FIXED POINTS IN b-METRIC SPACES VIA SIMULATION FUNCTION

Gutti Venkata Ravindranadh Babu ${ }^{[\square}$ and Dula Tolera Mosissa ${ }^{[63]}$

Abstract

We introduce the concept of generalized $\alpha-\eta-Z$-contraction mapping with respect to a simulation function ζ in b-metric spaces and study the existence of fixed points for such mappings in complete b-metric spaces. Further, we extend it to partially ordered complete b-metric spaces. We provide examples in support of our results. Our results extend the fixed point results of Olgun, Bicer and Alyildiz [[5].

AMS Mathematics Subject Classification (2010) : 47H10; 54H25
Key words and phrases: $\alpha-\eta$-continuous mapping; triangular α-orbital admissible mapping with respect to η; generalized $\alpha-\eta-Z$-contraction mapping

1. Introduction

The famous Banach contraction principle introduced by Banach [5], ensures the existence and uniqueness of fixed points for a contraction mapping in complete metric spaces. Several researchers generalized and extended this principle by introducing various contractions in different ambient spaces. (see [T], [Z], [4],

In 1993, Stefan Czerwik [9] introduced the concept of a b-metric space as a generalization of a metric space.

Definition 1.1. [9] Let X be a non-empty set. A function $d: X \times X \rightarrow[0, \infty)$ is said to be a b-metric if the following conditions are satisfied;
(i) $0 \leq d(x, y)$ for all $x, y \in X$ and $d(x, y)=0$ if and only if $x=y$,
(ii) $d(x, y)=d(y, x)$ for all $x, y \in X$,
(iii) there exists $s \geq 1$ such that $d(x, z) \leq s[d(x, y)+d(y, z)]$ for all $x, y, z \in$ X.

In this case, the pair (X, d) is called a b-metric space with coefficient s.
Definition 1.2. [7] Let (X, d) be a b-metric space.
(i) A sequence $\left\{x_{n}\right\}$ in X is called b-convergent if there exists $x \in X$ such that $d\left(x_{n}, x\right) \rightarrow 0$ as $n \rightarrow \infty$. In this case, we write $\lim _{n \rightarrow \infty} x_{n}=x$.
(ii) A sequence $\left\{x_{n}\right\}$ in X is called b-Cauchy if $d\left(x_{n}, x_{m}\right) \rightarrow 0$ as $n, m \rightarrow \infty$.

[^0](iii) A b-metric space (X, d) is said to be a b-complete metric space if every b-Cauchy sequence in X is b-convergent.
(iv) A set $B \subset X$ is said to be b-closed if for any sequence $\left\{x_{n}\right\}$ in B such that $\left\{x_{n}\right\}$ is b-convergent to $z \in X$ then $z \in B$.

Theorem 1.3. [9] Let (X, d) be a complete b-metric space with coefficient $s=2$. Let $T: X \rightarrow X$ satisfy

$$
d(T x, T y) \leq \varphi(d(x, y)) \text { for all } x, y \in X
$$

where $\varphi:[0, \infty) \rightarrow[0, \infty)$ is an increasing function such that $\lim _{n \rightarrow \infty} \varphi^{n}(t)=0$ for all $t>0$. Then T has exactly one fixed point u in X and $\lim _{n \rightarrow \infty} d\left(T^{n}(x), u\right)=0$ for all $x \in X$.

Babu and Sailaja [4] proved the following lemma which plays an important role in proving the Cauchy part of an iterative sequence in metric spaces.

Lemma 1.4. [4] Suppose (X, d) is a metric space. Let $\left\{x_{n}\right\}$ be a sequence in X such that $d\left(x_{n}, x_{n+1}\right) \rightarrow 0$ as $n \rightarrow \infty$. If $\left\{x_{n}\right\}$ is not a Cauchy sequence then there exists an $\epsilon>0$ and sequences of positive integers $\left\{m_{k}\right\}$ and $\left\{n_{k}\right\}$ with $n_{k}>m_{k} \geq k$ such that $d\left(x_{m_{k}}, x_{n_{k}}\right) \geq \epsilon$. For each $k>0$, corresponding to m_{k}, we can choose n_{k} to be the smallest positive integer such that $d\left(x_{m_{k}}, x_{n_{k}}\right) \geq \epsilon, d\left(x_{m_{k}}, x_{n_{k}-1}\right)<\epsilon$ and
(i) $\lim _{k \rightarrow \infty} d\left(x_{n_{k}-1}, x_{m_{k}+1}\right)=\epsilon$
(ii) $\lim _{k \rightarrow \infty} d\left(x_{n_{k}}, x_{m_{k}}\right)=\epsilon$
(iii) $\lim _{k \rightarrow \infty} d\left(x_{m_{k}-1}, x_{n_{k}}\right)=\epsilon$ and (iv) $\lim _{k \rightarrow \infty} d\left(x_{n_{k}}, x_{m_{k}+1}\right)=\epsilon$.

An analog of Lemma $[.4$ in the setting of b-metric spaces is the following.
Lemma 1.5. [3] Suppose (X, d) is a b-metric space with coefficient $s \geq 1$ and let $\left\{x_{n}\right\}$ be a sequence in X such that $d\left(x_{n}, x_{n+1}\right) \rightarrow 0$ as $n \rightarrow \infty$. If $\left\{x_{n}\right\}$ is not a Cauchy sequence then there exist an $\epsilon>0$ and sequences of positive integers $\left\{m_{k}\right\}$ and $\left\{n_{k}\right\}$ with $n_{k}>m_{k} \geq k$ such that $d\left(x_{m_{k}}, x_{n_{k}}\right) \geq \epsilon, d\left(x_{m_{k}}, x_{n_{k}-1}\right)<\epsilon$ and
(i) $\epsilon \leq \limsup _{k \rightarrow \infty} d\left(x_{m_{k}}, x_{n_{k}}\right) \leq s \epsilon$
(ii) $\frac{\epsilon}{s} \leq \limsup _{k \rightarrow \infty} d\left(x_{m_{k}+1}, x_{n_{k}}\right) \leq s^{2} \epsilon$
(iii) $\frac{\epsilon}{s} \leq \limsup _{k \rightarrow \infty} d\left(x_{m_{k}}, x_{n_{k}+1}\right) \leq s^{2} \epsilon$
(iv) $\frac{\epsilon}{s^{2}} \leq \liminf _{k \rightarrow \infty}^{k \rightarrow \infty} d\left(x_{m_{k}+1}, x_{n_{k}+1}\right) \leq \limsup _{k \rightarrow \infty} d\left(x_{m_{k}+1}, x_{n_{k}+1}\right) \leq s^{3} \epsilon$.

In 2012, Samet, Vetro and Vetro [[7], introduced an α-admissible mapping as follows;

Definition 1.6. [17] Let $T: X \rightarrow X$ be a mapping and let $\alpha: X \times X \rightarrow[0, \infty)$ be a function. We say that T is an α-admissible mapping if $x, y \in X, \alpha(x, y) \geq$ $1 \Longrightarrow \alpha(T x, T y) \geq 1$.

Definition 1.7. [16] Let $T: X \rightarrow X$ be a mapping and let $\alpha: X \times X \rightarrow$ $[0, \infty)$ be a function. We say that T is an α-orbital admissible mapping if $x, y \in X, \alpha(x, T x) \geq 1 \Longrightarrow \alpha\left(T x, T^{2} x\right) \geq 1$.

Definition 1.8. [16] Let $T: X \rightarrow X$ and $\alpha: X \times X \rightarrow[0, \infty)$. We say that T is a triangular α-orbital admissible mapping if
(i) T is an α-orbital admissible mapping and
(ii) $\alpha(x, y) \geq 1$ and $\alpha(y, T y) \geq 1 \Longrightarrow \alpha(x, T y) \geq 1, \quad x, y \in X$.

Remark 1.9. Every triangular α-admissible mapping is a triangular α-orbital admissible mapping. There exists a triangular α-orbital admissible mapping which is not a triangular α-admissible mapping. For more details see [I6].

