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FIXED POINTS IN b-METRIC SPACES VIA
SIMULATION FUNCTION

Gutti Venkata Ravindranadh Babu1 and Dula Tolera Mosissa23

Abstract. We introduce the concept of generalized α-η-Z-contraction
mapping with respect to a simulation function ζ in b-metric spaces and
study the existence of fixed points for such mappings in complete b-metric
spaces. Further, we extend it to partially ordered complete b-metric
spaces. We provide examples in support of our results. Our results ex-
tend the fixed point results of Olgun, Bicer and Alyildiz [15].
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1. Introduction

The famous Banach contraction principle introduced by Banach [5], ensures
the existence and uniqueness of fixed points for a contraction mapping in com-
plete metric spaces. Several researchers generalized and extended this principle
by introducing various contractions in different ambient spaces. (see [1],[2], [4],
[6], [8], [9], [10], [12], [13]).

In 1993, Stefan Czerwik [9] introduced the concept of a b-metric space as a
generalization of a metric space.

Definition 1.1. [9] Let X be a non-empty set. A function d : X ×X → [0,∞)
is said to be a b-metric if the following conditions are satisfied;

(i) 0 ≤ d(x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y,
(ii) d(x, y) = d(y, x) for all x, y ∈ X,
(iii) there exists s ≥ 1 such that d(x, z) ≤ s

[
d(x, y)+d(y, z)

]
for all x, y, z ∈

X.
In this case, the pair (X, d) is called a b-metric space with coefficient s.

Definition 1.2. [7] Let (X, d) be a b-metric space.
(i) A sequence {xn} in X is called b-convergent if there exists x ∈ X such

that d(xn, x) → 0 as n→ ∞. In this case, we write limn→∞ xn = x.
(ii) A sequence {xn} inX is called b-Cauchy if d(xn, xm) → 0 as n,m→ ∞.
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(iii) A b-metric space (X, d) is said to be a b-complete metric space if every
b-Cauchy sequence in X is b-convergent.

(iv) A set B ⊂ X is said to be b-closed if for any sequence {xn} in B such
that {xn} is b-convergent to z ∈ X then z ∈ B.

Theorem 1.3. [9] Let (X, d) be a complete b-metric space with coefficient
s = 2. Let T : X → X satisfy

d(Tx, Ty) ≤ φ(d(x, y)) for all x, y ∈ X

where φ : [0,∞) → [0,∞) is an increasing function such that lim
n→∞

φn(t) = 0 for

all t > 0. Then T has exactly one fixed point u in X and lim
n→∞

d(Tn(x), u) = 0

for all x ∈ X.

Babu and Sailaja [4] proved the following lemma which plays an important
role in proving the Cauchy part of an iterative sequence in metric spaces.

Lemma 1.4. [4] Suppose (X, d) is a metric space. Let {xn} be a sequence in
X such that d(xn, xn+1) → 0 as n → ∞. If {xn} is not a Cauchy sequence
then there exists an ϵ > 0 and sequences of positive integers {mk} and {nk}
with nk > mk ≥ k such that d(xmk

, xnk
) ≥ ϵ. For each k > 0, correspond-

ing to mk, we can choose nk to be the smallest positive integer such that
d(xmk

, xnk
) ≥ ϵ, d(xmk

, xnk−1) < ϵ and
(i) lim

k→∞
d(xnk−1, xmk+1) = ϵ

(ii) lim
k→∞

d(xnk
, xmk

) = ϵ

(iii) lim
k→∞

d(xmk−1, xnk
) = ϵ and (iv) lim

k→∞
d(xnk

, xmk+1) = ϵ.

An analog of Lemma 1.4 in the setting of b-metric spaces is the following.

Lemma 1.5. [3] Suppose (X, d) is a b-metric space with coefficient s ≥ 1 and
let {xn} be a sequence inX such that d(xn, xn+1) → 0 as n→ ∞. If {xn} is not
a Cauchy sequence then there exist an ϵ > 0 and sequences of positive integers
{mk} and {nk} with nk > mk ≥ k such that d(xmk

, xnk
) ≥ ϵ, d(xmk

, xnk−1) < ϵ
and

(i) ϵ ≤ lim sup
k→∞

d(xmk
, xnk

) ≤ sϵ

(ii) ϵ
s ≤ lim sup

k→∞
d(xmk+1, xnk

) ≤ s2ϵ

(iii) ϵ
s ≤ lim sup

k→∞
d(xmk

, xnk+1) ≤ s2ϵ

(iv) ϵ
s2 ≤ lim inf

k→∞
d(xmk+1, xnk+1) ≤ lim sup

k→∞
d(xmk+1, xnk+1) ≤ s3ϵ.

In 2012, Samet, Vetro and Vetro [17], introduced an α-admissible mapping
as follows;

Definition 1.6. [17] Let T : X → X be a mapping and let α : X×X → [0,∞)
be a function. We say that T is an α-admissible mapping if x, y ∈ X,α(x, y) ≥
1 =⇒ α(Tx, Ty) ≥ 1.
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Definition 1.7. [16] Let T : X → X be a mapping and let α : X × X →
[0,∞) be a function. We say that T is an α-orbital admissible mapping if
x, y ∈ X,α(x, Tx) ≥ 1 =⇒ α(Tx, T 2x) ≥ 1.

