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FIXED POINTS IN s--METRIC SPACES VIA
SIMULATION FUNCTION

Gutti Venkata Ravindranadh Babu® and Dula Tolera Mosissa?®

Abstract. We introduce the concept of generalized a-n-Z-contraction
mapping with respect to a simulation function ¢ in b-metric spaces and
study the existence of fixed points for such mappings in complete b-metric
spaces. Further, we extend it to partially ordered complete b-metric
spaces. We provide examples in support of our results. Our results ex-
tend the fixed point results of Olgun, Bicer and Alyildiz [IH)].
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1. Introduction

The famous Banach contraction principle introduced by Banach [5], ensures
the existence and uniqueness of fixed points for a contraction mapping in com-
plete metric spaces. Several researchers generalized and extended this principle
by introducing various contractions in different ambient spaces. (see [1],[2], [4],
6], (5], o], (10, 2], [i).

In 1993, Stefan Czerwik [0] introduced the concept of a b-metric space as a
generalization of a metric space.

Definition 1.1. [0] Let X be a non-empty set. A function d : X x X — [0, 00)
is said to be a b-metric if the following conditions are satisfied;

(i) 0 < d(z,y) for all z,y € X and d(z,y) = 0 if and only if x = y,

(ii) d(z,y) = d(y,z) for all z,y € X,

(iii) there exists s > 1 such that d(z, z) < s[d(z,y)+d(y,2)] for all z,y,z €
X.

In this case, the pair (X, d) is called a b-metric space with coefficient s.

Definition 1.2. [[4] Let (X, d) be a b-metric space.

(i) A sequence {z,} in X is called b-convergent if there exists x € X such
that d(z,,z) — 0 as n — oo. In this case, we write lim,, oo T, = .

(ii) A sequence {z,,} in X is called b-Cauchy if d(z,, z;,) — 0 as n,m — .
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(iii) A b-metric space (X, d) is said to be a b-complete metric space if every
b-Cauchy sequence in X is b-convergent.

(iv) A set B C X is said to be b-closed if for any sequence {z,} in B such
that {x,,} is b-convergent to z € X then z € B.

Theorem 1.3. [d] Let (X,d) be a complete b-metric space with coefficient
s=2. Let T: X — X satisty

d(Tz, Ty) < p(d(x,y)) for all z,y € X

where ¢ : [0,00) — [0, 00) is an increasing function such that lim ¢™(¢) = 0 for
n—oo

all ¢ > 0. Then T has exactly one fixed point u in X and le d(T"(x),u) =0

for all z € X.

Babu and Sailaja [d] proved the following lemma which plays an important
role in proving the Cauchy part of an iterative sequence in metric spaces.

Lemma 1.4. [d] Suppose (X,d) is a metric space. Let {x,} be a sequence in
X such that d(z,,Zn+1) — 0 as n — oo. If {x,} is not a Cauchy sequence
then there exists an e > 0 and sequences of positive integers {my} and {nj}
with ng > my > k such that d(a,,,,2n,) > €. For each k > 0, correspond-
ing to my, we can choose ny to be the smallest positive integer such that
ATy s Tny) > €,A(Tmy,, Tny—1) < € and
(1) Um d(Tn,—1,Tme+1) =€
k—o0
(i) lim d(@p,, Tm,) =€
k—oo
(iii) klim ATy —1,%n,) =€ and  (iv) lim d(xn,, Tme+1) = €
—00

k—oco

An analog of Lemma [ in the setting of b-metric spaces is the following.

Lemma 1.5. [8] Suppose (X, d) is a b-metric space with coefficient s > 1 and
let {z,,} be a sequence in X such that d(zy, xpt+1) = 0asn — co. If {x,,} is not
a Cauchy sequence then there exist an € > 0 and sequences of positive integers
{my} and {ny } with ny > my > k such that d(zm,, 2n,) > €, d(Tm,, Tn,—1) < €
and

(i) e < limsupd(xm,, Tn, ) < s€
k—o0
(ii) < <limsupd(zm41,Tn,) < s%e
k—o00
(iii) € < limsup d(2m,, Tny+1) < s%e
k—o0
(iv) & <liminfd(@m, 11, Tn,41) < Hmsup d(Tm, 41, Tngt1) < s3e.
k—o0 k— o0

In 2012, Samet, Vetro and Vetro [I7], introduced an a-admissible mapping
as follows;

Definition 1.6. [7] Let T : X — X be a mapping and let o : X x X — [0, 00)
be a function. We say that T is an a-admissible mapping if z,y € X, a(z,y) >
1 = oTz,Ty) > 1.
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Definition 1.7. [i6] Let 7' : X — X be a mapping and let o : X x X —
[0,00) be a function. We say that T is an a-orbital admissible mapping if
r,y € X,a(z,Tx) > 1 = o(Tz,T?z) > 1.