Definition 1.10. [$[8]$ Let $T: X \rightarrow X$ and $\alpha, \eta: X \times X \rightarrow[0, \infty)$. Then T is said to be an α-orbital admissible mapping with respect to η if $\alpha(x, T x) \geq \eta(x, T x)$ implies $\alpha\left(T x, T^{2} x\right) \geq \eta\left(T x, T^{2} x\right)$.

Definition 1.11. [8] Let $T: X \rightarrow X$ and $\alpha, \eta: X \times X \rightarrow[0, \infty)$. Then T is said to be a triangular α-orbital admissible mapping with respect to η if (i) α-orbital admissible mapping with respect to η
(ii) $\alpha(x, y) \geq \eta(x, y)$ and $\alpha(y, T y) \geq \eta(y, T y)$ implies $\alpha(x, T y) \geq \eta(x, T y)$.

Lemma 1.12. [$[8]$ Let T be a triangular α-orbital admissible mapping with respect to η. Assume that there exists $x_{0} \in X$ such that $\alpha\left(x_{0}, T x_{0}\right) \geq \eta\left(x_{0}, T x_{0}\right)$. We define a sequence $\left\{x_{n}\right\}$ by $x_{n+1}=T x_{n}$. Then $\alpha\left(x_{m}, x_{n}\right) \geq \eta\left(x_{m}, x_{n}\right)$ for all $m, n \in \mathbb{N}$ with $m<n$.

Definition 1.13. [II] Let (X, d) be a metric space and $\alpha, \eta: X \times X \rightarrow[0, \infty)$. A mapping $T: X \rightarrow X$ is said to be $\alpha-\eta$-continuous if every sequence $\left\{x_{n}\right\}$ in X with $\alpha\left(x_{n}, x_{n+1}\right) \geq \eta\left(x_{n}, x_{n+1}\right)$ for all $n \in \mathbb{N}$ and $x_{n} \rightarrow x$ as $n \rightarrow \infty$ implies $T x_{n} \rightarrow T x$ as $n \rightarrow \infty$.

Definition 1.14. Let (X, d) be a b-metric space and $\alpha, \eta: X \times X \rightarrow[0, \infty)$. A mapping $T: X \rightarrow X$ is said to be $\alpha-\eta$-continuous if every sequence $\left\{x_{n}\right\}$ in X with $\alpha\left(x_{n}, x_{n+1}\right) \geq \eta\left(x_{n}, x_{n+1}\right)$ for all $n \in \mathbb{N}$ and $x_{n} \rightarrow x$ as $n \rightarrow \infty$ implies $T x_{n} \rightarrow T x$ as $n \rightarrow \infty$.

In 2015, Khojasteh, Shukla and Radenović [14] introduced simulation functions and defined Z-contraction with respect to a simulation function.

Definition 1.15. [14] A simulation function is a mapping

$$
\zeta:[0, \infty) \times[0, \infty) \rightarrow(-\infty, \infty)
$$

satisfying the following conditions:
$\left(\zeta_{1}\right) \zeta(0,0)=0 ;$
$\left(\zeta_{2}\right) \zeta(t, s)<s-t$, for all $s, t>0$;
$\left(\zeta_{3}\right)$ if $\left\{t_{n}\right\},\left\{s_{n}\right\}$ are sequences in $(0, \infty)$ such that $\lim _{n \rightarrow \infty} t_{n}=\lim _{n \rightarrow \infty} s_{n}=\ell \in$ $(0, \infty)$, then $\limsup _{n \rightarrow \infty} \zeta\left(t_{n}, s_{n}\right)<0$.

Remark 1.16. Let ζ be a simulation function, if $\left\{t_{n}\right\},\left\{s_{n}\right\}$ are sequences in $(0, \infty)$ such that $\lim _{n \rightarrow \infty} t_{n}=\lim _{n \rightarrow \infty} s_{n}=\ell \in(0, \infty)$, then $\limsup _{n \rightarrow \infty} \zeta\left(k t_{n}, s_{n}\right)<0$ for any $k>1$.

The following are examples of simulation functions.
Example 1.17. Let $\zeta:[0, \infty) \times[0, \infty) \rightarrow(-\infty, \infty)$, be defined by
(i) $\zeta(t, s)=\lambda s-t$ for all $t, s \in[0, \infty)$, where $\lambda \in[0,1)$.
(ii) $\zeta(s, t)=\frac{s}{1+s}-t$ for all $t, s \in[0, \infty)$.
(iii) $\zeta(t, s)=s-k t \quad$ otherwise, where $k>1$.
(iv) $\zeta(s, t)=\frac{s}{1+s}-t e^{t}$ for all $t, s \in[0, \infty)$.

Definition 1.18. [[4] Let (X, d) be a metric space and T be a selfmap of X . We say that T is a Z-contraction with respect to ζ, if there exists simulation function ζ such that

$$
\begin{equation*}
\zeta(d(T x, T y), d(x, y)) \geq 0 \text { for all } x, y \in X \tag{1.1}
\end{equation*}
$$

Theorem 1.19. [14] Let (X, d) be a complete metric space and $T: X \rightarrow X$ be a Z-contraction with respect to a certain simulation function ζ, then T has a unique fixed point in X.

Moreover, for every $x_{0} \in X$, the Picard sequence $\left\{T^{n} x_{0}\right\}$ converges to this fixed point.

Recently, Olgun, Bicer and Alyildiz [IT.] proved the following result.
Theorem 1.20. [IT] Let (X, d) be a complete metric space and T be a selfmap on X. If there exists simulation function ζ such that

$$
\begin{equation*}
\zeta(d(T x, T y), M(x, y)) \geq 0 \text { for all } x, y \in X \tag{1.2}
\end{equation*}
$$

where $M_{T}(x, y)=\max \left\{d(x, y), d(x, T x), d(y, T y), \frac{d(x, T y)+d(y, T x)}{2}\right\}$, then T has a unique fixed point in X. Moreover, for every $x_{0} \in X$, the Picard sequence $\left\{T^{n} x_{0}\right\}$ converges to this fixed point.

Motivated by the works of Olgun, Bicer and Alyildiz [15], we now introduce a generalized $\alpha-\eta$ - Z-contraction with respect to ζ in b-metric spaces.
Definition 1.21. Let (X, d) be a b-metric space with coefficient $s \geq 1$ and $\alpha, \eta: X \times X \rightarrow[0, \infty)$ be mappings. A mapping $T: X \rightarrow X$ is said to be a generalized $\alpha-\eta$ - Z-contraction with respect to ζ if there exists a simulation mapping ζ such that for any $x, y \in X$ with $\alpha(x, y) \geq \eta(x, y)$ implies

$$
\begin{equation*}
\zeta\left(s^{4} d(T x, T y), M_{T}(x, y)\right) \geq 0 \tag{1.3}
\end{equation*}
$$

where $M_{T}(x, y)=\max \left\{d(x, y), d(x, T x), d(y, T y), \frac{d(x, T y)+d(y, T x)}{2 s}\right\}$.
Example 1.22. Let $X=[0, \infty)$ and let $d: X \times X \rightarrow[0, \infty)$ be defined by

$$
d(x, y)= \begin{cases}0 & \text { if } x=y \\ 2|x-y| & \text { if } x, y \in[0,1) \\ \frac{1}{2}|x-y| & \text { othewise }\end{cases}
$$

Clearly (X, d) is a b-metric space with coefficient $s=4$.
Now, we define $T: X \rightarrow X$ by

$$
T x= \begin{cases}\left(\frac{x}{40}\right)^{2} & \text { if } x \in[0,1) \\ \frac{3 x}{4}+\frac{1}{4} & \text { if } x \in[1, \infty)\end{cases}
$$

and $\alpha, \eta: X \times X \rightarrow[0, \infty)$ by

$$
\alpha(x, y)=\left\{\begin{array}{ll}
2+x y & \text { if } x, y \in\left[0, \frac{1}{2}\right] \\
1 & \text { otherwise },
\end{array} \text { and } \eta(x, y)= \begin{cases}0 & \text { if } x, y \in\left[0, \frac{1}{2}\right] \\
4 & \text { otherwise. }\end{cases}\right.
$$