Definition 1.8. [16] Let T : X → X and α : X ×X → [0,∞). We say that T
is a triangular α-orbital admissible mapping if

(i) T is an α-orbital admissible mapping and
(ii) α(x, y) ≥ 1 and α(y, Ty) ≥ 1 =⇒ α(x, Ty) ≥ 1, x, y ∈ X.

Remark 1.9. Every triangular α-admissible mapping is a triangular α-orbital
admissible mapping. There exists a triangular α-orbital admissible mapping
which is not a triangular α-admissible mapping. For more details see[16].

Definition 1.10. [8] Let T : X → X and α, η : X ×X → [0,∞). Then T is
said to be an α-orbital admissible mapping with respect to η if
α(x, Tx) ≥ η(x, Tx) implies α(Tx, T 2x) ≥ η(Tx, T 2x).

Definition 1.11. [8] Let T : X → X and α, η : X × X → [0,∞). Then T
is said to be a triangular α-orbital admissible mapping with respect to η if (i)
α-orbital admissible mapping with respect to η

(ii) α(x, y) ≥ η(x, y) and α(y, Ty) ≥ η(y, Ty) implies α(x, Ty) ≥ η(x, Ty).

Lemma 1.12. [8] Let T be a triangular α-orbital admissible mapping with re-
spect to η. Assume that there exists x0 ∈ X such that α(x0, Tx0) ≥ η(x0, Tx0).
We define a sequence {xn} by xn+1 = Txn. Then α(xm, xn) ≥ η(xm, xn) for
all m,n ∈ N with m < n.

Definition 1.13. [11] Let (X, d) be a metric space and α, η : X×X → [0,∞).
A mapping T : X → X is said to be α-η-continuous if every sequence {xn} in
X with α(xn, xn+1) ≥ η(xn, xn+1) for all n ∈ N and xn → x as n→ ∞ implies
Txn → Tx as n→ ∞.

Definition 1.14. Let (X, d) be a b-metric space and α, η : X ×X → [0,∞).
A mapping T : X → X is said to be α-η-continuous if every sequence {xn} in
X with α(xn, xn+1) ≥ η(xn, xn+1) for all n ∈ N and xn → x as n→ ∞ implies
Txn → Tx as n→ ∞.

In 2015, Khojasteh, Shukla and Radenović [14] introduced simulation func-
tions and defined Z-contraction with respect to a simulation function.

Definition 1.15. [14] A simulation function is a mapping

ζ : [0,∞)× [0,∞) → (−∞,∞)

satisfying the following conditions:
(ζ1) ζ(0, 0) = 0;
(ζ2) ζ(t, s) < s− t, for all s, t > 0;
(ζ3) if {tn}, {sn} are sequences in (0,∞) such that lim

n→∞
tn = lim

n→∞
sn = ℓ ∈

(0,∞), then lim sup
n→∞

ζ(tn, sn) < 0.



136 Gutti Venkata Ravindranadh Babu, Dula Tolera Mosissa

Remark 1.16. Let ζ be a simulation function, if {tn}, {sn} are sequences in
(0,∞) such that lim

n→∞
tn = lim

n→∞
sn = ℓ ∈ (0,∞), then lim sup

n→∞
ζ(ktn, sn) < 0

for any k > 1.

The following are examples of simulation functions.

Example 1.17. Let ζ : [0,∞)× [0,∞) → (−∞,∞), be defined by
(i) ζ(t, s) = λs− t for all t, s ∈ [0,∞), where λ ∈ [0, 1).
(ii) ζ(s, t) = s

1+s − t for all t, s ∈ [0,∞).
(iii) ζ(t, s) = s− kt otherwise, where k > 1.
(iv) ζ(s, t) = s

1+s − tet for all t, s ∈ [0,∞).

Definition 1.18. [14] Let (X, d) be a metric space and T be a selfmap of X.
We say that T is a Z-contraction with respect to ζ, if there exists simulation
function ζ such that

(1.1) ζ(d(Tx, Ty), d(x, y)) ≥ 0 for all x, y ∈ X

Theorem 1.19. [14] Let (X, d) be a complete metric space and T : X → X
be a Z-contraction with respect to a certain simulation function ζ, then T has
a unique fixed point in X.

Moreover, for every x0 ∈ X, the Picard sequence {Tnx0} converges to this
fixed point.

Recently, Olgun, Bicer and Alyildiz [15] proved the following result.

Theorem 1.20. [15] Let (X, d) be a complete metric space and T be a selfmap
on X. If there exists simulation function ζ such that

(1.2) ζ(d(Tx, Ty),M(x, y)) ≥ 0 for all x, y ∈ X,

where MT (x, y) = max{d(x, y), d(x, Tx), d(y, Ty), d(x,Ty)+d(y,Tx)
2 }, then T has

a unique fixed point in X. Moreover, for every x0 ∈ X, the Picard sequence
{Tnx0} converges to this fixed point.

Motivated by the works of Olgun, Bicer and Alyildiz [15], we now introduce
a generalized α-η-Z-contraction with respect to ζ in b-metric spaces.

