MatTriad 2015, Coimbra

H-matrix theory and applications

Maja Nedović
University of Novi Sad, Serbia

joint work with Ljiljana Cvetković

Contents

○ H-matrices and SDD-property

- Benefits from H-subclasses

○ Breaking the SDD

- Additive and multiplicative conditions
- Partitioning the index set
- Recursive row sums
- Nonstrict conditions

H-matrices and SDD-property

A complex matrix $A=[a i j] n x n$ is an SDDmatrix if for each i from N it holds that
$\left|a_{i i}\right|>r_{i}(A)=\sum_{j \in N, j \neq i}\left|a_{i j}\right|$
Deleted row sums

Lévy-Desplanques: nonsingular

H-matrices and SDD-property

A complex matrix $A=[a i j] n x n$ is an SDDmatrix if for each i from N it holds that
$\left|a_{i i}\right|>r_{i}(A)=\sum_{j \in N, j \neq i}\left|a_{i j}\right|$

A complex matrix $\mathrm{A}=[\mathrm{aij}] \mathrm{nxn}$ is an H -matrix if and only if there exists a diagonal nonsingular matrix \mathcal{W} such that AW is an SDD matrix.

H-matrices and SDD-property

A complex matrix $A=[a i j] n x n$ is an SDDmatrix if for each i from N it holds that
$\left|a_{i i}\right|>r_{i}(A)=\sum_{j \in N, j \neq i}\left|a_{i j}\right|$

H

H-matrices and SDD-property

A complex matrix $A=[a i j] n x n$ is an SDDmatrix if for each i from N it holds that
$\left|a_{i i}\right|>r_{i}(A)=\sum_{j \in N, j \neq i}\left|a_{i j}\right|$

Subclasses of H-matrices \& diagonal scaling characterizations Benefits:

1. Nonsingularity result covering a wider matrix class
2. A tighter eigenvalue inclusion area (not just for the observed class)
3. A new bound for the max-norm of the inverse for a wider matrix class
4. A tighter bound for the max-norm of the inverse for some SDD marrices
5. Schur complement related results (closure and eigenvalues)
6. Convergence area for relaxation iterative methods
7. Sub-direct sums
8. Bounds for determinants

Breaking the SDD

Breaking the SDD

Breaking the SDD

Recursive row sums

Additive and multiplicative conditions

Partitioning the index set

Breaking the SDD

Ostrowski, A. M. (1937), Pupkov, V. A. (1983), Hoffman, A.J. (2000), Varga, R.S. : Geršgorin and his circles (2004)

Partitioning the index set

Gao, Y.M., Xiao, H.W. (1992), Varga, R.S. (2004), Dashnic, L.S., Zusmanovich, M.S. (1970), Kolotilina, I. Yu.(2010), Cvetković, Lj., Nedović, M. (2009), (2012), (2013).

O. Taussky (1948), Beauwens (1976), Szulc, T. (1995), Li, W. (1998), Varga, R.S. (2004) Cvetković, Lj., Kostić, V. (2005)

$\int 1$
 Nekrasovmatrices

O. Taussky (1948), Beauwens (1976), Szulc,T. (1995), Li, W. (1998), Varga, R.S. (2004) Cvetković, Lj., Kostić, V. (2005)

I Additive and multiplicative conditions

Ostrowski-matrices multiplicative condition:
$\left|a_{i i}\right| a_{j j} \mid>r_{i}(A) r_{j}(A)$

Pupkov-matrices additive condition:
$\left|a_{i i}\right|>\min \left\{\max _{j \neq i}\left\{a_{j i}\right\}, r_{i}(A)\right\}$
$\left|a_{i i}\right|+\left|a_{j j}\right|>r_{i}(A)+r_{j}(A)$

Ostrowski, A. M. (1937), Pupkov, V. A. (1983), Hoffman, A.J. (2000), Varga, R.S. : Geršgorin and his circles (2004)

II Partitioning the index set

S-SDD-matrices

Given any complex matrix A=[aij]nxn and given any nonempty proper subset S of N, A is an $S-S D D$ matrix if

$$
\begin{aligned}
& \left|a_{i i}\right|>r_{i}^{S}(A)=\sum_{j \in S, j \neq i}\left|a_{i j}\right|, \quad i \in S \\
& \left(\left|a_{i i}\right|-r_{i}^{S}(A)\right)\left(\left|a_{j j}\right|-r_{j}^{\bar{S}}(A)\right)>r_{i}^{\bar{S}}(A) r_{j}^{S}(A), \\
& \quad i \in S, j \in \bar{S}
\end{aligned}
$$