We now have $\alpha(x, y) \geq \eta(x, y) \Longleftrightarrow x, y \in\left[0, \frac{1}{2}\right]$.
Now, we verify the inequality (【.3) for $x, y \in\left[0, \frac{1}{2}\right]$. For this purpose we choose $\zeta(t, s)=\frac{5}{6} s-t$

For $x, y \in\left[0, \frac{1}{2}\right]$ we have $T x=\left(\frac{x}{40}\right)^{2}, T y=\left(\frac{y}{40}\right)^{2}$, and hence

$$
\begin{aligned}
\zeta\left(s^{4} d(T x, T y), M_{T}(x, y)\right) & =\zeta\left(4^{4} d(T x, T y), M_{T}(x, y)\right) \\
& =\frac{5}{6} M_{T}(x, y)-256 d(T x, T y) \\
& \geq \frac{5}{6} d(x, y)-256 d(T x, T y) \\
& =\frac{5}{3}|x-y|-\frac{256}{800}\left|x^{2}-y^{2}\right| \\
& \geq \frac{5}{3}|x-y|-\frac{256}{800}|x-y| \geq 0 .
\end{aligned}
$$

Hence T is a generalized $\alpha-\eta$ - Z-contraction with respect to ζ.
Here we observe that the b-metric d is not continuous. For,

$$
\lim _{n \rightarrow \infty} d\left(1,1-\frac{1}{n}\right)=\frac{1}{2} \lim _{n \rightarrow \infty} \frac{1}{n}=0
$$

Hence the sequence $1-\frac{1}{n} \rightarrow 1$ as $n \rightarrow \infty$. But

$$
\lim _{n \rightarrow \infty} d\left(0,1-\frac{1}{n}\right)=\lim _{n \rightarrow \infty} 2\left|1-\frac{1}{n}\right|=2 \neq \frac{1}{2}=d(0,1) .
$$

In Section 2, we prove our main results in which we study the existence of fixed points of generalized $\alpha-\eta-Z$-contraction mapping with respect to ζ in complete b-metric spaces. In Section 3, we extend the main results of Section 2 to partially ordered complete b-metric spaces. In Section 4, we provide corollaries and examples in support of our results.

2. Main results

Theorem 2.1. Let (X, d) be a complete b-metric space with coefficient $s \geq 1$. Let $T: X \rightarrow X$ and $\alpha, \eta: X \times X \rightarrow[0, \infty)$ be mappings.

Suppose that the following conditions are satisfied:
(i) T is a generalized $\alpha-\eta$ - Z-contraction with respect to ζ,
(ii) T is a triangular α-orbital admissible mapping with respect to η,
(iii) there exists $x_{1} \in X$ such that $\alpha\left(x_{1}, T x_{1}\right) \geq \eta\left(x_{1}, T x_{1}\right)$, and
(iv) T is an $\alpha-\eta$-continuous mapping.

Then T has a fixed point $x^{*} \in X$ and $\left\{T^{n} x_{1}\right\}$ converges to x^{*}.
Proof. Let $x_{1} \in X$ be as in (iii), i.e., $\alpha\left(x_{1}, T x_{1}\right) \geq \eta\left(x_{1}, T x_{1}\right)$. We define a sequence $\left\{x_{n}\right\}$ in X by $x_{n+1}=T^{n} x_{1}=T x_{n}$ for all $n \in \mathbb{N}$. Suppose that $x_{n_{0}}=x_{n_{0}+1}$ for some $n_{0} \in \mathbb{N}$, we have $T x_{n_{0}}=x_{n_{0}}$, so that $x_{n_{0}}$ is a fixed point of T and we are through.

Hence, without loss of generality, we assume that $x_{n+1} \neq x_{n}$ for all $n \in \mathbb{N}$. By Lemma 【..2, we have $\alpha\left(x_{n}, x_{n+1}\right) \geq \eta\left(x_{n}, x_{n+1}\right)$ for all $n \in \mathbb{N}$. From (ㄸ.3), we have

$$
\begin{equation*}
\zeta\left(s^{4} d\left(x_{n+1}, x_{n+2}\right), M_{T}\left(x_{n}, x_{n+1}\right)\right)=\zeta\left(s^{4} d\left(T x_{n}, T x_{n+1}\right), M_{T}\left(x_{n}, x_{n+1}\right)\right) \geq 0 \tag{2.1}
\end{equation*}
$$

where

$$
\begin{aligned}
& M_{T}\left(x_{n}, x_{n+1}\right)= \max \left\{d\left(x_{n}, x_{n+1}\right), d\left(x_{n}, T x_{n}\right), d\left(x_{n+1}, T x_{n+1}\right),\right. \\
&\left.\frac{d\left(x_{n}, T x_{n+1}\right)+d\left(x_{n+1}, T x_{n}\right)}{2 s}\right\} \\
&= \max \left\{d\left(x_{n}, x_{n+1}\right), d\left(x_{n}, x_{n+1}\right), d\left(x_{n+1}, x_{n+2}\right),\right. \\
&\left.\frac{d\left(x_{n}, x_{n+2}\right)+d\left(x_{n+1}, x_{n+1}\right)}{2 s}\right\} \\
& \leq \max \left\{d\left(x_{n}, x_{n+1}\right), d\left(x_{n+1}, x_{n+2}\right)\right. \\
&\left.\frac{d\left(x_{n}, x_{n+1}\right)+d\left(x_{n+1}, x_{n+2}\right)}{2}\right\} \\
&= \max \left\{d\left(x_{n}, x_{n+1}\right), d\left(x_{n+1}, x_{n+2}\right)\right\} .
\end{aligned}
$$

Hence $M_{T}\left(x_{n}, x_{n+1}\right)=\max \left\{d\left(x_{n}, x_{n+1}\right), d\left(x_{n+1}, x_{n+2}\right)\right\}$.
Suppose that $d\left(x_{n}, x_{n+1}\right) \leq d\left(x_{n+1}, x_{n+2}\right)$ for some $n \in \mathbb{N}$. Then we have

$$
M_{T}\left(x_{n}, x_{n+1}\right)=\max \left\{d\left(x_{n}, x_{n+1}\right), d\left(x_{n+1}, x_{n+2}\right)\right\}=d\left(x_{n+1}, x_{n+2}\right)
$$

Hence, from ([.]), we have

$$
\begin{aligned}
0 & \leq \zeta\left(s^{4} d\left(x_{n+1}, x_{n+2}\right), M_{T}\left(x_{n}, x_{n+1}\right)\right) \\
& =\zeta\left(s^{4} d\left(x_{n+1}, x_{n+2}\right), d\left(x_{n+1}, x_{n+2}\right)\right) \\
& <d\left(x_{n+1}, x_{n+2}\right)-s^{4} d\left(x_{n+1}, x_{n+2}\right) \leq 0
\end{aligned}
$$

a contradiction. Hence $d\left(x_{n+1}, x_{n+2}\right)<d\left(x_{n}, x_{n+1}\right)$ for all $n \in \mathbb{N}$. Therefore, $\left\{d\left(x_{n}, x_{n+1}\right)\right\}$ is decreasing and bounded below. Thus there exist $r \geq 0$ such that $\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+1}\right)=r$.