Definition 1.21. Let (X, d) be a b-metric space with coefficient s ≥ 1 and
α, η : X × X → [0,∞) be mappings. A mapping T : X → X is said to be
a generalized α-η-Z-contraction with respect to ζ if there exists a simulation
mapping ζ such that for any x, y ∈ X with α(x, y) ≥ η(x, y) implies

(1.3) ζ(s4d(Tx, Ty),MT (x, y)) ≥ 0,

where MT (x, y) = max{d(x, y), d(x, Tx), d(y, Ty), d(x,Ty)+d(y,Tx)
2s }.

Example 1.22. Let X = [0,∞) and let d : X ×X → [0,∞) be defined by

d(x, y) =

 0 if x = y
2|x− y| if x, y ∈ [0, 1)
1
2 |x− y| othewise.
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Clearly (X, d) is a b-metric space with coefficient s = 4.
Now, we define T : X → X by

Tx =

{
( x
40 )

2 if x ∈ [0, 1)
3x
4 + 1

4 if x ∈ [1,∞),

and α, η : X ×X → [0,∞) by

α(x, y) =

{
2 + xy if x, y ∈ [0, 12 ]
1 otherwise,

and η(x, y) =

{
0 if x, y ∈ [0, 12 ]
4 otherwise.

We now have α(x, y) ≥ η(x, y) ⇐⇒ x, y ∈ [0, 12 ].
Now, we verify the inequality (1.3) for x, y ∈ [0, 12 ]. For this purpose we

choose ζ(t, s) = 5
6s− t

For x, y ∈ [0, 12 ] we have Tx = ( x
40 )

2, T y = ( y
40 )

2, and hence

ζ(s4d(Tx, Ty),MT (x, y)) = ζ(44d(Tx, Ty),MT (x, y))

=
5

6
MT (x, y)− 256d(Tx, Ty)

≥ 5

6
d(x, y)− 256d(Tx, Ty)

=
5

3
|x− y| − 256

800
|x2 − y2|

≥ 5

3
|x− y| − 256

800
|x− y| ≥ 0.

Hence T is a generalized α-η-Z-contraction with respect to ζ.
Here we observe that the b-metric d is not continuous. For,

lim
n→∞

d(1, 1− 1

n
) =

1

2
lim

n→∞

1

n
= 0.

Hence the sequence 1− 1
n → 1 as n→ ∞. But

lim
n→∞

d(0, 1− 1

n
) = lim

n→∞
2|1− 1

n
| = 2 ̸= 1

2
= d(0, 1).

In Section 2, we prove our main results in which we study the existence
of fixed points of generalized α-η-Z-contraction mapping with respect to ζ in
complete b-metric spaces. In Section 3, we extend the main results of Sec-
tion 2 to partially ordered complete b-metric spaces. In Section 4, we provide
corollaries and examples in support of our results.

2. Main results

Theorem 2.1. Let (X, d) be a complete b-metric space with coefficient s ≥ 1.
Let T : X → X and α, η : X ×X → [0,∞) be mappings.

Suppose that the following conditions are satisfied:
(i) T is a generalized α-η-Z-contraction with respect to ζ,
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(ii) T is a triangular α-orbital admissible mapping with respect to η,
(iii) there exists x1 ∈ X such that α(x1, Tx1) ≥ η(x1, Tx1), and
(iv) T is an α-η-continuous mapping.
Then T has a fixed point x∗ ∈ X and {Tnx1} converges to x∗.

Proof. Let x1 ∈ X be as in (iii), i.e., α(x1, Tx1) ≥ η(x1, Tx1). We define
a sequence {xn} in X by xn+1 = Tnx1 = Txn for all n ∈ N. Suppose that
xn0

= xn0+1 for some n0 ∈ N, we have Txn0
= xn0

, so that xn0
is a fixed point

of T and we are through.
Hence, without loss of generality, we assume that xn+1 ̸= xn for all n ∈ N.

By Lemma 1.12, we have α(xn, xn+1) ≥ η(xn, xn+1) for all n ∈ N. From (1.3),
we have

ζ(s4d(xn+1, xn+2),MT (xn, xn+1)) = ζ(s4d(Txn, Txn+1),MT (xn, xn+1)) ≥ 0,

(2.1)

where

MT (xn, xn+1) = max{d(xn,xn+1), d(xn, Txn), d(xn+1, Txn+1),

d(xn, Txn+1) + d(xn+1, Txn)

2s
}

= max{d(xn,xn+1), d(xn, xn+1), d(xn+1, xn+2),

d(xn, xn+2) + d(xn+1, xn+1)

2s
}

≤ max{d(xn,xn+1), d(xn+1, xn+2),

d(xn, xn+1) + d(xn+1, xn+2)

2
}

= max{d(xn,xn+1), d(xn+1, xn+2)}.

Hence MT (xn, xn+1) = max{d(xn, xn+1), d(xn+1, xn+2)}.
Suppose that d(xn, xn+1) ≤ d(xn+1, xn+2) for some n ∈ N. Then we have

MT (xn, xn+1) = max{d(xn, xn+1), d(xn+1, xn+2)} = d(xn+1, xn+2).