Definition 1.8. [6] Let 7: X — X and o : X x X — [0,00). We say that T
is a triangular a-orbital admissible mapping if

(i) T is an a-orbital admissible mapping and

(i) a(z,y) >1and a(y,Ty) > 1 = o(z,Ty) > 1, z,ye X.

Remark 1.9. Every triangular a-admissible mapping is a triangular a-orbital
admissible mapping. There exists a triangular a-orbital admissible mapping
which is not a triangular a-admissible mapping. For more details seell8].

Definition 1.10. [8] Let 7: X — X and a,n: X x X — [0,00). Then T is
said to be an a-orbital admissible mapping with respect to 7 if
a(z,Tx) > n(x, Tz) implies o(Tx, T?z) > n(Tz, T?x).

Definition 1.11. 8] Let 7 : X — X and a,n : X x X — [0,00). Then T
is said to be a triangular a-orbital admissible mapping with respect to 7 if (i)
a-orbital admissible mapping with respect to n

(i) a(z,y) > n(z,y) and a(y, Ty) > n(y, Ty) implies a(z, Ty) > n(z, Ty).

Lemma 1.12. [§] Let T be a triangular a-orbital admissible mapping with re-
spect to 7. Assume that there exists xg € X such that a(xg, Tzg) > n(zo, Txo).
We define a sequence {z,} by xp+1 = Ta,. Then alz,,x,) > n(xm, x,) for
all m,n € N with m <n.

Definition 1.13. [I1] Let (X, d) be a metric space and «, 7 : X X X — [0, 00).
A mapping T : X — X is said to be a-n-continuous if every sequence {z,} in
X with a(xn, zne1) > n(@n, pe1) for all n € N and z,, — x as n — oo implies
Tx, — Tx as n — o0o.

Definition 1.14. Let (X, d) be a b-metric space and «,n : X x X — [0, 00).
A mapping T : X — X is said to be a-n-continuous if every sequence {z,} in
X with a(xn, zny1) > (@, pe1) for all n € N and z,, — x as n — oo implies
Tx, — Tx as n — o0o.

In 2015, Khojasteh, Shukla and Radenovié [4] introduced simulation func-
tions and defined Z-contraction with respect to a simulation function.

Definition 1.15. [[4] A simulation function is a mapping
C : [0700) X [0,00) - (—O0,00)

satisfying the following conditions:

(¢1) ¢(0,0) = 0;
(C2) C(t,s) < s —t, for all s,t > 0;
(¢3) if {tn}, {sn} are sequences in (0, 00) such that lim ¢, = lim s, =¢¢€

n—oo n— oo
(0, 00), then limsup (¢, s,) < 0.

n— oo



136 Gutti Venkata Ravindranadh Babu, Dula Tolera Mosissa

Remark 1.16. Let ¢ be a simulation function, if {¢,},{s,} are sequences in
(0,00) such that lim ¢, = lim s, = ¢ € (0,00), then limsup ((kt,, s,) <0
n—oo n— oo

n—oo

for any k£ > 1.

The following are examples of simulation functions.

Example 1.17. Let ¢ : [0,00) x [0,00) — (—00,00), be defined by
(i) ¢(t,s) = As —t for all t, s € [0,00), where A € [0, 1).
(ii) ¢(s,t) = 155 —t for all ¢, s € [0, 00).
(iii) ¢(t,s) = s — kt  otherwise, where k > 1.

(iv) ¢(s,t) = 135 —te' for all t,s € [0, 00).

Definition 1.18. [4] Let (X, d) be a metric space and T be a selfmap of X.
We say that T is a Z-contraction with respect to (, if there exists simulation
function ¢ such that

(1.1) C(d(Tz,Ty),d(z,y)) >0 for all x,y € X

Theorem 1.19. [[@] Let (X,d) be a complete metric space and T : X — X
be a Z-contraction with respect to a certain simulation function ¢, then 7" has
a unique fixed point in X.

Moreover, for every zg € X, the Picard sequence {T™z(} converges to this
fixed point.

Recently, Olgun, Bicer and Alyildiz [T5] proved the following result.