Suppose that $r>0$. Now, using condition $\left(\zeta_{3}\right)$, with $t_{n}=d\left(x_{n+1}, x_{n+2}\right)$ and $s_{n}=d\left(x_{n}, x_{n+1}\right)$, we have $0 \leq \limsup _{n \rightarrow \infty} \zeta\left(s^{4} d\left(x_{n+1}, x_{n+2}\right), d\left(x_{n}, x_{n+1}\right)\right)<0$, a contradiction. Therefore, $r=0$ i.e.,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} d\left(x_{n}, x_{n+1}\right)=0 \tag{2.2}
\end{equation*}
$$

Now, we show that $\left\{x_{n}\right\}$ is a Cauchy sequence. Suppose that $\left\{x_{n}\right\}$ is not a Cauchy sequence. Now, we consider the following two cases

Case (i) : $s=1$.
In this case (X, d) is a metric space. Then by Lemma $\mathbb{L} .4$ there exist $\epsilon>0$ and sequence of positive integers $\left\{n_{k}\right\}$ and $\left\{m_{k}\right\}$ such that $n_{k}>m_{k} \geq k$ satisfying

$$
\begin{equation*}
d\left(x_{m_{k}}, x_{n_{k}}\right) \geq \epsilon \tag{2.3}
\end{equation*}
$$

Let us choose the smallest n_{k} satisfying (2.3), then we have $n_{k}>m_{k} \geq k$ with $d\left(x_{m_{k}}, x_{n_{k}}\right) \geq \epsilon$ and $d\left(x_{m_{k}}, x_{n_{k}-1}\right)<\epsilon$ satisfying (i)- (iv) of Lemma L.प.

Hence we have
$M_{s}\left(x_{m_{k}}, x_{n_{k}}\right)$
$=\max \left\{d\left(x_{m_{k}}, x_{n_{k}}\right), d\left(x_{m_{k}}, T x_{m_{k}}\right), d\left(x_{n_{k}}, T x_{n_{k}}\right), \frac{d\left(x_{m_{k}}, T x_{n_{k}}\right)+d\left(x_{n_{k}}, T x_{m_{k}}\right)}{2}\right\}$.
On taking limit as $k \rightarrow \infty$ we have $\lim _{k \rightarrow \infty} M_{s}\left(x_{m_{k}}, x_{n_{k}}\right)=\epsilon$.
Using condition $\left(\zeta_{3}\right)$ with $t_{k}=d\left(x_{m_{k}+1}, x_{n_{k}+1}\right)$ and $s_{k}=M\left(x_{m_{k}}, x_{n_{k}}\right)$, we have $0 \leq \limsup _{k \rightarrow \infty} \zeta\left(d\left(x_{m_{k}+1}, x_{n_{k}+1}\right), M_{s}\left(x_{m_{k}}, x_{n_{k}}\right)\right)<0$, a contradiction. Thus $\left\{x_{n}\right\}$ is a Cauchy sequence.

Case (ii) : $s>1$.
Then by Lemma 1.5 there exist $\epsilon>0$ and sequence of positive integers $\left\{n_{k}\right\}$ and $\left\{m_{k}\right\}$ such that $n_{k}>m_{k} \geq k$ satisfying

$$
\begin{equation*}
d\left(x_{m_{k}}, x_{n_{k}}\right) \geq \epsilon . \tag{2.4}
\end{equation*}
$$

Let us choose the smallest n_{k} satisfying ([2.4), then we have $n_{k}>m_{k} \geq k$ with $d\left(x_{m_{k}}, x_{n_{k}}\right) \geq \epsilon$ and $d\left(x_{m_{k}}, x_{n_{k}-1}\right)<\epsilon$ satisfying (i)- (iv) of Lemma L.5.

$$
\begin{align*}
\epsilon \leq d\left(x_{m_{k}}, x_{n_{k}}\right) & \leq M_{s}\left(x_{m_{k}}, x_{n_{k}}\right) \tag{2.5}\\
& =\max \left\{d\left(x_{m_{k}}, x_{n_{k}}\right),\right. \\
& d\left(x_{m_{k}}, T x_{m_{k}}\right), d\left(x_{n_{k}}, T x_{n_{k}}\right) \\
& \left.\frac{d\left(T x_{m_{k}}, x_{n_{k}}\right)+d\left(x_{m_{k}}, T x_{n_{k}}\right)}{2 s}\right\} .
\end{align*}
$$

Letting $n \rightarrow \infty$ in (ㄴ.5) and using (i) - (iv) of Lemma L.5., we have

$$
\begin{equation*}
\epsilon \leq \limsup _{k \rightarrow \infty} M_{s}\left(x_{m_{k}}, x_{n_{k}}\right) \leq \max \left\{s \epsilon, 0, \frac{s^{2} \epsilon+s^{2} \epsilon}{2 s}\right\}=s \epsilon \tag{2.6}
\end{equation*}
$$

By Lemma [.]2 we have $\alpha\left(x_{m_{k}}, x_{n_{k}}\right) \geq \eta\left(x_{m_{k}}, x_{n_{k}}\right)$. Hence from ([..3) we have $0 \leq \zeta\left(s^{4} d\left(T x_{m_{k}}, T x_{n_{k}}\right), M_{T}\left(x_{m_{k}}, x_{n_{k}}\right)\right)$.
Now we have

$$
\begin{align*}
0 & \leq \limsup _{k \rightarrow \infty} \zeta\left(s^{4} d\left(T x_{m_{k}}, T x_{n_{k}}\right), M_{T}\left(x_{m_{k}}, x_{n_{k}}\right)\right) \tag{2.7}\\
& \leq \limsup _{k \rightarrow \infty}\left[M_{T}\left(x_{m_{k}}, x_{n_{k}}\right)-s^{4} d\left(T x_{m_{k}}, T x_{n_{k}}\right)\right] \\
& \leq \limsup _{k \rightarrow \infty} M_{T}\left(x_{m_{k}}, x_{n_{k}}\right)-s^{4} \liminf _{k \rightarrow \infty} d\left(T x_{m_{k}}, T x_{n_{k}}\right) \leq s \epsilon-s^{4}\left(\frac{\epsilon}{s^{2}}\right)<0,
\end{align*}
$$

a contradiction. So we conclude that $\left\{x_{n}\right\}$ is a Cauchy sequence in (X, d).
Since X is a complete b-metric space then, there exists $x^{*} \in X$ such that $\lim _{n \rightarrow \infty} x_{n}=x^{*}$. Since T is α - η-continuous and $\alpha\left(x_{n}, x_{n+1}\right) \geq \eta\left(x_{n}, x_{n+1}\right)$ for all $n \in \mathbb{N}$, we have $x^{*}=\lim _{n \rightarrow \infty} x_{n+1}=\lim _{n \rightarrow \infty} T x_{n}=T \lim _{n \rightarrow \infty} x_{n}=T x^{*}$. Hence T has a fixed point.

In the following theorem, we replace the $\alpha-\eta$-continuity of T by another condition.

Theorem 2.2. Let (X, d) be a complete b-metric space with coefficient $s \geq 1$. Let $T: X \rightarrow X$ and $\alpha, \eta: X \times X \rightarrow[0, \infty)$ be mappings.

Suppose that the following conditions are satisfied:
(i) T is a generalized $\alpha-\eta$ - Z-contraction with respect to ζ,
(ii) T is a triangular α-orbital admissible mapping with respect to η,
(iii) there exists $x_{1} \in X$ such that $\alpha\left(x_{1}, T x_{1}\right) \geq \eta\left(x_{1}, T x_{1}\right)$, and
(iv) if $\left\{x_{n}\right\}$ is a sequence in X such that $\alpha\left(x_{n}, x_{n+1}\right) \geq \eta\left(x_{n}, x_{n+1}\right)$ for all $n \in \mathbb{N}$ and $x_{n} \rightarrow x^{*} \in X$ as $n \rightarrow \infty$, then there exists a subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ such that $\alpha\left(x_{n_{k}}, x^{*}\right) \geq \eta\left(x_{n_{k}}, x^{*}\right)$ for all $k \in \mathbb{N}$.

Then $\left\{T^{n} x_{1}\right\}$ converges to an element x^{*} of X and x^{*} is a fixed point of T.
Proof. By using similar arguments as in the proof of Theorem [..|, we obtain that the sequence $\left\{x_{n}\right\}$ defined by $x_{n+1}=T x_{n}$ converges to $x^{*} \in X$ and $\alpha\left(x_{n}, x_{n+1}\right) \geq \eta\left(x_{n}, x_{n+1}\right)$ for all $n \in \mathbb{N}$.