Hence, from (2.1), we have

0 ≤ ζ(s4d(xn+1, xn+2),MT (xn, xn+1))

= ζ(s4d(xn+1, xn+2), d(xn+1, xn+2))

< d(xn+1, xn+2)− s4d(xn+1, xn+2) ≤ 0,

a contradiction. Hence d(xn+1, xn+2) < d(xn, xn+1) for all n ∈ N. Therefore,
{d(xn, xn+1)} is decreasing and bounded below. Thus there exist r ≥ 0 such
that lim

n→∞
d(xn, xn+1) = r.

Suppose that r > 0. Now, using condition (ζ3), with tn = d(xn+1, xn+2) and
sn = d(xn, xn+1), we have 0 ≤ lim sup

n→∞
ζ(s4d(xn+1, xn+2), d(xn, xn+1)) < 0, a

contradiction. Therefore, r = 0 i.e.,

(2.2) lim
n→∞

d(xn, xn+1) = 0.
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Now, we show that {xn} is a Cauchy sequence. Suppose that {xn} is not a
Cauchy sequence. Now, we consider the following two cases

Case (i) : s = 1.
In this case (X, d) is a metric space. Then by Lemma 1.4 there exist ϵ > 0

and sequence of positive integers {nk} and {mk} such that nk > mk ≥ k
satisfying

(2.3) d(xmk
, xnk

) ≥ ϵ.

Let us choose the smallest nk satisfying (2.3), then we have nk > mk ≥ k with
d(xmk

, xnk
) ≥ ϵ and d(xmk

, xnk−1) < ϵ satisfying (i)- (iv) of Lemma 1.4.
Hence we have

Ms(xmk
, xnk

)

= max{d(xmk
, xnk

), d(xmk
, Txmk

), d(xnk
, Txnk

),
d(xmk

, Txnk
) + d(xnk

, Txmk
)

2
}.

On taking limit as k → ∞ we have lim
k→∞

Ms(xmk
, xnk

) = ϵ.

Using condition (ζ3) with tk = d(xmk+1, xnk+1) and sk =M(xmk
, xnk

), we
have 0 ≤ lim sup

k→∞
ζ(d(xmk+1, xnk+1),Ms(xmk

, xnk
)) < 0, a contradiction. Thus

{xn} is a Cauchy sequence.
Case (ii) : s > 1.
Then by Lemma 1.5 there exist ϵ > 0 and sequence of positive integers {nk}

and {mk} such that nk > mk ≥ k satisfying

(2.4) d(xmk
, xnk

) ≥ ϵ.

Let us choose the smallest nk satisfying (2.4), then we have nk > mk ≥ k with
d(xmk

, xnk
) ≥ ϵ and d(xmk

, xnk−1) < ϵ satisfying (i)- (iv) of Lemma 1.5.

ϵ ≤ d(xmk
, xnk

) ≤ Ms(xmk
, xnk

)

= max{d(xmk
, xnk

), d(xmk
, Txmk

), d(xnk
, Txnk

),

d(Txmk
, xnk

) + d(xmk
, Txnk

)

2s
}.

(2.5)

Letting n→ ∞ in (2.5) and using (i) - (iv) of Lemma 1.5, we have

(2.6) ϵ ≤ lim sup
k→∞

Ms(xmk
, xnk

) ≤ max{sϵ, 0, s
2ϵ+ s2ϵ

2s
} = sϵ.

By Lemma 1.12 we have α(xmk
, xnk

) ≥ η(xmk
, xnk

). Hence from (1.3) we have
0 ≤ ζ(s4d(Txmk

, Txnk
),MT (xmk

, xnk
)).

Now we have

0 ≤ lim sup
k→∞

ζ(s4d(Txmk
, Txnk

),MT (xmk
, xnk

))

≤ lim sup
k→∞

[MT (xmk
, xnk

)− s4d(Txmk
, Txnk

)]

≤ lim sup
k→∞

MT (xmk
, xnk

)− s4 lim inf
k→∞

d(Txmk
, Txnk

) ≤ sϵ− s4(
ϵ

s2
) < 0,

(2.7)
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a contradiction. So we conclude that {xn} is a Cauchy sequence in (X, d).
Since X is a complete b-metric space then, there exists x∗ ∈ X such that

lim
n→∞

xn = x∗. Since T is α-η-continuous and α(xn, xn+1) ≥ η(xn, xn+1) for all

n ∈ N, we have x∗ = lim
n→∞

xn+1 = lim
n→∞

Txn = T lim
n→∞

xn = Tx∗. Hence T has

a fixed point.

In the following theorem, we replace the α-η-continuity of T by another
condition.

Theorem 2.2. Let (X, d) be a complete b-metric space with coefficient s ≥ 1.
Let T : X → X and α, η : X ×X → [0,∞) be mappings.

Suppose that the following conditions are satisfied:
(i) T is a generalized α-η-Z-contraction with respect to ζ,
(ii) T is a triangular α-orbital admissible mapping with respect to η,
(iii) there exists x1 ∈ X such that α(x1, Tx1) ≥ η(x1, Tx1), and
(iv) if {xn} is a sequence in X such that α(xn, xn+1) ≥ η(xn, xn+1) for all

n ∈ N and xn → x∗ ∈ X as n → ∞, then there exists a subsequence {xnk
} of

{xn} such that α(xnk
, x∗) ≥ η(xnk

, x∗) for all k ∈ N.
Then {Tnx1} converges to an element x∗ of X and x∗ is a fixed point of T .

