Coimbra Paily Coimbra, Tuesday, September 8, 2015 MAT TRIAD ⁶⁴⁵ TREASURE FIND THE A wider convergence area for the KEY! MSTMAOR iteration methods for LCP Ljiljana Cvetković, Vladimir Kostić, Ernest Šanca

SPECIAL ISSUE!

THE KEY!

MAT TRIAD ⁶⁴⁵ TREASURE FIND A wider convergence area for the MSTMAOR iteration methods for LCP Ljiljana Cvetković, Vladimir Kostić, Ernest Šanca

In order to solve large sparse linear complementarity problems on parallel multiprocessor systems, modulus-based synchronous two-stage multisplitting iteration methods based on two-stage multisplittings of the system matrices were constructed and investigated by Bai and Zhang (Numerical Algorithms 62, 59-77 2013). These iteration methods include the multisplitting relaxation methods such as Jacobi, Gauss-Seidel, SOR and AOR of the modulus type as special cases. In the same paper the convergence theory of these methods is developed, under the following assumptions: (i) the system matrix is an H+-matrix and (ii) one acceleration parameter is greater than the other. Here we show that the second assumption can be avoided, thus enabling us to obtain an improved convergence area. The result is obtained using the similar technique proposed by Cvetković and Kostić (Numerical

Coimbra, Tuesday, September 8, 2015

A wider convergence area for the MSTMAOR iteration methods for LCP Ljiljana Cvetković, Vladimir Kostić, Ernest Šanca

A wider convergence area for the MSTMAOR iteration methods for LCP Ljiljana Cvetković, Vladimir Kostić, Ernest Šanca WHITE STANDING THE PORT OF BALGING STO

Treasure hunt

Problem statement

$A \in \mathbb{R}^{n,n}$ $q \in \mathbb{R}^{n}$ $z, r \in \mathbb{R}^{n} \rightsquigarrow ?$

$A \in \mathbb{R}^{n,n}$ $q \in \mathbb{R}^{n}$ $z, r \in \mathbb{R}^{n} \rightsquigarrow ?$

$\begin{array}{l} z \geq 0 \\ r := Az + q \geq 0 \\ z^T r = 0 \end{array}$

Motivation

Quadratic Programming

Optimal stopping

Bimatrix games

Market equilibria

Matrix Theory

Def $\mathcal{M}(A) := [\mu_{ij}] \in \mathbb{R}^{n,n}$ is entry-wise defined as follows $\mu_{ij} := \begin{cases} \\ \end{cases}$

For an arbitrary matrix $A = [a_{ij}] \in \mathbb{C}^{n,n}$, its **comparison matrix**

$$|a_{ii}|, \quad i = j,$$

 $-|a_{ij}|, \quad i \neq j.$

Matrix A is referred to as an H-matrix if and only if $\mathcal{M}(A)$ is an

LCP solvability

Given $A \in \mathbb{R}^{n,n}$ being an H⁺-matrix, there exists a unique solution z_{\star} of LCP(q, A).

Th

Bai, Z-Z., Evans, D.J.: Matrix multisplitting relaxation methods for linear complementarity problems, International Journal of Computer Mathematics, 63 (1997), 309-326.

Assumption of A being H^+ poses <u>no restriction</u>.

Iteration methods for LCP Basic concepts

Splitting is H-compatible if $\mathcal{M}(A) = \mathcal{M}(M) - |N|$, additionally.

Let $A \in \mathbb{R}^{n,n}$. If $\exists M, N \in \mathbb{R}^{n,n}$ so that M is nonsingular and $\mathsf{A}=\mathsf{M}-\mathsf{N},$

Let A = M - N be a splitting of $A \in \mathbb{R}^{n,n}$, $\Omega \geq 0 \cdots$ nonnegative diagonal matrix, $\gamma > 0 \cdots$ positive arbitrary scalar.

