CONVOLUTION EQUATIONS IN COLOMBEAU'S SPACES

Marko Nedeljkov ${ }^{1}$

Abstract. The modified Colombeau's space $\mathcal{G}_{\mathbf{t}}$ is used as the frame for solving convolution equations via Fourier transformation and division.

AMS Mathematics Subject Classification (2000): 46F10
Key words and phrases: Colombeau generalizaed functions, convolution

1. Introduction

The basic space in this paper is $\mathcal{G}_{\mathbf{t}}$ which is introduced in [5]. The reason why we use $\mathcal{G}_{\mathbf{t}}$ and corresponding t-notions instead of Colombeau's \mathcal{G}_{τ} and τ-notions is that τ-convolution is not associative and commutative in a general case while t-convolution has both properties (in (g.t.d.) and (G.t.d) sense). Further on, in $\mathcal{G}_{\mathbf{t}}$ the exchange formula holds, and this is not the case in Colombeau's space \mathcal{G}_{τ}.

Using exchange formula we obtain sufficient conditions for solvability of a convolution equation in the associated sense in $\mathcal{G}_{\mathbf{t}}$.

In this paper we use the idea of division in \mathcal{G}, which is given in [6], and the main result, Corrolary 1, of this paper is a generalization of Theorem 2 in [6].

2. Notation and Basic Notions

We shall recall some facts from [1]. $\mathcal{A}_{q}, q \in \mathbf{N}$ are subsets of \mathcal{D} with the following properties:

$$
\operatorname{diam}(\operatorname{supp}(\phi))=1, \int x^{\alpha} \phi(x) d x=0, \text { and } \int \phi(x) d x=1
$$

for every $\phi \in \mathcal{A}_{q}, q \in \mathbf{N}, \alpha \in \mathbf{N}_{0}^{n}, 1 \leq|\alpha| \leq q$. \mathcal{A}_{0} is a set of all $\phi \in \mathcal{D}$ such that $\int \phi(x) d x=1$. Put $\phi_{\varepsilon}(\cdot)=\varepsilon^{-n} \phi(\cdot / \varepsilon)$. Obviously, $\mathcal{A}_{0} \supset \mathcal{A}_{1} \supset \ldots$;
\mathcal{E} is defined as a set of all functions $F_{\phi, \varepsilon}: \mathcal{A}_{0} \times(0,1) \times \mathbf{R}^{n} \rightarrow \mathbf{C}$, which are smooth on \mathbf{R}^{n}.
\mathbf{C}_{M} is the set of all $A_{\phi, \varepsilon}: \mathcal{A}_{0} \times(0,1) \rightarrow \mathbf{C}$ such that there exists $N \in \mathbf{N}_{0}$ such that for every $\phi \in \mathcal{A}_{N}$ there exist $C>0$ and $\eta>0$ such that

$$
\begin{equation*}
\left|A_{\phi, \varepsilon}\right|<C \varepsilon^{-N}, \varepsilon<\eta \tag{1}
\end{equation*}
$$

[^0]\mathcal{E}_{M} is the set of all $G_{\phi, \varepsilon} \in \mathcal{E}$ such that for every compact set K and every $\beta \in \mathbf{N}_{0}^{n}$ there exists $N \in \mathbf{N}_{0}$ such that for every $\phi \in \mathcal{A}_{N}$ there exist $C>0$ and $\eta>0$ such that
\[

$$
\begin{equation*}
\left|\partial^{\beta} G_{\phi, \varepsilon}(x)\right|<C \varepsilon^{-N}, \varepsilon<\eta, x \in K . \tag{2}
\end{equation*}
$$

\]

Denote by Γ the family of all increasing sequences which tend to infinity.
\mathbf{C}_{0} is the set of all $A \in \mathbf{C}_{M}$ such that there exist $g \in \Gamma$ and $N \in \mathbf{N}_{0}$ such that for every $\phi \in \mathcal{A}_{q}, q \geq N$, there exist $C>0$ and $\eta>0$ such that

$$
\begin{equation*}
\left|A_{\phi, \varepsilon}\right|<C \varepsilon^{g(q)-N}, \varepsilon<\eta . \tag{3}
\end{equation*}
$$

\mathcal{N} is the set of all $G \in \mathcal{E}_{M}$ such that for every $\beta \in \mathbf{N}_{0}^{n}$ and every compact set K there exist $N \in \mathbf{N}_{0}$ and $g \in \Gamma$ such that for every $\phi \in \mathcal{A}_{q}, q \geq N$, there exist $C>0$ and $\eta>0$ such that

$$
\begin{equation*}
\left|\partial^{\beta} G_{\phi, \varepsilon}(x)\right|<C \varepsilon^{g(q)-N}, \varepsilon<\eta, x \in K \tag{4}
\end{equation*}
$$

The spaces of Colombeau's generalized complex numbers and generalized functions are defined by $\overline{\mathbf{C}}=\mathbf{C}_{M} / \mathbf{C}_{0}$ and $\mathcal{G}=\mathcal{E}_{M} / \mathcal{N}$.