Proof. By using similar arguments as in the proof of Theorem 2.1, we obtain
that the sequence {xn} defined by xn+1 = Txn converges to x∗ ∈ X and
α(xn, xn+1) ≥ η(xn, xn+1) for all n ∈ N.

By (iv), there exists a subsequence {xnk
} of {xn} such that α(xnk

, x∗) ≥
η(xnk

, x∗) for all k ∈ N. Hence from (1.3) we have

0 ≤ ζ(s4d(Txnk
, Tx∗),MT (xnk

, x∗)) = ζ(s4d(xnk+1, Tx
∗),MT (xnk

, x∗))

< MT (xnk
, x∗)− s4d(xnk+1, Tx

∗),

(2.8)

which implies that s4d(xnk+1, Tx
∗) < MT (xnk

, x∗).
Now, we have

(2.9) sd(xnk+1, Tx
∗) ≤ s4d(xnk+1, Tx

∗) < MT (xnk
, x∗) and

d(x∗, Tx∗) ≤MT (xnk
, x∗) = max{d(xnk

, x∗), d(xnk
, Txnk

), d(x∗, Tx∗),

d(xnk
, Tx∗) + d(Txnk

, x∗)

2
}

≤ max{d(xnk
, x∗), d(xnk

, Txnk
), d(x∗, Tx∗),

d(xnk
, x∗) + d(x∗, Tx∗) + d(Txnk

, x∗)

2
},

On taking limits as n→ ∞ we have

d(x∗, Tx∗) ≤ lim
k→∞

MT (xnk
, x∗) ≤ d(x∗, Tx∗).

Therefore lim
k→∞

MT (xnk
, x∗) = d(x∗, Tx∗).
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From (2.9) we now have
(2.10)
d(x∗, Tx∗) ≤ sd(x∗, Txnk

) + sd(Txnk
, Tx∗) ≤ sd(x∗, Txnk

) +MT (xnk
, x∗)

On taking limit as k → ∞ on (2.10), we have

(2.11) d(x∗, Tx∗) ≤ s lim
k→∞

d(xnk+1, Tx
∗) ≤ d(x∗, Tx∗).

Hence we have

(2.12) lim
k→∞

d(xnk+1, Tx
∗) =

1

s
d(x∗, Tx∗).

Suppose x∗ ̸= Tx∗. Now by choosing tk = sd(xnk+1, Tx
∗) and sk =MT (xnk

, x∗)
from property (ζ3), it follows that

0 ≤ lim sup
k→∞

ζ(s4d(Txnk
, Tx∗),MT (xnk

, x∗)) < 0,

a contradiction. Hence Tx∗ = x∗. Therefore T has a fixed point.

Theorem 2.3. In addition to the hypotheses of Theorem 2.1 (Theorem 2.2)
assume the following.

Condition (H): for all x ̸= y ∈ X, there exists v ∈ X such that
α(x, v) ≥ η(x, v), α(y, v) ≥ η(y, v) and α(v, Tv) ≥ η(v, Tv).

Then T has a unique fixed point.

Proof. Suppose that z∗ and y∗ are two fixed points of T with z∗ ̸= y∗. Then by
our assumption, there exists a v ∈ X such that α(z∗, v) ≥ η(z∗, v), α(y∗, v) ≥
η(y∗, v) and α(v, Tv) ≥ η(v, Tv) so that condition (iii) of Theorem 2.1 (The-
orem 2.2) holds with x1 = v, also. Now, by applying Theorem 2.1 (Theorem
2.2), we deduce that {Tnv} converges to a fixed point x∗ (say) of T and hence
the sequence is {d(x∗, Tnv)} is bounded.

Now, since d(z∗, Tnv) ≤ s[d(z∗, x∗) + d(x∗, Tnv)], we have the sequence
{d(z∗, Tnv)} is bounded. Therefore there exists a subsequence {d(z∗, Tnkv)}
of {d(z∗, Tnv)} such that lim

n→∞
d(z∗, Tnkv) = ℓ, for some nonnegative real ℓ.

Now, we have

d(z∗, Tnkv) ≤ MT (z
∗, Tnkv)

= max{d(z∗, Tnkv), d(z∗, T z∗), d(Tnkv, Tnk+1v),

d(z∗, Tnk+1v) + d(Tz∗, Tnkv)

2s
}

= max{d(z∗, Tnkv), d(Tnkv, Tnk+1v),

d(z∗, Tnk+1v) + d(z∗, Tnkv)

2s
}

≤ max{d(z∗, Tnkv), d(Tnkv, Tnk+1v),

s[d(z∗, Tnk) + d(Tnk , Tnk+1v)] + d(z∗, Tnkv)

2s
}.

(2.13)
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On taking limits as k → ∞ we have lim
n→∞

MT (z
∗, Tnkv) = ℓ.