Theorem 1.20. [I5] Let (X, d) be a complete metric space and T be a selfmap
on X. If there exists simulation function ¢ such that

(1.2) C(d(Tz, Ty), M(x,y)) >0 for all z,y € X,

where My (z,y) = max{d(z,y),d(z,Tz),d(y, Ty), W}, then T has
a unique fixed point in X. Moreover, for every xg € X, the Picard sequence
{T™xo} converges to this fixed point.

Motivated by the works of Olgun, Bicer and Alyildiz 5], we now introduce
a generalized a-n-Z-contraction with respect to ¢ in b-metric spaces.

Definition 1.21. Let (X, d) be a b-metric space with coefficient s > 1 and
a,m: X x X — [0,00) be mappings. A mapping T : X — X is said to be
a generalized a-n-Z-contraction with respect to ( if there exists a simulation
mapping ¢ such that for any z,y € X with a(z,y) > n(x,y) implies

(1.3) ¢(s*d(Tx, Ty), Mr(z,y)) > 0,
where Mz (x,y) = max{d(x,y), d(z, Tz), d(y, Ty), A0 ),
Example 1.22. Let X = [0,00) and let d : X x X — [0,00) be defined by

0 if =y
d(l’7y) = 2|$—y‘ if T,y € [071)
3lo —y| othewise.
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Clearly (X, d) is a b-metric space with coefficient s = 4.
Now, we define T : X — X by

(&) if z€]0,1)
Ta:—{ 80 1 i g e [1,00),

and a,n: X x X — [0,00) by

_f 24xy  if 2,y€0,3] [0 if zyelo, ]
oz, y) = { 1 otherwise, and n(2,y) = 4 otherwise.

We now have a(z,y) > n(z,y) <= =,y € [0, 3].

Now, we Verify the inequality (I=3) for z,y € [0,1]. For this purpose we
choose ((t, s) = 68 —t

For z,y € [0, 3] we have Tz = ()%, Ty = (#)?, and hence

40
C(S4d(T$, Ty)a MT($7 y)) = C(

(=)

d(Tz, Ty), Mr(z,y))
T(z,

= % y) — 256d(Tz, Ty)
> %d( ,y) — 256d(Tz, Ty)
= 2oyl - 2ol =)
> 2oyl - ooyl 20

Hence T is a generalized a-n-Z-contraction with respect to (.
Here we observe that the b-metric d is not continuous. For,
1 1 1
lim d(1,1 - —)= - lim — =0.

n—oo n 2 n—oon

Hence the sequence 1 — % — 1 as n — oco. But

lim d(0, 173)7 hm 2|1,,|727g,7 d(0,1).
n—oo
In Section 2, we prove our main results in which we study the existence
of fixed points of generalized a-n-Z-contraction mapping with respect to ¢ in
complete b-metric spaces. In Section 3, we extend the main results of Sec-
tion 2 to partially ordered complete b-metric spaces. In Section 4, we provide
corollaries and examples in support of our results.

2. Main results

Theorem 2.1. Let (X, d) be a complete b-metric space with coefficient s > 1.
Let T: X — X and a,n: X x X — [0,00) be mappings.

Suppose that the following conditions are satisfied:

(i) T is a generalized a-n-Z-contraction with respect to ,
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(ii) T is a triangular a-orbital admissible mapping with respect to 7,

(iii) there exists 1 € X such that a(z1,T21) > n(z1,Tz1), and

(iv) T is an a-n-continuous mapping,.

Then T has a fixed point z* € X and {T"z1} converges to z*.
Proof. Let 1 € X be as in (iii), i.e., a(xy,Tx1) > n(xy,Try). We define
a sequence {z,} in X by z,4+1 = T"xq = Tz, for all n € N. Suppose that
Ty = Tny+1 for some ng € N, we have Tz, = xy,, so that x,, is a fixed point
of T and we are through.

Hence, without loss of generality, we assume that x,,+1 # x, for all n € N.
By Lemma T2, we have a(p, Znt1) > 0(Tn, Tny1) for all n € N. From (I3),
we have

(2.1)
C(s4d($n+1; xn+2); MT(Z’n, l'nJrl)) = C(S4d(T£L'n, Tl'nJrl)a MT(xna anrl)) Z O,
where
My (xn; xn«kl) = max{d(mn7xn+1)7 d((En, Tl'n), d(anrl» Txn+1)7
d(l‘n, Txn-l—l) + d(xn-i-la Txn) }
2s
= max{d(xn,xn+1), d(xna xn-i—l)a d(l‘n+1, xn+2)7
d(zna xn+2) + d($n+1, xn—i—l) }
2s
max{d(zn,zn11), d(@nt1, Tnt2),
d((En, anrl) + d(anrly mn+2)
2 }
= max{d(xmxn+1)7 d(Tpy1, xn+2)}'