If $g \in \mathcal{D}^{\prime}$, then by

$$
G_{\phi, \varepsilon}(x)=<g(\xi), \varepsilon^{-n} \phi((\xi-x) / \varepsilon)>, x \in \mathbf{R}^{n}
$$

is denoted the representative of the corresponding element in \mathcal{E}_{M}. Its class is called Colombeau's regularization of g and denoted by $\mathrm{Cd}(g)$.

The inclusions $\mathcal{E} \subset \mathcal{D}^{\prime} \subset \mathcal{G}$ are valid.
$\mathcal{E}_{\mathbf{t}}$ is the set of all elements $G \in \mathcal{E}$ with the following property: For every $\beta \in \mathbf{N}_{0}^{n}$ there exist $N \in \mathbf{N}_{0}$ and $\gamma>0$ such that for every $\phi \in \mathcal{A}_{N}$ there exist $C>0$ and $\eta>0$ such that

$$
\begin{equation*}
\left|\partial^{\beta} G_{\phi, \varepsilon}(x)\right|<C(1+|x|)^{\gamma} \varepsilon^{-N}, \varepsilon<\eta, x \in \mathbf{R}^{n} \tag{5}
\end{equation*}
$$

$\mathcal{N}_{\mathbf{t}}$ is the set of elements $G \in \mathcal{E}_{\mathbf{t}}$ with the following property: For every $\beta \in \mathbf{N}_{0}^{n}$ there exist $\gamma>0, N \in \mathbf{N}_{0}$ and $g \in \Gamma$ such that for every $\phi \in \mathcal{A}_{q}$, $q \geq N$, there exist $C>0$ and $\eta>0$ such that

$$
\begin{equation*}
\left|\partial^{\beta} G_{\phi, \varepsilon}(x)\right|<C(1+|x|)^{\gamma} \varepsilon^{g(q)-N}, \varepsilon<\eta, x \in \mathbf{R}^{n} \tag{6}
\end{equation*}
$$

It is an ideal of $\mathcal{E}_{\mathbf{t}}$. The Colombeau's space of tempered generalized functions is defined by $\mathcal{G}_{\mathbf{t}}=\mathcal{E}_{\mathbf{t}} / \mathcal{N}_{\mathbf{t}}$. In [1] this space is denoted by \mathcal{G}_{τ}. In [5] we have considered a class of spaces $\mathcal{G}_{\mathbf{a}}$ such that \mathcal{G}_{t} is a special space of this class. From now on we shall use notation and notions from [5].

A net of functions $\mu_{\varepsilon}, \varepsilon>0$ from \mathcal{D} is called a unit net related to \mathbf{t} if it satisfies the following properties:

1. $0 \leq \mu_{\varepsilon}(x) \leq 1, x \in \mathbf{R}^{n}, \varepsilon>0$.
2. For some $b>0$ and $r>0$,

$$
\mu_{\varepsilon}(x)=1,|x|<b / \varepsilon, \mu_{\varepsilon}(x)=0,|x|>b / \varepsilon+r, \varepsilon>0
$$

3. For every $l \in \mathbf{N}_{0}^{n}$ there exists $c_{l}>0$ such that $\left|\partial^{l} \mu_{\varepsilon}(x)\right| \leq c_{l}, x \in \mathbf{R}^{n}, \varepsilon>$ 0 .

Let μ_{ε} be a unit net related to \mathbf{t}, B a measurable subset of \mathbf{R}^{n} and $G \in \mathcal{G}_{\mathbf{t}}$. Then we define

$$
\int_{B}^{\mathbf{t}, \mu} \mathbf{G}(x) d x \in \overline{\mathbf{C}} \text { by its representative } \int_{B} G_{\phi, \varepsilon}(x) \mu_{\varepsilon}(x) d x \in \mathbf{C}_{M}
$$

If $B=\mathbf{R}^{n}$ then the symbol $\int^{\mathbf{t}, \mu}$ is used. In [5] is proved that $G_{\phi, \varepsilon} \in \mathcal{N}_{\mathbf{t}}$ implies $\int_{B} G_{\phi, \varepsilon}(x) \mu_{\varepsilon}(x) d x \in \mathbf{C}_{0}$. (In this case we say that a definition is correct.)