Gao, Y.M., Xiao, H.W. LAA (1992)
Cvetković, Lj., Kostić, V., Varga, R. ETNA (2004)

II Partitioning the index set

S-SDD-matrices

ค A matrix $A=[a i j] n \times n$ is an S-SDD matrix iff there exists a matrix W in Ws such that AW is an SDD matrix.

$$
\boldsymbol{W}^{S}=\left\{W=\operatorname{diag}\left(w_{1}, w_{2}, \ldots, w_{n}\right): w_{i}=\gamma>0 \quad \text { for } \quad i \in S \quad \text { and } \quad w_{i}=1 \quad \text { for } i \in \bar{S}\right\}
$$

Diagonal scaling characterization \& Scaling matrices

We choose parameter from the interval:
$I_{\gamma}=\left(\gamma_{1}(A), \gamma_{2}(A)\right)$,
$0 \leq \gamma_{1}(A)=\max _{i \in S} \frac{r_{i}^{\bar{S}}(A)}{\left|a_{i i}\right|-r_{i}^{S}(A)}, \quad \gamma_{2}(A)=\min _{j \in S} \frac{\left|a_{j j}\right|-r_{j}^{\bar{S}}(A)}{r_{j}^{S}(A)}$.

Diagonal scaling characterization \& Scaling matrices

Eigenvalue localization

$$
\begin{aligned}
& \Gamma_{i}^{S}(A)=\left\{z \in C:\left|z-a_{i i}\right| \leq r_{i}^{S}(A)\right\}, \quad i \in S, \\
& \left.V_{i j}^{S}(A)=\left\{z \in C:\left|z-a_{i i}\right|-r_{i}^{S}(A)\right)\left(\left|z-a_{j j}\right|-r_{j}^{\bar{S}}(A)\right) \leq r_{i}^{\bar{s}}(A) r_{j}^{S}(A)\right\}, \\
& i \in S, j \in \bar{S} .
\end{aligned}
$$

$$
\sigma(A) \subseteq C^{S}(A)=\left(\bigcup_{i \in S} \Gamma_{i}^{S}(A)\right) \bigcup\left(\bigcup_{i \in S, j \in \bar{S}} V_{i j}^{S}(A)\right) .
$$

Cvetković, L., Kostić, V., Varga R.S.: A new Geršgorin-type eigenvalue inclusion set ETNA, 2004.

Varga R.S.: Geršgorin and his circles, Springer, Berlin, 2004.

Schur complement

The Schur complement of a complex nxn matrixA, with respect to a prö̈er subset α of index set $N=\{1,2, \ldots, n\}$, is denoted by A / α and defined to be: . $A(\bar{\alpha})-A(\bar{\alpha}, \alpha)(A(\alpha))^{-1} A(\alpha, \bar{\alpha})$

Schur complement

Carlson, D., Markham, T. : Schur complements of diagonally dominant matrices. Czech. Math. J. 29 (104) (1979), 246-251.

Schur complement

Carlson, D., Markham, T. : Schur complements of diagonally dominant matrices. Czech. Math. J. 29 (104) (1979), 246-251.

Schur complement

Carlson, D., Markham, T. : Schur complements of diagonally dominant matrices. Czech. Math. J. 29 (104) (1979)

Li, B., Tsatsomeros, M.J. : Doubly diagonally dominant matrices. LAA 261 (1997)

Schur complement

Carlson, D., Markham, T. : Schur complements of diagonally dominant matrices. Czech. Math. J. 29 (104) (1979)

Li, B., Tsatsomeros, M.J. : Doubly diagonally dominant matrices. LAA 261 (1997)

Schur complement

Carlson, D., Markham, T. : Schur complements of diagonally dominant matrices. Czech. Math. J. 29 (104) (1979)

Li, B., Tsatsomeros, M.J. : Doubly diagonally dominant matrices. LAA 261 (1997)
Zhang, F. : The Schur complement and its applications, Springer, NY, (2005).