By (iv), there exists a subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ such that $\alpha\left(x_{n_{k}}, x^{*}\right) \geq$ $\eta\left(x_{n_{k}}, x^{*}\right)$ for all $k \in \mathbb{N}$. Hence from (ㄴ.3) we have

$$
\begin{align*}
0 \leq \zeta\left(s^{4} d\left(T x_{n_{k}}, T x^{*}\right), M_{T}\left(x_{n_{k}}, x^{*}\right)\right) & =\zeta\left(s^{4} d\left(x_{n_{k}+1}, T x^{*}\right), M_{T}\left(x_{n_{k}}, x^{*}\right)\right) \tag{2.8}\\
& <M_{T}\left(x_{n_{k}}, x^{*}\right)-s^{4} d\left(x_{n_{k}+1}, T x^{*}\right)
\end{align*}
$$

which implies that $s^{4} d\left(x_{n_{k}+1}, T x^{*}\right)<M_{T}\left(x_{n_{k}}, x^{*}\right)$.
Now, we have

$$
\begin{equation*}
s d\left(x_{n_{k}+1}, T x^{*}\right) \leq s^{4} d\left(x_{n_{k}+1}, T x^{*}\right)<M_{T}\left(x_{n_{k}}, x^{*}\right) \text { and } \tag{2.9}
\end{equation*}
$$

$$
\begin{aligned}
& d\left(x^{*}, T x^{*}\right) \leq M_{T}\left(x_{n_{k}}, x^{*}\right)=\max \left\{d\left(x_{n_{k}}, x^{*}\right), d\left(x_{n_{k}}, T x_{n_{k}}\right), d\left(x^{*}, T x^{*}\right),\right. \\
&\left.\frac{d\left(x_{n_{k}}, T x^{*}\right)+d\left(T x_{n_{k}}, x^{*}\right)}{2}\right\} \\
& \leq \max \left\{d\left(x_{n_{k}}, x^{*}\right), d\left(x_{n_{k}}, T x_{n_{k}}\right), d\left(x^{*}, T x^{*}\right),\right. \\
&\left.\frac{d\left(x_{n_{k}}, x^{*}\right)+d\left(x^{*}, T x^{*}\right)+d\left(T x_{n_{k}}, x^{*}\right)}{2}\right\},
\end{aligned}
$$

On taking limits as $n \rightarrow \infty$ we have

$$
d\left(x^{*}, T x^{*}\right) \leq \lim _{k \rightarrow \infty} M_{T}\left(x_{n_{k}}, x^{*}\right) \leq d\left(x^{*}, T x^{*}\right)
$$

Therefore $\lim _{k \rightarrow \infty} M_{T}\left(x_{n_{k}}, x^{*}\right)=d\left(x^{*}, T x^{*}\right)$.

From (2.2) we now have

$$
\begin{equation*}
d\left(x^{*}, T x^{*}\right) \leq s d\left(x^{*}, T x_{n_{k}}\right)+\operatorname{sd}\left(T x_{n_{k}}, T x^{*}\right) \leq s d\left(x^{*}, T x_{n_{k}}\right)+M_{T}\left(x_{n_{k}}, x^{*}\right) \tag{2.10}
\end{equation*}
$$

On taking limit as $k \rightarrow \infty$ on (ㄴ.IO), we have

$$
\begin{equation*}
d\left(x^{*}, T x^{*}\right) \leq s \lim _{k \rightarrow \infty} d\left(x_{n_{k}+1}, T x^{*}\right) \leq d\left(x^{*}, T x^{*}\right) \tag{2.11}
\end{equation*}
$$

Hence we have

$$
\begin{equation*}
\lim _{k \rightarrow \infty} d\left(x_{n_{k}+1}, T x^{*}\right)=\frac{1}{s} d\left(x^{*}, T x^{*}\right) . \tag{2.12}
\end{equation*}
$$

Suppose $x^{*} \neq T x^{*}$. Now by choosing $t_{k}=s d\left(x_{n_{k}+1}, T x^{*}\right)$ and $s_{k}=M_{T}\left(x_{n_{k}}, x^{*}\right)$ from property $\left(\zeta_{3}\right)$, it follows that

$$
0 \leq \limsup _{k \rightarrow \infty} \zeta\left(s^{4} d\left(T x_{n_{k}}, T x^{*}\right), M_{T}\left(x_{n_{k}}, x^{*}\right)\right)<0
$$

a contradiction. Hence $T x^{*}=x^{*}$. Therefore T has a fixed point.
Theorem 2.3. In addition to the hypotheses of Theorem [2.1] (Theorem [2.2) assume the following.

Condition (H): for all $x \neq y \in X$, there exists $v \in X$ such that $\alpha(x, v) \geq \eta(x, v), \alpha(y, v) \geq \eta(y, v)$ and $\alpha(v, T v) \geq \eta(v, T v)$.

Then T has a unique fixed point.
Proof. Suppose that z^{*} and y^{*} are two fixed points of T with $z^{*} \neq y^{*}$. Then by our assumption, there exists a $v \in X$ such that $\alpha\left(z^{*}, v\right) \geq \eta\left(z^{*}, v\right), \alpha\left(y^{*}, v\right) \geq$ $\eta\left(y^{*}, v\right)$ and $\alpha(v, T v) \geq \eta(v, T v)$ so that condition (iii) of Theorem [...] (Theorem (2.2) holds with $x_{1}=v$, also. Now, by applying Theorem [2] (Theorem [2.2), we deduce that $\left\{T^{n} v\right\}$ converges to a fixed point x^{*} (say) of T and hence the sequence is $\left\{d\left(x^{*}, T^{n} v\right)\right\}$ is bounded.

Now, since $d\left(z^{*}, T^{n} v\right) \leq s\left[d\left(z^{*}, x^{*}\right)+d\left(x^{*}, T^{n} v\right)\right]$, we have the sequence $\left\{d\left(z^{*}, T^{n} v\right)\right\}$ is bounded. Therefore there exists a subsequence $\left\{d\left(z^{*}, T^{n_{k}} v\right)\right\}$ of $\left\{d\left(z^{*}, T^{n} v\right)\right\}$ such that $\lim _{n \rightarrow \infty} d\left(z^{*}, T^{n_{k}} v\right)=\ell$, for some nonnegative real ℓ.

Now, we have

$$
\begin{aligned}
& d\left(z^{*}, T^{n_{k}} v\right) \leq M_{T}\left(z^{*}, T^{n_{k}} v\right) \\
&= \max \left\{d\left(z^{*}, T^{n_{k}} v\right), d\left(z^{*}, T z^{*}\right), d\left(T^{n_{k}} v, T^{n_{k}+1} v\right),\right. \\
&\left.\frac{d\left(z^{*}, T^{n_{k}+1} v\right)+d\left(T z^{*}, T^{n_{k}} v\right)}{2 s}\right\} \\
&= \max \left\{d\left(z^{*}, T^{n_{k}} v\right), d\left(T^{n_{k}} v, T^{n_{k}+1} v\right),\right. \\
&\left.\frac{d\left(z^{*}, T^{n_{k}+1} v\right)+d\left(z^{*}, T^{n_{k}} v\right)}{2 s}\right\} \\
& \leq \max \left\{d\left(z^{*}, T^{n_{k}} v\right), d\left(T^{n_{k}} v, T^{n_{k}+1} v\right)\right. \\
&\left.\frac{s\left[d\left(z^{*}, T^{n_{k}}\right)+d\left(T^{n_{k}}, T^{n_{k}+1} v\right)\right]+d\left(z^{*}, T^{n_{k}} v\right)}{2 s}\right\} .
\end{aligned}
$$

On taking limits as $k \rightarrow \infty$ we have $\lim _{n \rightarrow \infty} M_{T}\left(z^{*}, T^{n_{k}} v\right)=\ell$.
We now show that $\ell=0$. Suppose $\ell>0$.
Since T is triangular α-orbital admissible with respect to η, we have $\alpha\left(v, T^{n} v\right) \geq \eta\left(v, T^{n} v\right)$ and hence $\alpha\left(z^{*}, T^{n} v\right) \geq \eta\left(z^{*}, T^{n} v\right)$ and $\alpha\left(y^{*}, T^{n} v\right) \geq$ $\eta\left(y^{*}, T^{n} v\right)$ for all $n \in \mathbb{N}$.