Ih

satisfies IFPE

- 1 If z is a solution of LCP(q, A), then $x = \frac{1}{2}\gamma(z \Omega^{-1}r)$
- $(\Omega + M)\mathbf{x} = \mathbf{N}\mathbf{x} + (\Omega A)|\mathbf{x}| \gamma \mathbf{q},$ 2 If x satisfies \blacklozenge , then the solution of LCP(q, A) is given by
 - $z = \gamma^{-1}(|x| + x)$ and $r = \gamma^{-1}\Omega(|x| x)$.

NPC Multiprocessor parallel computers

Def

 $\ell \cdots$ given integer - number of processors $(\ell \le n)$ $A=M_p-N_p, p=1,2,\ldots,\ell \ \cdots \ \text{splittings of } A$ $E_p \in \mathbb{R}^{n,n} \cdots \text{ nonnegative diagonal matrices: } \sum E_p = E.$ p=1Collection of triples $(M_p, N_p, E$ represents a multisplittin

$$E_p)(p = 1, 2, ..., \ell)$$

of A.

Modulus synchronous multisplitting (MSM) iteration method for LCP

- •• multisplitting of A 'ector of $\{\mathbf{Z}^{(k)}\}_{k=0}^{\infty} \subset \mathbb{R}^{n}_{+},$ $-A)|x^{(k)}| - \gamma q$ $p = 1, 2, \dots, \ell,$ $e^{-1}((\Omega - A)z^{(0)} - q),$ $\mathbf{Z}^{(k+1)} = \frac{1}{\nu} (|\mathbf{X}^{(k+1)}| + \mathbf{X}^{(k+1)}).$
- ntrix of order n

Def

D = diag(A) and for $p = 1, 2, ..., \ell$ L_p ··· strictly lower triangular $U_p = D - L_p - A$, \cdots zero-diagonal Collection of triples represents a triangular multisplitting of A.

- l $E_p \in \mathbb{R}^{n,n} \cdots$ nonnegative diagonal matrices: $\sum E_p = E$. p=1
 - $(D L_p, U_p, E_p)(p = 1, 2, ..., \ell)$

Triangular multisplitting: MSM \hookrightarrow MSMAOR

Convergence results:

 Bai, Z.-Z., Zhang, L.-L.: Modulus-based synchronous multisplitting iteration methods for linear complementarity problems, Numerical Linear Algebra with Applications, 20 (2013), 425-439.

 Cvetković, Lj., Kostić, V.: A note on the convergence of the MSMAOR method for linear complementarity problems, Numerical Linear Algebra with Applications, 21 (2014), 534-539.

- $(M_p, N_p, E_p)(p = 1, 2, ..., \ell) \cdots$ multisplitting of A

- $(M_p : F_p, G_p; N_p; E_p)(p = 1, 2, ..., \ell)$

Modulus synchronous 2-stage multisplitting (MSTM) iteration method

 $z^{(0)} \in \mathbb{R}^n_+ \cdots$ arbitrary initial vector $v_p(p = 1, 2, ..., \ell)$... number of inner iterations for $k \ge 0$ until convergence of $\{z^{(k)}\}_{k=0}^{\infty} \subset \mathbb{R}^n_+$, $\left\{ \begin{array}{l} (\Omega+F_p)x^{(k,p,j+}\\ p=\\ j=0,1 \end{array} \right.$

- $(M_p : F_p, G_p; N_p; E_p)(p = 1, 2, ..., \ell) \cdots 2$ -stage multisplitting of A

$$^{+1)} = G_{p}x^{(k,p,j)} + b^{(k,p)}$$

= 1, 2, ..., ℓ
1, ..., $\nu_{p} - 1$

 $b^{(k,p)} = N_p x^{(k)} + (\Omega - A) |x^{(k)}| - \gamma q, \quad x^{(k,p,0)} = x^{(k)},$

 \rightarrow

Modulus synchronous 2-stage multisplitting (MSTM) iteration method

$$^{1}((\Omega - A)z^{(0)} - q),$$

$$\sum_{p=1}^{\ell} E_p \mathbf{x}^{(k,p,\nu_p)}$$

Def D = diag(A) and parts of $M_p(p = 1, 2, ..., \ell)$ $D_p^{(M)} = diag(M_p) \cdots diagonal$ $L_p^{(M)}$... strict lower triangle U_p^(M) ··· zero-diagonal so that $M_p = D_p^{(M)} - L_p^{(M)} - U_p^{(M)}$. Collection of triples

- $(M_p : D_p^{(M)} L_p^{(M)}, U_p^{(M)}; N_p; E_p)(p = 1, 2, ..., \ell)$ represents a 2-stage triangular multisplitting of A.