Schur complement

Carlson, D., Markham, T. : Schur complements of diagonally dominant matrices. Czech. Math. J. 29 (104) (1979)

Li, B., Tsatsomeros, M.J. : Doubly diagonally dominant matrices. LAA 261 (1997)
Zhang, F. : The Schur complement and its applications, Springer, NY, (2005).

Schur complements of S-SDD

Cvetković, Lj., Kostić, V., Kovačević, M., Szulc, T. : Further results on H-matrices and their Schur complements. AMC (2008)

Liu, J., Huang, Y., Zhang, F. : The Schur complements of generalized doubly diagonally dominant matrices. LAA (2004)

Schur complements of S-SDD

Cvetković, Lj., Kostić, V., Kovačević, M., Szulc, T. : Further results on H-matrices and their Schur complements. AMC (2008)

Liu, J., Huang, Y., Zhang, F. : The Schur complements of generalized doubly diagonally dominant matrices. LAA (2004)

Schur complements of S-SDD

Theorem1. Let $\mathrm{A}=\left[\right.$ aij]nxn be an \sum-SDD matrix. Then for any nonempty proper subset α of $N, A / \alpha$ is also an \sum-SDD matrix. More precisely, if A is an S-SDD matrix, then A / α is an (S (α)-SDD matrix.

Theorem2. Let A=[aij]nxn be an S-SDD matrix. Then for any nonempty proper subset α of N such that S is a subset of α or NIS is a subset of $\alpha, A / \alpha$ is an SDD matrix.

Cvetković, Lj., Kostić, V., Kovačević, M., Szulc, T. : Further results on H-matrices and their Schur complements. AMC (2008)

Cvetković, Lj., Nedović, M. : Special H-matrices and their Schur and diagonalSchur complements. AMC (2009)

Eigenvalues of the SC

$\sigma(A) \subseteq \Gamma(A)=\bigcup_{i \in N} \Gamma_{i}(A)=\bigcup_{i \in N}\left\{z \in C:\left|z-a_{i i}\right| \leq r_{i}(A)=\sum_{j \in N \backslash\{i\}}\left|a_{i j}\right|\right\}$
Liu, J., Huang, Z., Zhang, J. : The dominant degree and disc theorem for the Schur complement. AMC (2010)

Eigenvalues of the SC of S-SDD

$$
A \in S-S D D, \quad S=\alpha
$$

$$
\gamma>\max _{i \in \alpha} \frac{r_{i}^{\bar{\alpha}}(A)}{\left|a_{i i}\right|-r_{i}^{\alpha}(A)},
$$

$$
\sigma(A / \alpha)=\sigma\left(\left(W^{-1} A W\right) / \alpha\right) \subseteq \bigcup_{j \in \alpha} \Gamma_{j}\left(W^{-1} A W\right),
$$

$$
R_{j}=\gamma r_{j}^{\alpha}(A)+r_{j}^{\bar{\alpha}}(A) .
$$

Weighted Geršgorin set for the Schur complement matrix

Cvetković, Lj., Nedović, M. : Eigenvalue localization refinements for the Schur complement. AMC (2012)
Cvetković, Lj., Nedović, M. : Diagonal scaling in eigenvalue localization for the Schur complement. PAMM (2013)

Eigenvalues of the SC

- Let A be an SDD matrix with real diagonal entries and let α be a proper subset of N. Then, A / α and $A(N / \alpha)$ have the same number of eigenvalues whose real parts are greater (less) than w (resp. $-w$), where

$$
w(A)=\min _{j \in a}\left[\left|a_{j j}\right|-r_{j}(A)+\min _{i \in \alpha} \frac{\left|a_{i i}\right|-r_{i}(A)}{\left|a_{i i}\right|} r_{j}^{\alpha}(A)\right]
$$

Liu, J., Huang, Z., Zhang, J. : The dominant degree and disc theorem for the Schur complement. AMC (2010)

Eigenvalues of the SC of S-SDD

- Let A be an S-SDD matrix with real diagonal entries and let α be a proper subset of N. Then, A / α and $A(N l \alpha)$ have the same number of eigenvalues whose real parts are greater (less) than w (resp. -w), where

$$
w=w\left(W^{-1} A W\right)
$$

Remarks:
-This result covers a wider class of matrices.
-By changing the parameter in the scaling matrix we obtain more vertical bounds with the same separating property.
-We can apply it to an SDD matrix, observing that it belongs to T-SDD class for any T subset of N .