Now, from (【.3) we have $\zeta\left(s^{4} d\left(z^{*}, T^{n_{k}+1} v\right), M_{T}\left(z^{*}, T^{n_{k}} v\right)\right) \geq 0$.
Hence, we have $s^{4} d\left(z^{*}, T^{n_{k}+1} v\right) \leq M_{T}\left(z^{*}, T^{n_{k}} v\right)$ which implies that

$$
s d\left(z^{*}, T^{n_{k}+1} v\right) \leq s^{3} d\left(z^{*}, T^{n_{k}+1} v\right) \leq M_{T}\left(z^{*}, T^{n_{k}} v\right)
$$

Now, we have
$d\left(z^{*}, T^{n_{k}} v\right) \leq s d\left(z^{*}, T^{n_{k}+1} v\right)+s d\left(T^{n_{k}+1} v, T^{n_{k}} v\right) \leq M_{T}\left(z^{*}, T^{n_{k}} v\right)+s d\left(z^{*}, T^{n_{k}} v\right)$.
On taking limits as $k \rightarrow \infty$ we have

$$
\lim _{n \rightarrow \infty} s d\left(z^{*}, T^{n_{k}+1} v\right)=\ell
$$

Now, by choosing $t_{k}=s d\left(z^{*}, T^{n_{k}+1} v\right)$ and $s_{k}=M_{T}\left(z^{*}, T^{n_{k}} v\right)$, from property $\left(\zeta_{3}\right)$, it follows that

$$
0 \leq \limsup _{k \rightarrow \infty} \zeta\left(s^{4} d\left(z^{*}, T^{n_{k}+1} v\right), M_{T}\left(z^{*}, T^{n_{k}} v\right)\right)<0
$$

a contradiction. Hence $\ell=0$. Hence $T^{n_{k}} v \rightarrow z^{*}$ as $n \rightarrow \infty$. Therefore $z^{*}=x^{*}$.
Similarly we can prove that $y^{*}=x^{*}$.
Thus it follows that $z^{*}=y^{*}$, a contradiction. Hence T has a unique fixed point.

3. A fixed point result in partially ordered b-metric spaces

Definition 3.1. Let (X, \preceq) be a partially ordered set. If there exists a b-metric d on X with coefficient $s \geq 1$, such that (X, d) is complete, then we say that (X, \preceq, d) is a partially ordered complete b-metric space with coefficient $s \geq 1$.
Theorem 3.2. Let (X, \preceq, d) be a partially ordered complete b-metric space with coefficient $s \geq 1$. Let $T: X \rightarrow X$ be a selfmap of X . Assume that the following conditions are satisfied:
(i) there exists a simulation mapping ζ such that

$$
\zeta\left(s^{4} d(T x, T y), M_{T}(x, y)\right) \geq 0, \text { for any } x, y \in X \text { with } x \preceq y
$$

where $M_{T}(x, y)=\max \left\{d(x, y), d(x, T x), d(y, T y), \frac{d(x, T y)+d(y, T x)}{2 s}\right\}$,
(ii) T is a nondecreasing,
(iii) there exists an $x_{1} \in X$ such that $x_{1} \preceq T x_{1}$,
(iv) either T is continuous or if $\left\{x_{n}\right\}$ is a decreasing sequence with $x_{n} \rightarrow x^{*}$ as $n \rightarrow \infty$, then there exists a subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ such that $x_{n_{k}} \preceq x^{*}$ for all $k \in \mathbb{N}$.

Then $\left\{T^{n} x_{1}\right\}$ converges to an element x^{*} of X and x^{*} is a fixed point of T.
Further, if for all $x \neq y \in X$, there exists $v \in X$ such that $x \preceq v, y \preceq v$ and $v \preceq T v$, then T has a unique fixed point.

Proof. We define functions $\alpha, \eta: X \times X \rightarrow[0, \infty)$ by

$$
\alpha(x, y)=\left\{\begin{array}{ll}
3 & \text { if } x \preceq y \\
0 & \text { otherwise },
\end{array} \text { and } \eta(x, y)=\left\{\begin{array}{cc}
1 & \text { if } x \preceq y \\
4 & \text { otherwise }
\end{array}\right.\right.
$$

Now, for any $x, y \in X, \alpha(x, y) \geq \eta(x, y)$ if and only if $x \preceq y$. By (i), we have $\zeta\left(s^{4} d(T x, T y), M_{T}(x, y)\right) \geq 0$. Suppose that $\alpha(x, T x) \geq \eta(x, T x)$, then we have $x \preceq T x$. Since T is nondecreasing, we have $T x \preceq T T x$ which implies that $\alpha(T x, T T x) \geq \eta(T x, T T x)$, hence T is α-orbital admissible with respect to η.

Further, suppose that $\alpha(x, y) \geq \eta(x, y)$ and $\alpha(y, T y) \geq \eta(y, T y)$, so that we have $x \preceq y$ and $y \preceq T y$. It follows that $x \preceq T y$ and hence $\alpha(x, T y) \geq \eta(x, T y)$. Thus T is triangular α-orbital admissible with respect to η. Hence T satisfies all the hypotheses of Theorem [2.] (Theorem (2.2) and T has a fixed point.

Moreover, if for all $x \neq y \in X$, there exists a $v \in X$ such that $x \preceq v, y \preceq v$ and $v \preceq T v$, then we have $\alpha(x, v) \geq \eta(x, v), \alpha(y, v) \geq \eta(y, v)$ and $\alpha(v, T v) \geq$ $\eta(v, T v)$. Hence by Theorem [2.3, T has a unique fixed point.

4. Corollaries and examples

Corollary 4.1. Let (X, d) be a complete metric space. Let $T: X \rightarrow X$ and $\alpha, \eta: X \times X \rightarrow[0, \infty)$ be mappings.

Suppose that the following conditions are satisfied:
(i) there exists a simulation mapping ζ such that for any $x, y \in X$, $\alpha(x, y) \geq \eta(x, y)$ implies $\zeta(d(T x, T y), M(x, y)) \geq 0$, where $M(x, y)=$ $\max \left\{d(x, y), d(x, T x), d(y, T y), \frac{d(x, T y)+d(y, T x)}{2}\right\}$,
(ii) T is a triangular α-orbital admissible mapping with respect to η,
(iii) there exists an $x_{1} \in X$ such that $\alpha\left(x_{1}, T x_{1}\right) \geq \eta\left(x_{1}, T x_{1}\right)$, and
(vi) T is an $\alpha-\eta$-continuous mapping, or if $\left\{x_{n}\right\}$ is a sequence in X such that $\alpha\left(x_{n}, x_{n+1}\right) \geq \eta\left(x_{n}, x_{n+1}\right)$ for all $n \in \mathbb{N}$ and $x_{n} \rightarrow x^{*} \in X$ as $n \rightarrow \infty$, then there exists a subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ such that $\alpha\left(x_{n_{k}}, x^{*}\right) \geq \eta\left(x_{n_{k}}, x^{*}\right)$ for all $k \in \mathbb{N}$.

Then T has a fixed point $x^{*} \in X$ and $\left\{T^{n} x_{1}\right\}$ converges to x^{*}.
Moreover, if for all $x \neq y \in X$, there exists $v \in X$ such that $\alpha(x, v) \geq \eta(x, v), \alpha(y, v) \geq \eta(y, v)$ and $\alpha(v, T v) \geq \eta(v, T v)$, then T has a unique fixed point.

Proof. Follows from Theorem [2.3 by taking $s=1$.
Remark 4.2. Theorem f.20llows as a corollary to Corollary 4.ll by choosing $\alpha(x, y)=\eta(x, y)=1$ for all $x, y \in X$, which in turn Theorem $\mathbb{L} 20$ follows as a corollary to Theorem [23].