We now show that ℓ = 0. Suppose ℓ > 0.
Since T is triangular α-orbital admissible with respect to η, we have

α(v, Tnv) ≥ η(v, Tnv) and hence α(z∗, Tnv) ≥ η(z∗, Tnv) and α(y∗, Tnv) ≥
η(y∗, Tnv) for all n ∈ N.

Now, from (1.3) we have ζ(s4d(z∗, Tnk+1v),MT (z
∗, Tnkv)) ≥ 0.

Hence, we have s4d(z∗, Tnk+1v) ≤MT (z
∗, Tnkv) which implies that

sd(z∗, Tnk+1v) ≤ s3d(z∗, Tnk+1v) ≤ MT (z
∗, Tnkv).

Now, we have

d(z∗, Tnkv)≤sd(z∗, Tnk+1v)+sd(Tnk+1v, Tnkv) ≤MT (z
∗, Tnkv)+sd(z∗, Tnkv).

On taking limits as k → ∞ we have

lim
n→∞

sd(z∗, Tnk+1v) = ℓ.

Now, by choosing tk = sd(z∗, Tnk+1v) and sk = MT (z
∗, Tnkv), from prop-

erty (ζ3), it follows that

0 ≤ lim sup
k→∞

ζ(s4d(z∗, Tnk+1v),MT (z
∗, Tnkv)) < 0,

a contradiction. Hence ℓ = 0. Hence Tnkv → z∗ as n→ ∞. Therefore z∗ = x∗.
Similarly we can prove that y∗ = x∗.
Thus it follows that z∗ = y∗, a contradiction. Hence T has a unique fixed

point.

3. A fixed point result in partially ordered b-metric spaces

Definition 3.1. Let (X,≼) be a partially ordered set. If there exists a b-metric
d on X with coefficient s ≥ 1, such that (X, d) is complete, then we say that
(X,≼, d) is a partially ordered complete b-metric space with coefficient s ≥ 1.

Theorem 3.2. Let (X,≼, d) be a partially ordered complete b-metric space
with coefficient s ≥ 1. Let T : X → X be a selfmap of X. Assume that the
following conditions are satisfied:

(i) there exists a simulation mapping ζ such that

ζ(s4d(Tx, Ty),MT (x, y)) ≥ 0, for any x, y ∈ Xwith x ≼ y,

where MT (x, y) = max{d(x, y), d(x, Tx), d(y, Ty), d(x,Ty)+d(y,Tx)
2s },

(ii) T is a nondecreasing,
(iii) there exists an x1 ∈ X such that x1 ≼ Tx1,

(iv) either T is continuous or if {xn} is a decreasing sequence with xn → x∗ as
n→ ∞, then there exists a subsequence {xnk

} of {xn} such that xnk
≼ x∗ for

all k ∈ N.
Then {Tnx1} converges to an element x∗ of X and x∗ is a fixed point of T .
Further, if for all x ̸= y ∈ X, there exists v ∈ X such that x ≼ v, y ≼ v and

v ≼ Tv, then T has a unique fixed point.
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Proof. We define functions α, η : X ×X → [0,∞) by

α(x, y) =

{
3 if x ≼ y
0 otherwise,

and η(x, y) =

{
1 if x ≼ y
4 otherwise.

Now, for any x, y ∈ X, α(x, y) ≥ η(x, y) if and only if x ≼ y. By (i), we
have ζ(s4d(Tx, Ty),MT (x, y)) ≥ 0. Suppose that α(x, Tx) ≥ η(x, Tx), then we
have x ≼ Tx. Since T is nondecreasing, we have Tx ≼ TTx which implies that
α(Tx, TTx) ≥ η(Tx, TTx), hence T is α-orbital admissible with respect to η.

Further, suppose that α(x, y) ≥ η(x, y) and α(y, Ty) ≥ η(y, Ty), so that we
have x ≼ y and y ≼ Ty. It follows that x ≼ Ty and hence α(x, Ty) ≥ η(x, Ty).
Thus T is triangular α-orbital admissible with respect to η. Hence T satisfies
all the hypotheses of Theorem 2.1 ( Theorem 2.2) and T has a fixed point.

Moreover, if for all x ̸= y ∈ X, there exists a v ∈ X such that x ≼ v, y ≼ v
and v ≼ Tv, then we have α(x, v) ≥ η(x, v), α(y, v) ≥ η(y, v) and α(v, Tv) ≥
η(v, Tv). Hence by Theorem 2.3, T has a unique fixed point.

4. Corollaries and examples

Corollary 4.1. Let (X, d) be a complete metric space. Let T : X → X and
α, η : X ×X → [0,∞) be mappings.

Suppose that the following conditions are satisfied:
(i) there exists a simulation mapping ζ such that for any x, y ∈ X,
α(x, y) ≥ η(x, y) implies ζ(d(Tx, Ty),M(x, y)) ≥ 0, where M(x, y) =

max{d(x, y), d(x, Tx), d(y, Ty), d(x,Ty)+d(y,Tx)
2 },

(ii) T is a triangular α-orbital admissible mapping with respect to η,
(iii) there exists an x1 ∈ X such that α(x1, Tx1) ≥ η(x1, Tx1), and
(vi) T is an α-η-continuous mapping, or if {xn} is a sequence in X such that

α(xn, xn+1) ≥ η(xn, xn+1) for all n ∈ N and xn → x∗ ∈ X as n → ∞, then
there exists a subsequence {xnk

} of {xn} such that α(xnk
, x∗) ≥ η(xnk

, x∗) for
all k ∈ N.