2-stage triangular multisplitting: MSTM \hookrightarrow MSTMAOR

$$D_{p}^{(M)} - \beta L_{p}^{(M)}),$$

$$+\left(\alpha - \beta\right)L_{p}^{(M)} + \alpha U_{p}^{(M)}\right),$$

 $\alpha, \beta \cdots$ relaxation parameters

Convergence for MSTMAOR iteration method (Bai, Z.-Z., Zhang, L.-L. 2013)

 $A \in \mathbb{R}^{n,n}$ is H^+ , D = diag(A), B = D - A, $\gamma > 0$, $\Omega \ge D$, and a 2-stage triangular multisplitting of A

If $A = M_p - N_p(p = 1, 2, ..., \ell)$ are H-compatible splittings and

then $\lim z^{(k)} = z_*$, $\forall z^{(0)} \in \mathbb{R}^n_+$ and arbitrary v_p , under the condition that $k \rightarrow \infty$

 $0 < \beta \leq c$

- $(M_p : D_p^{(M)} L_p^{(M)}, U_p^{(M)}; N_p; E_p)(p = 1, 2, ..., \ell).$
- $\mathcal{M}(M_p) = D |L_p^{(M)}| |U_p^{(M)}|(p = 1, 2, \dots, \ell), \quad D = diag(M_p),$

$$\alpha < \frac{1}{\rho(\mathsf{D}^{-1}|\mathsf{B}|)}.$$

Convergence for MSTMAOR iteration method (Bai, Z.-Z., Zhang, L.-L. 2013)

 $A \in \mathbb{R}^{n,n}$ is H^+ , D = diag(A), B = D - A, $\gamma > 0$, $\Omega \ge D$, and a 2-stage triangular multisplitting of A

If $A = M_p - N_p(p = 1, 2, ..., \ell)$ are H-compatible splittings and

then $\lim z^{(k)} = z_*$, $\forall z^{(0)} \in \mathbb{R}^n_+$ and arbitrary v_p , under the condition that $k \rightarrow \infty$

 $0 < \beta \leq c$

- $(M_p : D_p^{(M)} L_p^{(M)}, U_p^{(M)}; N_p; E_p)(p = 1, 2, ..., \ell).$
- $\mathcal{M}(M_p) = D |L_p^{(M)}| |U_p^{(M)}|(p = 1, 2, \dots, \ell), \quad D = diag(M_p),$

$$\alpha < \frac{1}{\rho(\mathsf{D}^{-1}|\mathsf{B}|)}.$$

Expansion of the parameter area (Cvetković, Lj., Kostić, V., Šanca, E. 2015)

$\beta \geq 0$ and $(\theta \max\{\alpha, \xi \beta\} + (1 - \theta)\alpha)\rho(D^{-1}|B|) < \min\{1, \alpha\}$ or, equivalently, $0 < \alpha < \frac{1}{\rho\left(\mathsf{D}^{-1}|\mathsf{B}|\right)}, \quad 0 \leq \beta < \frac{\min\{1, \alpha\} - (1 - \theta) \alpha \rho\left(\mathsf{D}^{-1}|\mathsf{B}|\right)}{\xi \theta \rho\left(\mathsf{D}^{-1}|\mathsf{B}|\right)}.$

Expansion of the parameter area (Cvetković, Lj., Kostić, V., Šanca, E. 2015)