Cvetković, Lj., Nedović, M. : Eigenvalue localization refinements for the Schur complement. AMC (2012)

Eigenvalues of the SC of S-SDD

Dashnic-Zusmanovich

A matrix $A=[a i j] n x n$ is a Dashnic-Zusmanovich (DZ) matrix if there exists an index i in N such that

$$
\left|a_{i i}\right|\left(\left|a_{j j}\right|-r_{j}(A)+\left|a_{j i}\right|\right)>r_{i}(A)\left|a_{j i}\right|, \quad j \neq i, j \in N
$$

Dashnic, L. S., Zusmanovich, M.S.: O nekotoryh kriteriyah regulyarnosti matric i lokalizacii spectra. Zh. vychisl. matem. i matem. fiz. (1970)
Dashnic, L. S., Zusmanovich, M.S.: K voprosu o lokalizacii harakteristicheskih chisel matricy. Zh. vychisl. matem. i matem. fiz. (1970)

PH-matrices

Aggregated matrices

Kolotilina, L. Yu. : Diagonal dominance characterization of PM- and PHmatrices. Journal of Mathematical Sciences (2010)

PH-matrices

Kolotilina, L. Yu. : Diagonal dominance characterization of PM- and PHmatrices. Journal of Mathematical Sciences (2010)

Nekrasov matrices

A complex matrix $A=[a i j] n x n$ is SDDmatrix if for each i from N it holds that

$$
\left|a_{i i}\right|>r_{i}(A)=\sum_{j \in N, j \neq i}\left|a_{i j}\right|
$$

$d(A)>r(A)$

- A complex matrix $\mathrm{A}=[\mathrm{aij}] \mathrm{nxn}$ is a Nekrasov-matrix if for each ifrom N it holds that
$\left|a_{i i}\right|>h_{i}(A), \quad h_{1}(A)=r_{1}(A)$,
$\left.h_{i}(A)=\sum_{j=1}^{i-1}\left|a_{i j} \frac{h_{j}(A)}{\left|a_{j j}\right|}+\sum_{j=i+1}^{n}\right| a_{i j} \right\rvert\,, \quad i=2,3, \ldots, n$.
$d(A)>h(A)$

$A=D-L-U$

Nekrasov matrices

A complex matrix $A=[a i j] n x n$ is a Nekrasov-matrix if for each ifrom N it holds that
$\left|a_{i i}\right|>h_{i}(A), \quad h_{1}(A)=r_{1}(A)$,
$h_{i}(A)=\sum_{j=1}^{i-1}\left|a_{i j}\right| \frac{h_{j}(A)}{\left|a_{j j}\right|}+\sum_{j=i+1}^{n}\left|a_{i j}\right|$,

$$
i=2,3, \ldots, n .
$$

Nekrasov row sums
$d(A)>h(A)$

$A=D-L-U$

Nekrasov matrices and scaling

Theorem. Let $A=[a i j] n x n$ be a Nekrasov matrix with nonzero Nekrasov row sums. Then, for a diagonal positive matrix D where

$$
d_{i}=\varepsilon_{i} \frac{h_{i}(A)}{\left|a_{i i}\right|}, \quad i=1, \ldots, n
$$

and $\left(\varepsilon_{i}\right)_{i=1}^{n}$ is an increasing sequence of numbers with

$$
\varepsilon_{1}=1, \quad \varepsilon_{i} \in\left(1, \frac{\left|a_{i i}\right|}{h_{i}(A)}\right), \quad i=2, \ldots, n
$$

the matrix AD is an SDD matrix.
Szulc, T., Cvetković, Lj., Nedović, M. : Scaling technique for Nekrasov matrices. AMC (2015) (in print)

Nekrasov matrices and permutations

Unlike SDD and H, Nekrasov class is NOT closed under similarity (simultaneous) permutations of rows and columns!