Then T has a fixed point x∗ ∈ X and {Tnx1} converges to x∗.
Moreover, if for all x ̸= y ∈ X, there exists v ∈ X such that

α(x, v) ≥ η(x, v), α(y, v) ≥ η(y, v) and α(v, Tv) ≥ η(v, Tv), then T has a
unique fixed point.

Proof. Follows from Theorem 2.3 by taking s = 1.

Remark 4.2. Theorem 1.20 follows as a corollary to Corollary 4.1 by choosing
α(x, y) = η(x, y) = 1 for all x, y ∈ X, which in turn Theorem 1.20 follows as a
corollary to Theorem 2.3.

Corollary 4.3. Let (X, d) be a complete b-metric space with coefficient s ≥ 1.
Let T : X → X and α, η : X ×X → [0,∞) be mappings. Assume that there
exist two continuous function ψ,φ : [0,∞) → [0,∞) with ψ(t) < t ≤ φ(t) for
all t > 0 and ψ(t) = φ(t) = 0 if and only if t = 0 such that for any x, y ∈ X
with α(x, y) ≥ η(x, y) implies

(4.1) φ(s4d(Tx, Ty)) ≤ ψ(MT (x, y)),
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where MT (x, y) = max{d(x, y), d(x, Tx), d(y, Ty), d(x,Ty)+d(y,Tx)
2s }.

Suppose that the following conditions are satisfied:
(i) T is a triangular α-orbital admissible mapping;
(ii) there exists x1 ∈ X such that α(x1, Tx1) ≥ η(x1, Tx1); and
(iii) either T is an α-η-continuous mapping, or if {xn} is a sequence in X

such that α(xn, xn+1) ≥ η(xn, xn+1) for all n ∈ N and xn → x∗ ∈ X as n→ ∞,
then there exists a subsequence {xnk

} of {xn} such that α(xnk
, x∗) ≥ η(xnk

, x∗)
for all k ∈ N.

Then {Tnx1} converges to an element x∗ of X and x∗ is a fixed point of T .

Proof. The conclusion of this corollary follows from Theorem 2.1(Theorem 2.2)
by taking ζ(t, s) = ψ(s)− φ(t) for all t, s ≥ 0.

Corollary 4.4. Let (X, d) be a complete b-metric space with coefficient s ≥ 1.
Let T : X → X and α, η : X ×X → [0,∞) be mappings.

Suppose that the following conditions are satisfied:
(i) there exists a simulation mapping ζ such that for any x, y ∈ X with
α(x, y) ≥ 1 implies ζ(s4d(Tx, Ty),MT (x, y)) ≥ 0, where MT (x, y) =

max{d(x, y), d(x, Tx), d(y, Ty), d(x,Ty)+d(y,Tx)
2s }.

(ii) T is a triangular α-orbital admissible mapping,
(iii) there exists an x1 ∈ X such that α(x1, Tx1) ≥ 1, and
(iv) T is an α-continuous mapping, or if {xn} is a sequence in X such that

α(xn, xn+1) ≥ 1 for all n ∈ N, and xn → x∗ ∈ X as n → ∞, then there exists
a subsequence {xnk

} of {xn} such that α(xnk
, x∗) ≥ 1 for all k ∈ N.

Then T has a fixed point x∗ ∈ X and {Tnx1} converges to x∗.
Moreover, if for all x ̸= y ∈ X, there exists v ∈ X such that α(x, v) ≥ 1,

α(y, v) ≥ 1 and α(v, Tv) ≥ 1, then T has a unique fixed point.

Proof. Follows from Theorem 2.1(Theorem 2.2) and Theorem 2.3 by taking
η(x, y) = 1 for all x, y ∈ X.

Example 4.5. Let X = [0,∞) and let d : X ×X → [0,∞) be defined by
d(x, y) = |x − y|2. Clearly (X, d) is a b-metric space with coefficient s = 2.
We define T : X → X by

Tx =

{
1− x

6 if x ∈ [0, 1]
2x− 2 if x ∈ (1,∞)

and α, η : X ×X → [0,∞) by

α(x, y) =

{
2 + xy if x, y ∈ [0, 1]
0 otherwise,

and η(x, y) =

{
1 + xy if x, y ∈ [0, 1]
4 otherwise.

We now have α(x, y) ≥ η(x, y) ⇐⇒ x, y ∈ [0, 1]. Let α(x, Tx) ≥ η(x, Tx),
then x, Tx ∈ [0, 1] and hence Tx, TTx ∈ [0, 1], since for any x ∈ [0, 1] we
have Tx ∈ [0, 1]. therefore α(Tx, TTx) ≥ η(Tx, TTx). Hence T is α-orbital
admissible with respect to η.
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Suppose that α(x, y) ≥ η(x, y) and α(y, Ty) ≥ η(y, Ty), then
x, y, Ty ∈ [0, 1] which implies that α(x, Ty) ≥ η(x, Ty). Hence T is triangular
α-orbital admissible with respect to η.