- $A = M_p N_p$ H-compatible splittings and $\implies M_p = \Theta_p \circ A$,
 - $\Theta_{p} = [\theta_{ii}^{p}]: 0 \le \theta_{ii}^{p} \le 1, \qquad 1 \le i, j \le n,$
 - $\theta = \max\{\theta_{ii}^{p} : p = 1, 2, \dots, \ell, \quad j < i\},\$
- $\mathcal{M}(M_p) = D |L_p^{(M)}| |U_p^{(M)}| \implies L_p^{(M)} = \Xi_p \circ (-M_p),$ $\Xi_p = [\xi_{ii}^p]: \ 0 \le \xi_{ii}^p \le 1 \ \text{for} \ 1 \le j < i \le n \qquad \qquad \xi_{ij}^p = 0 \ \text{otherwise}$
 - $\xi = \max\{\,\xi^{\,p}_{\,ii}: p = 1, 2, \dots, \ell, \quad j < i\}.$

$$M = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix} - \begin{bmatrix} 0 & 0 & 0 \\ 0.28 & 0 & 0 \\ 0 & 0.18 & 0 \end{bmatrix}$$
$$D \qquad \qquad L$$

 $\theta = \max\{0.7, 0.6\} = 0.7$

$$-\begin{bmatrix} 0 & -0.5 & 0 \\ 0.3 & -1 & 0.7 \\ 0 & 0.4 & 0 \end{bmatrix}, \quad \Theta = \begin{bmatrix} 1 & 0.5 & 1 \\ 0.7 & 0.5 & 0.3 \\ 0 & 0.6 & 1 \end{bmatrix}$$

 $\xi = \max\{0.4, 0.3\} = 0.4$

 $\Big]$,

Numerical examples

Matrix catalogue Selected collection

assumptions

- $\ell = 1 \cdots$ single processor
- (1st stage)
- (2nd stage)

aim

plotting level curves of $\rho(\mathcal{L}_{MSTMAOR}(\alpha, \beta))$ in $\alpha - \beta$ plane

r/c : 100 / 100 nz : 670 MATLAB - coded

$\xi = 0.3$ $\theta = 0.3$

$\xi = 0.3$ $\theta = 1$

$\begin{aligned} \xi &= 1 \\ \theta &= 1 \end{aligned}$

A1	$ \begin{aligned} \xi &= 0.3 \\ \theta &= 0.3 \end{aligned} $	$\begin{aligned} \xi &= 0.3 \\ \theta &= 1 \end{aligned}$	$\xi = 1$ $\theta = 0.3$	$egin{array}{lll} \xi &= 1 \ heta &= 1 \end{array}$
BZ_val	0.4564	0.3534	0.4548	0.3292
CKS_val	0.45 4 8	0.3 2 92	0.4548	0.3292

r/c : 100 / 100 nz : 486 MATLAB - coded

$\xi = 0.3$ $\theta = 0.3$

$\xi = 0.3$ $\theta = 1$

2

$\begin{aligned} \xi &= 1 \\ \theta &= 1 \end{aligned}$

A2	$\begin{aligned} \xi &= 0.3 \\ \theta &= 0.3 \end{aligned}$	$\begin{aligned} \xi &= 0.3 \\ \theta &= 1 \end{aligned}$	$\xi = 1$ $\theta = 0.3$	$egin{array}{lll} \xi &= 1 \ heta &= 1 \end{array}$
BZ_val	0.3511	0.2620	0.3501	0.2483
CKS_val	0.35 0 1	0.2 4 85	0.3501	0.2483

University of Florida Sparse Matrix Collection

r/c:137/137 nz:486

impcol_c (*modified)

chemical process simulation problem

$\xi = 0.3$ $\theta = 0.3$

$\xi = 0.3$ $\theta = 1$

$\xi = 1$ $\theta = 1$

A3	$ \begin{aligned} \xi &= 0.3 \\ \theta &= 0.3 \end{aligned} $	$\xi = 0.3$ $\theta = 1$	$\xi = 1$ $\theta = 0.3$	$egin{array}{lll} \xi &= 1 \ heta &= 1 \end{array}$
BZ_val	0.6917	0.6058	0.6895	0.5671
CKS_val	0.6 8 95	0. 5 676	0.6895	0.5671

Obrigado! Grazie! Mercil Gracias!

Ευχαριστώ

Спасибо!

Hvala!

謝謝 Thank you!

Danke schön!