IN

Hence Mr(zy,, pt1) = max{d(xn, Tni1), d(Tnt1, Tnia)}
Suppose that d(z,, z,11) < d(Tp41, Tnte) for some n € N. Then we have
Mr(zp, Tnt1) = max{d(Tn, Tni1), d(@n+1, Tnt2)} = d(Tnt1, Tnta)-

Hence, from (E71I), we have

0 S <(84d(xn+17 xn+2)7 MT(Q?n, anrl))
= ((s*d(Zpi1, Tns2), d(@ny1, Tpi2))
< d(Tpi1, Tnya) — 8 d(Tng1, Tai2) <O,
a contradiction. Hence d(Zpn41,%n42) < d(@pn, Tne1) for all n € N. Therefore,
{d(zy, xns1)} is decreasing and bounded below. Thus there exist » > 0 such
that lim d(zn, zpy1) = 7.
n— 00
Suppose that r > 0. Now, using condition ({3), with ¢, = d(zp41,Zn+2) and

Sp = d(xp,Tni1), we have 0 < limsup ((s*d(2pq1, Tnio), d(Tn, Tni1)) < 0, a
n—roo
contradiction. Therefore, r = 0 i.e.,

(2.2) lim d(xn,zn41) = 0.

n— oo
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Now, we show that {z,} is a Cauchy sequence. Suppose that {z,} is not a
Cauchy sequence. Now, we consider the following two cases

Case (i) : s=1.

In this case (X, d) is a metric space. Then by Lemma [ there exist € > 0
and sequence of positive integers {n;} and {my} such that ny > my > k
satisfying

(2.3) A(Tim,, s Tn,,) > €.

Let us choose the smallest ny, satisfying (E233), then we have ny > my > k with

ATy, Ty, ) > € and d(Xm,,, Tn,—1) < € satisfying (i)- (iv) of Lemma I
Hence we have

MS (zmk bl xnk)

d(xm,,, Trn d(xn,, Trm
= max{d(Tm,, Tn,), A @Tmy, TCm, ), d(@n,, TTn, ), (e, T2 ’“)—; (@ny, T ’“)}

On taking limit as k — oo we have klim M (T, s Tn,,) = €.
—00

Using condition ({3) with ¢t = d(Zm, +1,Tn,+1) and s = M (T, , Tn, ), We

have 0 < limsup ((d(Zm,+1, Tnp+1)s Ms(Tmy, Tn,)) < 0, a contradiction. Thus
k—o00

{z,} is a Cauchy sequence.

Case (ii) : s > 1.

Then by Lemma [CH there exist € > 0 and sequence of positive integers {ny}
and {my} such that ni > my > k satisfying
(2.4) A(Tpm,, Tn,) > €

Let us choose the smallest ny, satisfying (E4), then we have ng > my > k with
ATy, s Ty, ) > € and d(Xm,,, Tn,—1) < € satisfying (i)- (iv) of Lemma [H.
(2.5)
€ < d(Tmys Tny) < Ms(Tmys Tny,)
= max{d(@m,, Tn,),d(Tm,, TTm,), ATn,, TTn, ),
d(Txmys Tny) + d(@mys TTn,)
25 b
Letting n — oo in (23) and using (i) - (iv) of Lemma 3, we have

} = se.

By Lemma T2 we have a(Zpm,,, Tn, ) = 1(Tm,,, Tn, ). Hence from (I23) we have
0< <(54d(T517mk ) Tznk)? MT(xmk y Ty, ))-
Now we have

2 2
. +

(2.6) e < limsup My (T, , Tn, ) < max{se, 0, gerse
k—o0 2s

(2.7)
0< limsup((s4d(Txmk,Txnk),MT(xmk,xnk))
k—o0
< limsup[Mp(Tm,, Tn,) — s4d(Txmk,T:cnk )]
k— o0
< limsup My (Tm,, Tn,) — st liminf d(Tzp,, Ten,) < se — 54( < ) <0,

k—00 k—oc0 82
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a contradiction. So we conclude that {z,} is a Cauchy sequence in (X, d).
Since X is a complete b-metric space then, there exists #* € X such that

lim x, = z*. Since T is a-n-continuous and «(xy, Tpi1) = N(@n, Tni1) for all
n—oo

n € N, we have z* = lim z,41 = lim Tz, =T lim x, = Tz". Hence T has
n—oo n—oo n—oo

a fixed point. O

In the following theorem, we replace the a-n-continuity of T° by another
condition.