Corollary 4.3. Let (X, d) be a complete b-metric space with coefficient $s \geq 1$. Let $T: X \rightarrow X$ and $\alpha, \eta: X \times X \rightarrow[0, \infty)$ be mappings. Assume that there exist two continuous function $\psi, \varphi:[0, \infty) \rightarrow[0, \infty)$ with $\psi(t)<t \leq \varphi(t)$ for all $t>0$ and $\psi(t)=\varphi(t)=0$ if and only if $t=0$ such that for any $x, y \in X$ with $\alpha(x, y) \geq \eta(x, y)$ implies

$$
\begin{equation*}
\varphi\left(s^{4} d(T x, T y)\right) \leq \psi\left(M_{T}(x, y)\right) \tag{4.1}
\end{equation*}
$$

where $M_{T}(x, y)=\max \left\{d(x, y), d(x, T x), d(y, T y), \frac{d(x, T y)+d(y, T x)}{2 s}\right\}$.
Suppose that the following conditions are satisfied:
(i) T is a triangular α-orbital admissible mapping;
(ii) there exists $x_{1} \in X$ such that $\alpha\left(x_{1}, T x_{1}\right) \geq \eta\left(x_{1}, T x_{1}\right)$; and
(iii) either T is an $\alpha-\eta$-continuous mapping, or if $\left\{x_{n}\right\}$ is a sequence in X such that $\alpha\left(x_{n}, x_{n+1}\right) \geq \eta\left(x_{n}, x_{n+1}\right)$ for all $n \in \mathbb{N}$ and $x_{n} \rightarrow x^{*} \in X$ as $n \rightarrow \infty$, then there exists a subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ such that $\alpha\left(x_{n_{k}}, x^{*}\right) \geq \eta\left(x_{n_{k}}, x^{*}\right)$ for all $k \in \mathbb{N}$.

Then $\left\{T^{n} x_{1}\right\}$ converges to an element x^{*} of X and x^{*} is a fixed point of T.
Proof. The conclusion of this corollary follows from Theorem [2.](Theorem [2.2]) by taking $\zeta(t, s)=\psi(s)-\varphi(t)$ for all $t, s \geq 0$.

Corollary 4.4. Let (X, d) be a complete b-metric space with coefficient $s \geq 1$. Let $T: X \rightarrow X$ and $\alpha, \eta: X \times X \rightarrow[0, \infty)$ be mappings.

Suppose that the following conditions are satisfied:
(i) there exists a simulation mapping ζ such that for any $x, y \in X$ with
$\alpha(x, y) \geq 1$ implies $\zeta\left(s^{4} d(T x, T y), M_{T}(x, y)\right) \geq 0$, where $M_{T}(x, y)=$ $\max \left\{d(x, y), d(x, T x), d(y, T y), \frac{d(x, T y)+d(y, T x)}{2 s}\right\}$.
(ii) T is a triangular α-orbital admissible mapping,
(iii) there exists an $x_{1} \in X$ such that $\alpha\left(x_{1}, T x_{1}\right) \geq 1$, and
(iv) T is an α-continuous mapping, or if $\left\{x_{n}\right\}$ is a sequence in X such that $\alpha\left(x_{n}, x_{n+1}\right) \geq 1$ for all $n \in \mathbb{N}$, and $x_{n} \rightarrow x^{*} \in X$ as $n \rightarrow \infty$, then there exists a subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ such that $\alpha\left(x_{n_{k}}, x^{*}\right) \geq 1$ for all $k \in \mathbb{N}$.

Then T has a fixed point $x^{*} \in X$ and $\left\{T^{n} x_{1}\right\}$ converges to x^{*}.
Moreover, if for all $x \neq y \in X$, there exists $v \in X$ such that $\alpha(x, v) \geq 1$, $\alpha(y, v) \geq 1$ and $\alpha(v, T v) \geq 1$, then T has a unique fixed point.

Proof. Follows from Theorem [.].](Theorem [2.2) and Theorem [2.3] by taking $\eta(x, y)=1$ for all $x, y \in X$.

Example 4.5. Let $X=[0, \infty)$ and let $d: X \times X \rightarrow[0, \infty)$ be defined by $d(x, y)=|x-y|^{2}$. Clearly (X, d) is a b-metric space with coefficient $s=2$. We define $T: X \rightarrow X$ by

$$
T x= \begin{cases}1-\frac{x}{6} & \text { if } x \in[0,1] \\ 2 x-2 & \text { if } x \in(1, \infty)\end{cases}
$$

and $\alpha, \eta: X \times X \rightarrow[0, \infty)$ by
$\alpha(x, y)=\left\{\begin{array}{ll}2+x y & \text { if } x, y \in[0,1] \\ 0 & \text { otherwise },\end{array}\right.$ and $\eta(x, y)= \begin{cases}1+x y \quad \text { if } x, y \in[0,1] \\ 4 & \text { otherwise } .\end{cases}$
We now have $\alpha(x, y) \geq \eta(x, y) \Longleftrightarrow x, y \in[0,1]$. Let $\alpha(x, T x) \geq \eta(x, T x)$, then $x, T x \in[0,1]$ and hence $T x, T T x \in[0,1]$, since for any $x \in[0,1]$ we have $T x \in[0,1]$. therefore $\alpha(T x, T T x) \geq \eta(T x, T T x)$. Hence T is α-orbital admissible with respect to η.

Suppose that $\alpha(x, y) \geq \eta(x, y)$ and $\alpha(y, T y) \geq \eta(y, T y)$, then
$x, y, T y \in[0,1]$ which implies that $\alpha(x, T y) \geq \eta(x, T y)$. Hence T is triangular α-orbital admissible with respect to η.

Let $\left\{x_{n}\right\}$ be a sequence such that $x_{n} \rightarrow x$ as $n \rightarrow \infty$ and $\alpha\left(x_{n}, x_{n+1}\right) \geq \eta\left(x_{n}, x_{n+1}\right)$ for all $n \in \mathbb{N}$. Then $\left\{x_{n}\right\} \subseteq[0,1]$ for all $n \in \mathbb{N}$. Then we have $\lim _{n \rightarrow \infty} T x_{n}=\lim _{n \rightarrow \infty}\left(1-\frac{x_{n}}{6}\right)=1-\lim _{n \rightarrow \infty} \frac{x_{n}}{6}=1-\frac{x}{6}=T x$. Hence T is $\alpha-\eta$-continuous.

Now, we verify the inequality ($\mathbb{L} .3)$ for $x, y \in[0,1]$. For $x=y$ the inequality holds trivially, hence we verify for $x \neq y$.

We define $\zeta:[0, \infty) \times[0, \infty) \rightarrow[0, \infty)$ by $\zeta(t, s)=\frac{s}{1+s}-t$.
Since $\alpha(x, y) \geq \eta(x, y)$ if and only if $x, y \in[0,1]$, we have $T x=1-\frac{x}{5}$ and $T y=1-\frac{y}{5}$. Hence

$$
\begin{aligned}
& \zeta\left(s^{4} d(T x, T y), M_{T}(x, y)\right) \\
& \quad=\frac{M_{T}(x, y)}{1+M_{T}(x, y)}-s^{4} d(T x, T y) \\
& \quad \geq \frac{d(x, y)}{1+d(x, y)}-16 d(T x, T y) \\
& \quad=\frac{|x-y|^{2}}{1+|x-y|^{2}}-\frac{16}{36}|x-y|^{2} \\
& \quad \geq \frac{16}{36}|x-y|^{2}-\frac{16}{36}|x-y|^{2}=0 .
\end{aligned}
$$

Hence T satisfies all the hypothesis of Theorem with $x=\frac{6}{7}$ and $x=2$ are fixed points of T.

Here we observe that 'Condition (H)' of Theorem 23 fails to hold. For, choose $x=5$ and $x=6$, then there is no $v \in X$ such that $\alpha(5, v) \geq \eta(5, v)$ and $\alpha(6, v) \geq \eta(6, v)$.

Remark 4.6. In the usual metric, the inequality ($\mathbb{L} .2)$ fails. For, by choosing $x=3$ and $y=4$, we have $M_{T}(3,4)=2$ and $d(T 3, T 4)=2$ and hence we have $\zeta\left(d(T 3, T 4), M_{T}(3,4)\right)=\zeta(2,2)<0$, for any simulation function ζ.