- Given a permutation matrix P , a complex matrix $\mathrm{A}=[\mathrm{aij}] \mathrm{nxn}$ is called P-Nekrasov if
$\left|\left(P^{T} A P\right)_{i i}\right|>h_{i}\left(P^{T} A P\right), \quad i \in N$, $d\left(P^{T} A P\right)>h\left(P^{T} A P\right)$.
- The union of all P-Nekrasov=

Gudkov class

$$
A=D-L-U
$$

\{P1,P2\} - Nekrasov matrices

- Suppose that for the given matrix $\mathrm{A}=[\mathrm{aij}] \mathrm{nx}$ and two given permutation matrices P1 and P2

$$
d(A)>\min \left\{h^{P_{1}}(A), h^{P_{2}}(A)\right\}, \quad h^{P_{k}}(A)=P_{k} h\left(P_{k}^{T} A P_{k}\right), \quad k=1,2 .
$$

We call such a matrix $\{\mathrm{P} 1, \mathrm{P} 2\}$ - Nekrasov matrix.

A

A1

A2

\{P1,P2\} - Nekrasov matrices

$\square \quad$ Theorem1. Every $\{\mathrm{P} 1, \mathrm{P} 2\}$ - Nekrasov matrix is nonsingular.
$\square \quad$ Theorem2. Every $\{\mathrm{P} 1, \mathrm{P} 2\}$ - Nekrasov matrix is an $\mathrm{H}-$ matrix.
$\square \quad$ Theorem3. Given an arbitrary set of permutation matrices

$$
\Pi_{n}=\left\{P_{k}\right\}_{k=1}^{p}
$$

every Π_{n} - Nekrasov matrix is nonsingular, moreover, it is an H - matrix.

Cvetković, Lj., Kostić, V., Nedović, M. : Generalizations of Nekrasov matrices and applications. (2014)

Max-norm bounds for the inverse of \{P1,P2\} - Nekrasov matrices

$\square \quad$ Theorem1. Suppose that for a given set of permutation matrices $\{P 1$, $P 2\}$, a complex matrix $A=[a i j] n \times n, n>1$, is a $\{P 1, P 2\}$ - Nekrasov matrix. Then,

$$
\begin{gathered}
\left\|A^{-1}\right\|_{\infty} \leq \frac{\max _{i \in N}\left[\min \left\{\frac{z_{i}^{P_{1}}(A)}{\left|a_{i i}\right|}, \frac{z_{i}^{P_{2}}(A)}{\left|a_{i i}\right|}\right\}\right]}{\min _{i \in N}\left[1-\min \left\{\frac{h_{i}^{P_{i}}(A)}{\left|a_{i i}\right|}, \frac{h_{i}^{P_{2}}(A)}{\left|a_{i i}\right|}\right\}\right]}, \\
z_{1}(A)=r_{1}(A), \quad z_{i}(A)=\sum_{j=1}^{i-1}\left|a_{i j}\right| \frac{z_{j}(A)}{\left|a_{j j}\right|}+1, \quad i=2,3, \ldots, n, \\
z(A)=\left[\begin{array}{llll}
z_{1}(A), & \ldots, & z_{n}(A)
\end{array}\right]^{T}, \quad z^{P}(A)=P z\left(P^{T} A P\right) .
\end{gathered}
$$

where

Cvetković, Lj., Kostić, V., Nedović, M. : Generalizations of Nekrasov matrices and applications. (2014)

Max-norm bounds for the inverse of \{P1,P2\} - Nekrasov matrices

$\square \quad$ Theorem2. Suppose that for a given set of permutation matrices $\{P 1$, $P 2\}$, a complex matrix $A=[a i j] n \times n, n>1$, is a $\{P 1, P 2\}$ - Nekrasov matrix. Then,

$$
\begin{gathered}
\left\|A^{-1}\right\|_{\infty} \leq \frac{\max _{i \in N}\left[\min \left\{z_{i}^{P_{1}}(A), z_{i}^{P_{2}}(A)\right\}\right]}{\min _{i \in N}\left[\left|a_{i i}\right|-\min \left\{h_{i}^{P_{1}}(A), h_{i}^{P_{2}}(A)\right\}\right]}, \\
z_{1}(A)=r_{1}(A), \quad z_{i}(A)=\sum_{j=1}^{i-1}\left|a_{i j}\right| \frac{z_{j}(A)}{\mid a_{i j}}+1, \quad i=2,3, \ldots, n, \\
z(A)=\left[z_{1}(A), \quad \ldots, \quad z_{n}(A)\right]^{T}, \quad z^{P}(A)=P z\left(P^{T} A P\right) .
\end{gathered}
$$

