x)) < \varepsilon$, where d_F is a fixed compatible metric on F.

Remark

Uniqueness, universality, and homogeneity of \mathbb{P} were proved by Lindenstrauss, Olsen, and Sternfeld in '78.
Homogeneity results

Remark

Let $f : S \to T$ be a bijection, such that $S, T \subseteq E(\mathbb{L})$ are finite sets. Then there exists an affine homeomorphism $h : \mathbb{L} \to \mathbb{L}$ such that $h \upharpoonright S = f$.
Remark

Let \(f : S \to T \) be a bijection, such that \(S, T \subseteq E(\mathbb{L}) \) are finite sets. Then there exists an affine homeomorphism \(h : \mathbb{L} \to \mathbb{L} \) such that \(h \upharpoonright S = f \).

Theorem (Kubiś - K)

Let \(A, B \subseteq E(\mathbb{L}) \) be countable dense sets. Then there exists an affine homeomorphism \(h : \mathbb{L} \to \mathbb{L} \) such that \(h[A] = B \).
Kawamura, Oversteegen, and Tymchatyn in '96 showed that the space of end-points of the Lelek fan is countably dense homogeneous.
Kawamura, Oversteegen, and Tymchatyn in ’96 showed that the space of end-points of the Lelek fan is countably dense homogeneous.

There exists a homeomorphism $h : E(\mathbb{L}) \rightarrow E(\mathbb{L})$ such that for no homeomorphism $f : \mathbb{L} \rightarrow \mathbb{L}$, we have $f \upharpoonright E(\mathbb{L}) = h$.
The general setting
The Lelek fan
The Poulsen simplex
More applications to the Lelek fan

Generalization of the category \(\mathcal{F} \)

- \(F \) be a geometric fan
- \(E(F) \) - the set of endpoints of \(F \)
- A **skeleton** in \(F \) is a convex set \(D \subseteq F \) such that \(E(D) \) is countable, contained in \(E(F) \) and dense in \(E(F) \).
Let \mathcal{F}^d be the category whose **objects** are pairs of finite geometric fans (F^1, F^2) with $F^1 = F^2$.
Let \mathcal{F}^d be the category whose objects are pairs of finite geometric fans (F^1, F^2) with $F^1 = F^2$.

An arrow from (F^1, F^2) to (G^1, G^2) is a pair $\langle e, p \rangle$ such that $e: F^1 \to G^1$ is a stable embedding, $p: G^2 \to F^2$ is a 1-Lipschitz affine retraction and $p \circ e = \text{id}_F$.
The category \mathcal{F}^d is directed and has the strict amalgamation property.

\mathcal{F}^d is a separable metric category, therefore it has a unique up to isomorphism Fraïssé sequence.

Its limit is (D, \mathbb{L}) for some skeleton D in \mathbb{L}.
Generalization of the category \mathcal{F}

To show the main theorem we need the following lemma:

Lemma

Let L be a geometric fan and let D be a skeleton in L. Then there exist a geometric fan L', a skeleton D' of L', and an affine (not necessarily 1-Lipschitz) homeomorphism $h: L \to L'$ with $h(D) = D'$ such that there is a sequence \vec{F} in \mathcal{F}^d satisfying $L' = \lim \leftarrow \vec{F}$ and $D' = \lim \rightarrow \vec{F}$.