Hence Theorem $\mathbb{L} \mathbf{2} \mathbb{\square}$ is not applicable.
Example 4.7. Let $X=[0, \infty)$ and let $d: X \times X \rightarrow[0, \infty)$ be defined by $d(x, y)=|x-y|^{2}$. Hence (X, d) is a complete b-metric space with coefficient $s=2$. We define $T: X \rightarrow X$ by

$$
T x= \begin{cases}\frac{2}{11} x & \text { if } x \in[0,6] \\ \frac{x}{6}-1 & \text { if } x \in(6, \infty)\end{cases}
$$

and $\alpha, \eta: X \times X \rightarrow[0, \infty)$ by

$$
\alpha(x, y)= \begin{cases}2 & \text { if } x, y \in[0,6] \\ 3 & \text { if } x \in(6, \infty), y=0 \\ 1+x y & \text { otherwise }\end{cases}
$$

and

$$
\eta(x, y)=\left\{\begin{array}{l}
0 \text { if } x, y \in[0,6] \\
1 \text { if } x \in(6, \infty), y=0 \\
4+x y \text { otherwise }
\end{array}\right.
$$

We now have $\alpha(x, y) \geq \eta(x, y) \Longleftrightarrow x, y \in[0,6]$ and $x \in(6, \infty), y=0$.
Suppose that $\alpha(x, T x) \geq \eta(x, T x)$, then we have $x \in[0,6)$ and hence $\alpha(T x, T T x) \geq \eta(T x, T T x)$. Therefore T is α-orbital admissible with respect to η.

Suppose that $\alpha(x, y) \geq \eta(x, y)$ and $\alpha(y, T y) \geq \eta(y, T y)$, then we have $x, y \in[0,6]$, or $x \in(6, \infty)$ and $y=0$, which implies that $x, T y \in[0,6]$, or $x \in(6, \infty)$ and $T y=y=0$ and hence $\alpha(x, T y) \geq \eta(x, T y)$. Therefore T is triangular α-orbital admissible with respect to η.

We now verify the inequality ($\mathbb{L} .3)$. For this purpose we define $\zeta:[0, \infty) \times[0, \infty) \rightarrow(-\infty, \infty)$ by $\zeta(t, s)=\frac{3}{4} s-t$.

Now we have the following cases.
Case (i) : $x, y \in[0,6)$
In this case $T x=\frac{2}{11} x, T y=\frac{2}{11} y$, then we have

$$
\begin{array}{rlrl}
\zeta\left(2^{4} d(T x, T y)\right. & \left.=M_{T}(0, y)\right) & & \zeta\left(16 d(T x, T y), M_{T}(x, y)\right) \\
=\frac{3}{4} M_{T}(x, y)-16 d(T x, T y) & & \\
\geq & \frac{3}{4} d(x, y)-16\left(\frac{4}{121}|x-y|^{2}\right) \\
& = & \frac{3}{4}|x-y|^{2}-16\left(\frac{4}{121}|x-y|^{2}\right) \geq 0 .
\end{array}
$$

Case (ii) : $x \in(6, \infty), y=0$
In this case $T x=\frac{x}{6}-1, T 0=0$, then we have

$$
\begin{aligned}
\zeta\left(16 d(T x, T 0), M_{T}(x, 0)\right) & =\frac{3}{4} M_{T}(x, 0)-16\left(\left|\frac{y}{6}-1\right|^{2}\right) \\
& =\frac{3}{4} M_{T}(x, 0)-16\left(\frac{1}{36}|y-6|^{2}\right) \\
& \geq \frac{3}{4} y^{2}-\frac{16}{36}|y-6|^{2} \geq 0
\end{aligned}
$$

Hence T satisfies the inequality ($[\mathbb{L} \mathbf{3})$. Also, since for any $x \neq y \in X$ we have $\alpha(x, 0) \geq \eta(x, 0), \alpha(y, 0) \geq \eta(y, 0)$ and $\alpha(0, T 0) \geq \eta(0, T 0), T$ satisfies 'Condition (H)'. Hence T satisfies all the hypotheses of Theorem [..3, and $x=0$ is the unique fixed point of T.

Example 4.8. Let $X=[0, \infty)$ and a b-metric be as defined in Example 1.22 .
Further, let T, α, η be as in Example $\mathbb{L} 22$. Then clearly T satisfies all the hypotheses of Theorem [2.] and $x=0$ and $x=1$ are two fixed points.

References

[1] Ansari, A.H., Chandok, S., Ionescu, C., Fixed point theorems on b-metric spaces for weak contractions with auxiliary functions. Journal of Inequalities and Applications 2014, 2014:429.
[2] Argoubi, H., Samet, B., Vetro, C., Nonlinear contractions involving simulation functions in a metric space with a partial order, J. Nonlinear Sci. Appl. 8 (2015), 1082-1094.
[3] Babu, G.V.R., Dula, T.M., Fixed points of almost generalized $(\alpha, \beta)-(\psi, \varphi)-$ contractive mappings in b-metric spaces. (Communicated).
[4] Babu, G.V.R., Sailaja, P.D., A Fixed Point Theorem of Generalized Weakly Contractive Maps in Orbitally Complete Metric Spaces. Thai Journal of Mathematics 9(1) (2011), 1-10.
[5] Banach. S, Sur les operations dans les ensembles abstraits et leur application aux equations integrales. Fundam. Math. 3 (1922), 133-181. (in French).
[6] Berinde, V., Approximating fixed points of weak contractions using the Picard iteration, Nonlinear Anal. Forum 9 (2004), 43-53.
[7] Boriceanu, M., Bota, M., Petrusel, A., Mutivalued fractals in b-metric spaces. Cent. Eur. J. Math, 8 (2010), 367-377.
[8] Chuadchawna, P., Kaewcharoen, A., Plubtieng, S., Fixed point theorems for generalized $\alpha-\eta$ - ψ-Geraghty contraction type mappings in $\alpha-\eta$-complete metric spaces. J. Nonlinear Sci. Appl. 9 (2016), 471-485.
[9] Czerwik, S., Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostraviensis, 1 (1993), 5-11.
[10] Geraghty, M., On contractive mappings. Proc. Amer. Math. Soc. 40 (1973), 604-608.
[11] Hussain, N., Kutbi, M.A., Salimi, P., Fixed point theory in α-complete metric spaces with applications. Abstr. Appl. Anal., 2014 (2014), 11 pages.
[12] Hussain, N., Salimi, P., Suzuki-Wardowski type fixed point theorems for $\alpha-G F$ contractions. Taiwanese J. Mathematics 18(6) (2014), 1879-1895.
[13] Karapinar, E., Kumam, P., Salimi, P., On $\alpha-\psi$ Meir - Keeler contractive mappings. Fixed Point Theory Appl., 2013 (2013), 12 pages.
[14] Khojasteh, F., Shukla, S., Radenović, S., A new approach to the study of fixed point theorems via simulation functions. Filomat 29 (2015), 1189-1194.
[15] Olgun, M., Bicer, O., Alyildiz, T., A new aspect to Picard operators with simulation functions. Turk. J Math. 40 (2016), 832-837.
[16] Popescu, O., Some new fixed point theorems for α-Geraghty contraction type maps in metric spaces. Fixed Point Theory Appl. 2014 (2014), 12 pages.
[17] Samet, B., Vetro, C., Vetro, P., Fixed point theorem for $\alpha-\psi$-contractive type mappings. Nonlinear Anal. 75 (2012), 2154-2165.

Received by the editors April 4, 2017
First published online October 17, 2017

[^0]: ${ }^{1}$ Department of Mathematics, Andhra University, Visakhapatnam-530 003, India. e-mail: gvr_babu@hotmail.com
 ${ }^{2}$ Department of Mathematics, Wollega University, Nekemte-395, Ethiopia. e-mail: dulamosissa@gmail.com
 ${ }^{3}$ Corresponding author