Theorem 2.2. Let (X, d) be a complete b-metric space with coefficient s > 1.
Let T: X — X and a,n: X x X — [0,00) be mappings.

Suppose that the following conditions are satisfied:

(i) T is a generalized a-n-Z-contraction with respect to ¢,

(i) T is a triangular c-orbital admissible mapping with respect to 7,

(iii) there exists x1 € X such that a(x1,Tz1) > n(x1, Tx1), and

(iv) if {z,} is a sequence in X such that a(@n, Tp+1) > n(Tn, Tni1) for all
n € N and x, — 2* € X as n — oo, then there exists a subsequence {z,, } of
{zn} such that a(z,,,z*) > n(Ty,,,z*) for all k € N.

Then {T"z1} converges to an element 2* of X and z* is a fixed point of T.

Proof. By using similar arguments as in the proof of Theorem BT, we obtain
that the sequence {z,} defined by z,+1 = Tz, converges to z* € X and
(T, Tnt1) > N(Ty, Tpyr) for all n € N.

By (iv), there exists a subsequence {z,,} of {z,} such that a(z,,,z*) >
N(Tn,,x*) for all & € N. Hence from (I=3) we have

(2.8)
0< C(s4d(Txnk,Tx*),MT(xnk,x*)) = C(S4d($nk+1,TI*),MT(Ink,l‘*))

< Mrp(zp,,x") — s4d(xnk+1,Tx*),

which implies that s*d(z,, +1,T2*) < Mz(zp,, ).
Now, we have

(2.9) sd(wn, 11, Tr*) < std(zp, 11, T2") < Mp(x,,,2") and

d(z*, Tx*) < Mr(xy,,2") = max{d(zn,,z"), d(@n, , T2y, ), d(x*, Tx"),
d(xp,, Tx*) + d(Txy,, %)
5 }
< max{d(zn,,z"),d(zn,, Txy,),d(z*, Tz"),
d(xp,,,z*) +d(x*, Tx*) + d(Tzy,,z*)
2

b

On taking limits as n — oo we have

d(z*,Tx*) < lim Myp(xy,,,x") <d(z*,Tz").

k— o0

Therefore klim My (zy,,z*) = d(a*, Tx*).
— 00
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From (Z9) we now have
(2.10)
d(z*,Tx*) < sd(a™, Txy, ) + sd(Ty,, Tr") < sd(z*, Txy, ) + Mr(x,, ,x¥)

On taking limit as k — oo on (E1M), we have

(2.11) d(z*,Tz*) <s lim d(zp,4+1,Tz*) < d(z*,Tx").
k—o00
Hence we have

1

(2.12) lim d(zp, 41, T2") = =d(z*, Tz").
k—o0 S

Suppose z* # Tz*. Now by choosing ty, = sd(zp, +1,Tx*) and s, = Mrp(xy, ,x*)

from property ((3), it follows that

0 < limsup ((s*d(Tzp,, Tx*), My (z,, ,z*)) < 0,

k—o0

a contradiction. Hence T'x* = x*. Therefore T has a fixed point. O

Theorem 2.3. In addition to the hypotheses of Theorem P70 (Theorem P2)
assume the following.

Condition (H): for all z # y € X, there exists v € X such that
a(z,v) > n(z,v),ay,v) > n(y,v) and a(v,Tv) > n(v, Tv).

Then T has a unique fixed point.

Proof. Suppose that z* and y* are two fixed points of T with z* = y*. Then by
our assumption, there exists a v € X such that a(z*,v) > n(z*,v), a(y*,v) >
n(y*,v) and a(v,Tv) > n(v,Tv) so that condition (iii) of Theorem 70 (The-
orem P2) holds with z; = v, also. Now, by applying Theorem 20 (Theorem
22), we deduce that {T"v} converges to a fixed point z* (say) of T and hence
the sequence is {d(z*, T"v)} is bounded.

Now, since d(z*,T"v) < s[d(z*,z*) 4+ d(x*,T"v)], we have the sequence
{d(z*,T"v)} is bounded. Therefore there exists a subsequence {d(z*,T™v)}
of {d(z*,T"v)} such that nl;rrgo d(z*,T™v) = ¢, for some nonnegative real /.

Now, we have

d(z*, T"v) < Mp(z*, T™v)
= max{d(z*, T"v),d(z*,Tz*), d(T™v, T™1v),
d(z*, T 1) +d(Tz*, T”’Cv)}
2s
= max{d(z*, T"v), d(T™*v, T" 1),
d(z*, T™ ) +d(z*, T"’“v)}
2s
max{d(z*, T"v),d(T" v, T™1v),
sld(z*, ™) + d(T™, T )] + d(z*, T"*v)
2s

(2.13)

IN

}.
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On taking limits as k — oo we have lim Myp(z*,T™v) = £.
n—oo

We now show that £ = 0. Suppose £ > 0.