Cvetković, Lj., Kostić, V., Nedović, M. : Generalizations of Nekrasov matrices and applications. (2014)

Numerical examples

$\square \quad$ Observe the given matrix B and permutation matrices P 1 and P 2 .

$$
\begin{aligned}
& B=\left[\begin{array}{cccc}
60 & -15 & -15 & -15 \\
-75 & 105 & -45 & 0 \\
-60 & -60 & 120 & -15 \\
-15 & -15 & -15 & 45
\end{array}\right], \quad P_{1}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right], \quad P_{2}=I, \\
& h_{1}^{P_{1}}(B)=45, \quad h_{2}^{P_{1}}(B)=101.25, \quad h_{3}^{P_{1}}(B)=116.607, \quad h_{4}^{P_{1}}(B)=41.25, \\
& h_{1}^{P_{2}}(B)=45, \quad h_{2}^{P_{2}}(B)=101.25, \quad h_{3}^{P_{2}}(B)=117.857, \quad h_{4}^{P_{2}}(B)=40.4464 .
\end{aligned}
$$

$\square \quad$ Notice that B is a Nekrasov matrix.

Cvetković, Lj., Kostić, V., Doroslovački, K. : Max-norm bounds for the inverse of SNekrasov matrices. (2012)

Numerical examples

$\square \quad$ Observe the given matrix B and permutation matrices P 1 and P 2 .

$$
B=\left[\begin{array}{cccc}
60 & -15 & -15 & -15 \\
-75 & 105 & -45 & 0 \\
-60 & -60 & 120 & -15 \\
-15 & -15 & -15 & 45
\end{array}\right], \quad P_{1}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right], \quad P_{2}=I
$$

$$
\left\|B^{-1}\right\|_{\infty} \leq 1.76842
$$

$$
\left\|B^{-1}\right\|_{\infty} \leq 0.968421
$$

Although the given matrix IS a Nekrasov matrix, in this way we

$$
\left\|B^{-1}\right\|_{\infty}=0.6843 .
$$ obtained a better bound for the norm of the inverse.

Σ - Nekrasov matrices

- Given any matrix A and any nonempty proper subset S of N we say that A is an S-Nekrasov matrix if

$$
\begin{array}{ll}
\left|a_{i i}\right|>h_{i}^{S}(A), i \in S, & h_{1}^{S}(A)=r_{1}^{S}(A) \\
\left|a_{j j}\right|>h_{j}^{\bar{S}}(A), j \in \bar{S}, & h_{i}^{S}(A)=\sum_{j=1}^{i-1}\left|a_{i j}\right| \frac{h_{j}^{S}(A)}{\left|a_{j j}\right|}+ \\
\left(\left|a_{i i}\right|-h_{i}^{S}(A)\right)\left(\left|a_{j j}\right|-h_{j}^{\bar{S}}(A)\right)>h_{i}^{\bar{S}}(A) h_{j}^{S}(A), & i \in S, j \in \bar{S} .
\end{array}
$$

- If there exists a nonempty proper subset S of N such that A is an S Nekrasov matrix, then we say that A belongs to the class of \sum-Nekrasov matrices.

Σ - Nekrasov matrices

Cvetković, Lj., Kostić, V., Rauški, S. : A new subclass of Hmatrices. AMC (2009)
$W^{S}=\left\{W=\operatorname{diag}\left(w_{1}, w_{2}, \ldots, w_{n}\right): w_{i}=\gamma>0 \quad\right.$ for $i \in S \quad$ and $\quad w_{i}=1$ for $\left.i \in \bar{S}\right\}$
$\left(\begin{array}{l|ll}S & & \\ \hline & \mathrm{~N} \backslash \mathrm{~S}\end{array}\right)\left(\begin{array}{lllll}r & & & \\ & \cdot & & & \\ \hline & & 1 & & \\ & & & 1 & \\ & & & \ddots & \\ & & & & 1\end{array}\right)=\left(\begin{array}{l}\text { Nekrasov }\end{array}\right)$

Σ - Nekrasov matrices

Cvetković, Lj., Kostić, V., Rauški, S. : A new subclass of Hmatrices. AMC (2009)

Cvetković, Lj., Nedović, M. : Special H-matrices and their Schur and diagonal-Schur complements. AMC (2009)

Szulc, T., Cvetković, Lj., Nedović, M. : Scaling technique for Nekrasov matrices. AMC (2015) (in print)