Let {xn} be a sequence such that xn → x as n→ ∞ and
α(xn, xn+1) ≥ η(xn, xn+1) for all n ∈ N. Then {xn} ⊆ [0, 1] for all n ∈ N.
Then we have
lim

n→∞
Txn = lim

n→∞
(1− xn

6
) = 1− lim

n→∞

xn
6

= 1− x

6
= Tx. Hence T is

α-η-continuous.
Now, we verify the inequality (1.3) for x, y ∈ [0, 1]. For x = y the inequality

holds trivially, hence we verify for x ̸= y.
We define ζ : [0,∞)× [0,∞) → [0,∞) by ζ(t, s) = s

1+s − t.
Since α(x, y) ≥ η(x, y) if and only if x, y ∈ [0, 1], we have Tx = 1 − x

5 and
Ty = 1− y

5 . Hence

ζ(s4d(Tx, Ty),MT (x, y))

=
MT (x, y)

1 +MT (x, y)
− s4d(Tx, Ty)

≥ d(x, y)

1 + d(x, y)
− 16d(Tx, Ty)

=
|x− y|2

1 + |x− y|2
− 16

36
|x− y|2

≥ 16

36
|x− y|2 − 16

36
|x− y|2 = 0.

Hence T satisfies all the hypothesis of Theorem 2.1 with x = 6
7 and x = 2 are

fixed points of T.
Here we observe that ’Condition (H)’ of Theorem 2.3 fails to hold. For,

choose x = 5 and x = 6, then there is no v ∈ X such that α(5, v) ≥ η(5, v) and
α(6, v) ≥ η(6, v).

Remark 4.6. In the usual metric, the inequality (1.2) fails. For, by choosing
x = 3 and y = 4, we have MT (3, 4) = 2 and d(T3, T4) = 2 and hence we have
ζ(d(T3, T4),MT (3, 4)) = ζ(2, 2) < 0, for any simulation function ζ.

Hence Theorem 1.20 is not applicable.

Example 4.7. Let X = [0,∞) and let d : X ×X → [0,∞) be defined by
d(x, y) = |x − y|2. Hence (X, d) is a complete b-metric space with coefficient
s = 2. We define T : X → X by

Tx =

{
2
11x if x ∈ [0, 6]
x
6 − 1 if x ∈ (6,∞),

and α, η : X ×X → [0,∞) by

α(x, y) =

 2 if x, y ∈ [0, 6],
3 if x ∈ (6,∞), y = 0,
1 + xy otherwise,
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and

η(x, y) =

 0 if x, y ∈ [0, 6],
1 if x ∈ (6,∞), y = 0,
4 + xy otherwise.

We now have α(x, y) ≥ η(x, y) ⇐⇒ x, y ∈ [0, 6] and x ∈ (6,∞), y = 0.
Suppose that α(x, Tx) ≥ η(x, Tx), then we have x ∈ [0, 6) and hence

α(Tx, TTx) ≥ η(Tx, TTx). Therefore T is α-orbital admissible with respect
to η.

Suppose that α(x, y) ≥ η(x, y) and α(y, Ty) ≥ η(y, Ty), then we have
x, y ∈ [0, 6], or x ∈ (6,∞) and y = 0, which implies that x, Ty ∈ [0, 6], or
x ∈ (6,∞) and Ty = y = 0 and hence α(x, Ty) ≥ η(x, Ty). Therefore T is
triangular α-orbital admissible with respect to η.

We now verify the inequality (1.3). For this purpose we define
ζ : [0,∞)× [0,∞) → (−∞,∞) by ζ(t, s) = 3

4s− t.
Now we have the following cases.

Case (i) : x, y ∈ [0, 6)
In this case Tx = 2

11x, Ty = 2
11y, then we have

ζ(24d(Tx, Ty),MT (0, y))= ζ(16d(Tx, Ty),MT (x, y))

= 3
4MT (x, y)− 16d(Tx, Ty)

≥ 3

4
d(x, y)− 16(

4

121
|x− y|2)

=
3

4
|x− y|2 − 16(

4

121
|x− y|2) ≥ 0.

Case (ii) : x ∈ (6,∞), y = 0
In this case Tx = x

6 − 1, T0 = 0, then we have

ζ(16d(Tx, T0),MT (x, 0)) =
3

4
MT (x, 0)− 16(|y

6
− 1|2)

=
3

4
MT (x, 0)− 16(

1

36
|y − 6|2)

≥ 3

4
y2 − 16

36
|y − 6|2 ≥ 0.

Hence T satisfies the inequality (1.3). Also, since for any x ̸= y ∈ X we
have α(x, 0) ≥ η(x, 0), α(y, 0) ≥ η(y, 0) and α(0, T0) ≥ η(0, T0), T satisfies
’Condition (H)’. Hence T satisfies all the hypotheses of Theorem 2.3, and x = 0
is the unique fixed point of T.

Example 4.8. Let X = [0,∞) and a b-metric be as defined in Example 1.22.
Further, let T, α, η be as in Example 1.22. Then clearly T satisfies all the

hypotheses of Theorem 2.1 and x = 0 and x = 1 are two fixed points.
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