Since T is triangular «-orbital admissible with respect to 7, we have
a(v,T"v) > n(v,T™) and hence a(z*,T"v) > n(z*,T"v) and a(y*,T"v) >
n(y*, T"v) for all n € N.

Now, from (I=3) we have ((s*d(z*, T+ 1), Mp(2*, T™v)) > 0.

Hence, we have s*d(z*, T™T1v) < Mrp(z*, T™v) which implies that

sd(z*, T™ o) < s3d(z*, T ) < My (2%, T™v).
Now, we have
d(z*, T v)<sd(z*, T o) +sd(T™ o, T™v) < My (2, T™v)4sd(z*, T™v).
On taking limits as k — oo we have

lim sd(z*, T" o) = £.
n—oo
Now, by choosing t;, = sd(z*,T™1v) and s = Mrp(z*, T"™v), from prop-
erty ((3), it follows that

0 < limsup ((s*d(z*, T™v), My (z*, T™v)) < 0,
k—o0
a contradiction. Hence ¢ = 0. Hence T"*v — z* as n — co. Therefore z* = z*.
Similarly we can prove that y* = x*.
Thus it follows that z* = y*, a contradiction. Hence T has a unique fixed
point. O

3. A fixed point result in partially ordered b-metric spaces

Definition 3.1. Let (X, <) be a partially ordered set. If there exists a b-metric
d on X with coefficient s > 1, such that (X,d) is complete, then we say that
(X, =,d) is a partially ordered complete b-metric space with coefficient s > 1.

Theorem 3.2. Let (X, =<,d) be a partially ordered complete b-metric space
with coefficient s > 1. Let T : X — X be a selfmap of X. Assume that the
following conditions are satisfied:

(i) there exists a simulation mapping ¢ such that

((s*d(Tz, Ty), Mr(z,y)) > 0, for any z,y € Xwith z <y,

where My (z,y) = max{d(z,y),d(z,Tz),d(y, Ty), W},

(ii) T is a nondecreasing,

(iil) there exists an 27 € X such that 21 < Tay,
(iv) either T is continuous or if {x,} is a decreasing sequence with z, — x* as
n — oo, then there exists a subsequence {z,, } of {z,} such that x,, < a* for
all k € N.

Then {T"z} converges to an element z* of X and z* is a fixed point of T'.

Further, if for all z # y € X, there exists v € X such that x < v,y < v and
v =X T, then T has a unique fixed point.
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Proof. We define functions «a,n: X x X — [0,00) by

3 if =y 1 if z=<y
o, y) = { 0 otherwise, and 7(z,y) = { 4 otherwise.

Now, for any z,y € X, a(z,y) > n(z,y) if and only if z < y. By (i), we
have ((s*d(Tz, Ty), Mr(z,y)) > 0. Suppose that a(z, Tx) > n(z, Tz), then we
have x =< T'z. Since T is nondecreasing, we have T'x < TTx which implies that
a(Tx, TTx) > n(Tx,TTx), hence T is a-orbital admissible with respect to 7.

Further, suppose that a(z,y) > n(z,y) and a(y, Ty) > n(y, Ty), so that we
have z <y and y < Ty. It follows that < T'y and hence a(z, Ty) > n(x, Ty).
Thus T is triangular a-orbital admissible with respect to n. Hence T satisfies
all the hypotheses of Theorem P ( Theorem PA) and T has a fixed point.

Moreover, if for all z # y € X, there exists a v € X such that z < v,y v
and v < Tv, then we have a(z,v) > n(z,v),a(y,v) > n(y,v) and a(v,Tv) >
n(v, Tv). Hence by Theorem =3, T" has a unique fixed point.

O

4. Corollaries and examples

Corollary 4.1. Let (X, d) be a complete metric space. Let T': X — X and
a,m: X x X = [0,00) be mappings.

Suppose that the following conditions are satisfied:

(i) there exists a simulation mapping ¢ such that for any =,y € X,

a(z,y) > n(z,y) implies ((d(Tz,Ty), M(z,y)) > 0, where M(z,y) =

max{d(z,y), d(z, Tx), d(y, Ty), oLl

(ii) T is a triangular c-orbital admissible mapping with respect to 7,

(i) there exists an z; € X such that o(z1,Tx1) > n(z1, Tz1), and

(vi) T is an a-n-continuous mapping, or if {z,, } is a sequence in X such that
a(Tn, Tnt1) = N(@n, Tpyr) for all n € N and z, — 2* € X as n — oo, then
there exists a subsequence {x,, } of {z,} such that a(z,, ,z*) > n(z,,,2*) for
all k€ N.