Nonstrict conditions

DD - matrices

IDD-matrices

$\left|a_{i i}\right| \geq r_{i}(A), \quad i=1,2, \ldots, n$.

$$
\left|a_{k k}\right|>r_{k}(A) \text { for one } \mathrm{k} \text { in } \mathrm{N}
$$

irreducibility

Olga Taussky (1948)

CDD-matrices

$$
\left|a_{i i}\right| \geq r_{i}(A), \quad i=1,2, \ldots, n .
$$

$$
\left|a_{k k}\right|>r_{k}(A) \text { for one } \mathrm{k} \text { in } \mathrm{N}
$$

non-zero chains
T. Szulc (1995)

Nonstrict conditions

DD - matrices

IDD-matrices

$\left|a_{i i}\right| \geq r_{i}(A), \quad i=1,2, \ldots, n$.
$\left|a_{k k}\right|>r_{k}(A)$ for one k in N
irreducibility

Olga Taussky (1948)

CDD-matrices

$$
\left|a_{i i}\right| \geq r_{i}(A), \quad i=1,2, \ldots, n .
$$

$$
\left|a_{k k}\right|>r_{k}(A) \text { for one } \mathrm{k} \text { in } \mathrm{N}
$$

non-zero chains
T. Szulc (1995)

Li, W. : On Nekrasov matrices. LAA (1998)

Nonstrict conditions

S-IDD

Given an irreducible complex matrix $\mathrm{A}=[\mathrm{aij}] \mathrm{nxn}$, if there is a nonempty proper subset S of N such that the following conditions hold, where the last inequality becomes strict for at least one pair of indices i in S and j in NIS, then A is an H -matrix.

$$
\begin{aligned}
& \left|a_{i i}\right| \geq r_{i}^{S}(A)=\sum_{j \in S, j \neq i}\left|a_{i j}\right|, \quad i \in S \\
& \left(\left|a_{i i}\right|-r_{i}^{S}(A)\right)\left(\left|a_{j j}\right|-r_{j}^{\bar{S}}(A)\right) \geq r_{i}^{\bar{S}}(A) r_{j}^{S}(A), \quad i \in S, j \in \bar{S} .
\end{aligned}
$$

Cvetković, Lj., Kostić, V. : New criteria for identifying H-matrices. JCAM (2005)

Nonstrict conditions

S-CDD

Given a complex matrix $A=[a i j] n x n$, if there is a nonempty proper subset S of N such that the following conditions hold, where the last inequality becomes strict for at least one pair of indices i in S and j in NIS, and for every pair of indices i in S and j in NIS for which equality holds there exists a pair of indices k in S and l in NIS for which strict inequality holds and there is a path from i to l and from j to k, then A is an H -matrix.

$$
\begin{aligned}
& \left|a_{i i}\right| \geq r_{i}^{s}(A)=\sum_{j, j, j i}\left|a_{i j}\right|, \quad i \in S \\
& \left(\left|a_{i i}\right|-r_{i}^{s}(A)\right)\left(\left|a_{j j}\right|-r_{j}^{\bar{S}}(A)\right) \geq r_{i}^{\bar{s}}(A) r_{j}^{s}(A), \quad i \in S, j \in \bar{S} .
\end{aligned}
$$

Cvetković, Lj., Kostić, V. : New criteria for identifying H-matrices. JCAM (2005)

Cvetković, Lj., Kostić, V., Kovačević, M., Szulc, T. : Further results on H-matrices and their Schur complements. AMC (2008)

Cvetković, Lj., Nedović, M. : Special H-matrices and their Schur and diagonalSchur complements. AMC (2009)

Cvetković, Lj., Nedović, M. : Eigenvalue localization refinements for the Schur complement. AMC (2012)

Cvetković, Lj., Nedović, M. : Diagonal scaling in eigenvalue localization for the Schur complement. PAMM (2013)

Cvetković, Lj., Kostić, V., Nedović, M. : Generalizations of Nekrasov matrices and applications. (2014)

Szulc, T., Cvetković, Lj., Nedović, M. : Scaling technique for Nekrasov matrices. AMC (2015) (in print)

Mat Triad Coimbra 2015

THANK YOU FOR YOUR ATTENTION!

HVALA NA PAŽNJI!