Then T has a fixed point 2* € X and {T"z1} converges to xz*.

Moreover, if for all  # y € X, there exists v € X such that
a(z,v) > nlz,v),a(y,v) > nly,v) and a(v,Tv) > n(v,Tv), then T has a
unique fixed point.

Proof. Follows from Theorem X3 by taking s = 1. O

Remark 4.2. Theorem follows as a corollary to Corollary B by choosing
a(z,y) =n(x,y) =1 for all 2,y € X, which in turn Theorem follows as a
corollary to Theorem 3.

Corollary 4.3. Let (X, d) be a complete b-metric space with coefficient s > 1.
Let T: X — X and a,n : X x X — [0,00) be mappings. Assume that there
exist two continuous function ¥, ¢ : [0,00) — [0,00) with ¢ (t) < ¢t < p(t) for
all t > 0 and ¥(t) = ¢(t) = 0 if and only if ¢ = 0 such that for any z,y € X
with a(z,y) > n(z,y) implies

(4.1) p(s'd(Tw, Ty)) < (Mr(z,y)),
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where My (z,y) = max{d(z,y),d(z,Tx),d(y, Ty), %W}.

Suppose that the following conditions are satisfied:

(i) T is a triangular c-orbital admissible mapping;

(ii) there exists x; € X such that a(xy,Tz1) > n(x1, Tx1); and

(iii) either T is an a-n-continuous mapping, or if {z,} is a sequence in X
such that a(z,, Tni1) = N(@n, Tpe) foralln € Nand 2, — 2™ € X asn — oo,
then there exists a subsequence {x, } of {z,} such that a(z,, ,z*) > n(x,, , x*)
for all k € N.

Then {T"z1} converges to an element 2* of X and z* is a fixed point of T.

Proof. The conclusion of this corollary follows from Theorem Z(Theorem 272)
by taking (¢, s) = 1(s) — (t) for all t,s > 0. O

Corollary 4.4. Let (X, d) be a complete b-metric space with coefficient s > 1.
Let T: X — X and a,n: X x X — [0,00) be mappings.

Suppose that the following conditions are satisfied:

(i) there exists a simulation mapping ¢ such that for any z,y € X with

a(z,y) > 1 implies ((s*d(Tx,Ty), Mr(x,y)) > 0, where Mrp(z,y) =

max{d(z,y),d(z,Tx),d(y, Ty), %W}.

(i) T is a triangular a-orbital admissible mapping,

(iii) there exists an z; € X such that o(z1,T21) > 1, and

(iv) T is an a-continuous mapping, or if {z,} is a sequence in X such that
a(Zp,Tpy1) > 1 for all n € N, and z,, — =* € X as n — oo, then there exists
a subsequence {z,, } of {z,} such that a(z,,,z*) > 1 for all k € N.

Then T has a fixed point z* € X and {T"z1} converges to z*.

Moreover, if for all z # y € X, there exists v € X such that a(z,v) > 1,
a(y,v) > 1 and a(v,Tv) > 1, then T has a unique fixed point.

Proof. Follows from Theorem E(Theorem E2) and Theorem E=3 by taking
n(z,y) =1 for all z,y € X. O

Example 4.5. Let X = [0,00) and let d : X x X — [0, 00) be defined by
d(z,y) = |z — y|?. Clearly (X,d) is a b-metric space with coefficient s = 2.
We define T': X — X by

1-2 ifzel01
- 6 '
T {295—2 if 2 € (1,00)

and o,n: X x X — [0,00) by

[ 242y if x,y€]0,1] [ 142y ifz,ye0,1]
oz, y) = { 0 otherwise, and n(z, y) = 4 otherwise.

We now have a(z,y) > n(z,y) < =
then z,Tz € [0,1] and hence Tz, TTx
have Tz € [0,1]. therefore o(Tz,TTx)
admissible with respect to 7.

,y € [0,1]. Let oz, Tx) > n(z,Tx),
€ [0,1], since for any = € [0,1] we
= 1(

Tz, TTx). Hence T is a-orbital
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Suppose that a(z,y) > n(z,y) and a(y, Ty) > n(y, Ty), then
x,y, Ty € [0, 1] which implies that a(z,Ty) > n(x, Ty). Hence T is triangular
a-orbital admissible with respect to 7.

Let {z,} be a sequence such that z,, — x as n — oo and
Ty, Tpy1) > N(Xp,Tpy1) for all n € N. Then {z,} C [0,1] for all n € N.
Then we have " " "
lim Tz, = lim (1--2)=1- lim ~* =1— > = Tx. Hence T is
n—o0o . n—o00 6 n—oo 6
a-n-continuous.

Now, we verify the inequality (I=3) for z,y € [0, 1]. For z = y the inequality
holds trivially, hence we verify for x # y.

We define ( : [0,00) x [0,00) — [0,00) by ((t,s) = o35 —

Since a(x y) > n(x,y) if and only if z,y € [0, 1], we have Tz =1- ¢ and
Ty =1-— £. Hence

C(S4d(Tl’, Ty)? MT(:Ca y))

MT(xay) 4
— = —*d(Tz, T
T+ Mr(z,y) (T Ty)

d(z,y)

> ——27 _ _16d(Tz, T
> Thde.y) (Tx, Ty)
_ M_Em_yp

1+]z—yl2 36

16 , 16 )
> - — PR — — —
2 gele—yl® = gple—yl

Hence T satisfies all the hypothesis of Theorem E with z = % and x = 2 are
fixed points of T.

Here we observe that ’Condition (H)’ of Theorem B3 fails to hold. For,
choose # = 5 and x = 6, then there is no v € X such that «(5,v) > n(5,v) and
a(6,v) > n(6,v).

Remark 4.6. In the usual metric, the inequality (IZ2) fails. For, by choosing
x =3 and y = 4, we have Mr(3,4) = 2 and d(T'3,T4) = 2 and hence we have
¢(d(T3,T4), Mr(3,4)) = ((2,2) < 0, for any simulation function ¢.

Hence Theorem is not applicable.

Example 4.7. Let X = [0,00) and let d : X x X — [0, 00) be defined by
d(z,y) = | — y|%. Hence (X,d) is a complete b-metric space with coefficient
s = 2. We define T : X — X by

2 .
_J fiz if z€]0,6]
Tx_{ 21 ifxze(6,00),

and a,n: X x X — [0,00) by
2 if z,y€]0,6],

a(x,y) = 3 if z€ (67 OO),y:O7
14+ xy otherwise,
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and
0 if z,y€]0,6],
n(z,y) =< 1 if z€(6,00),y =0,
4 4+ zy otherwise.
We now have a(z,y) > n(x,y) < z,y €[0,6] and = € (6,00),y = 0.

Suppose that «(z,Tz) > n(x,Tz), then we have z € [0,6) and hence
a(Tz,TTx) > n(Tx,TTx). Therefore T is a-orbital admissible with respect
to 7.

Suppose that a(z,y) > n(x,y) and a(y,Ty) > n(y,Ty), then we have
xz,y € [0,6], or z € (6,00) and y = 0, which implies that x,Ty € [0,6], or
z € (6,00) and Ty = y = 0 and hence a(x,Ty) > n(x,Ty). Therefore T is
triangular a-orbital admissible with respect to 7.

We now verify the inequality (I=3). For this purpose we define
¢:[0,00) x [0,00) = (—00,00) by ((t,s) = 2s—t.

Now we have the following cases.

Case (1) NS [0’6)
In this case Tz = f—lz,Ty = 1—213/, then we have

= 3My(z,y) — 16d(Tx, Ty)

3

> Sd(e,y) = 16(5 ko — yP?)
3

- o — yf? — 16(55clw — yP?) 2 0.

Case (ii) : « € (6,00),y =0

In this case Tw = § — 1,70 = 0, then we have

C(16d(T, T0), Mp(z,0)) = > My (x,0) — 16(| — 12)

4 6
3 1

= S Myp(z,0) — 16(=—|y — 6/
1 r(x,0) (36|y %)
3, 16 )

> 2yt — —|ly—6|*>0.

> v 36Iy 6] >0

Hence T satisfies the inequality (IZ3). Also, since for any x # y € X we
have a(z,0) > n(x,0),a(y,0) > n(y,0) and «(0,70) > n(0,70), T satisfies
"Condition (H)’. Hence T satisfies all the hypotheses of Theorem P33, and x = 0
is the unique fixed point of T.

Example 4.8. Let X = [0,00) and a b-metric be as defined in Example [23.
Further, let T, a,n be as in Example 2. Then clearly T satisfies all the
hypotheses of Theorem Bl and x = 0 and = = 1 are two fixed points.
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