Define \mathcal{S}_{G} as the set of elements Ψ from $\mathcal{G}_{\mathbf{t}}$ for which there exists the representative $\Psi_{\phi, \varepsilon}$ such that for every $\beta \in \mathbf{N}_{0}^{n}$ there exists $N \in \mathbf{N}_{0}$ such that for every $\phi \in \mathcal{A}_{N}$ and $p \in \mathbf{N}$ there exist $C>0$ and $\eta>0$ such that

$$
\left|\partial^{\beta} \Psi_{\phi, \varepsilon}(x)\right|<(1+|x|)^{-p} \varepsilon^{-N}, \varepsilon<\eta, x \in \mathbf{R}^{n}
$$

\mathcal{S}_{G} is called the space of generalized rapidly decreasing functions. Clearly, $\mathcal{S} \subset$ \mathcal{S}_{G} and they are not equal. Let $\Psi \in \mathcal{S}_{G}$ and $G \in \mathcal{G}_{\mathbf{t}}$. Then we define

$$
<G, \Psi>=\int G(x) \Psi(x) d x
$$

given by the representative

$$
\begin{equation*}
\int G_{\phi, \varepsilon}(x) \Psi_{\phi, \varepsilon}(x) d x \tag{7}
\end{equation*}
$$

One can prove that this definition is correct. Moreover, for every $\mathbf{G} \in \mathcal{G}_{\mathbf{t}}, \Psi \in$ \mathcal{S}_{G}, and a unit net μ_{ε} related to \mathbf{t},

$$
\int^{\mathbf{t}, \mu} G(x) \Psi(x) d x=\int G(x) \Psi(x) d x .
$$

It is said that $G \in \mathcal{G}\left(G \in \mathcal{G}_{\mathbf{t}}\right)$ is equal to $H \in \mathcal{G}\left(H \in \mathcal{G}_{\mathbf{t}}\right)$ in generalized distribution sense, $G=H$ (g.d.), (in generalized tempered distribution sense, $G=H($ g.t.d. $))$ if every $\psi \in \mathcal{D}(\psi \in \mathcal{S})$

$$
<G-H, \psi>=0
$$

If we use $\Psi \in \mathcal{S}_{G}$ instead of $\phi \in \mathcal{S}$ we obtain (G.t.d.)-equality instead of (g.t.d.)-equality.
$A \in \overline{\mathbf{C}}$ is associated to $c \in \mathbf{C}(A \approx c)$ if there exists $N \in \mathbf{N}_{0}$ such that $\lim _{\varepsilon \rightarrow 0} A_{\phi, \varepsilon}=c$ for every $\phi \in \mathcal{A}_{q}$.
$G \in \mathcal{G}$ is associated to $H \in \mathcal{G}(G \approx H)$ if there exists $N \in \mathbf{N}_{0}$ such that for every $\psi \in \mathcal{D}$

$$
\lim _{\varepsilon \rightarrow 0}<G_{\phi, \varepsilon}-H_{\phi, \varepsilon}, \psi>=0
$$

for every $\phi \in \mathcal{A}_{N}$.
If one takes $\psi \in \mathcal{S}\left(\Psi \in \mathcal{S}_{G}\right.$ instead $\phi \in \mathcal{D}$ then the definition of \mathbf{t}-association (\mathbf{T}-association) is obtained instead of association.

All defined associations and equalities are equivalence relations.
Now, we define a convolution in $\mathcal{G}_{\mathbf{t}}$. Let $G_{1}, G_{2} \in \mathcal{G}_{\mathbf{t}}$, and let μ_{ε} be a unit net related to \mathbf{t}. Then we define $G_{1}{ }^{\mathbf{t}} \star^{\mu} G_{2}$ as an element of $\mathcal{G}_{\mathbf{t}}$ by

$$
\begin{equation*}
G_{1}{ }^{\mathbf{t}} \star^{\mu} G_{2}(x)=\int^{\mathbf{t}, \mu} G_{1}(x-y) G_{2}(y) d y, x \in \mathbf{R}^{n} \tag{8}
\end{equation*}
$$

The correctness of this definition and that $G_{1}, G_{2} \in \mathcal{G}_{\mathbf{t}}$ implies $G_{1}{ }^{\mathbf{t}} \star^{\mu} G_{2} \in \mathcal{G}_{\mathbf{t}}$ are proved by standard methods in [5].

Let μ be a unit net related to \mathbf{t}. Then the \mathbf{t}, μ - Fourier transformation $\mathcal{F}_{\mathbf{t}, \mu}$ on \mathcal{G}_{t} is defined by

$$
\begin{equation*}
\mathcal{F}_{\mathbf{t}, \mu}(G)(x)=\int^{\mathbf{t}, \mu} G(y) e^{-i x y} d y, x \in \mathbf{R}^{n} \tag{9}
\end{equation*}
$$

It is an element of \mathcal{G}_{t}.
The inverse \mathbf{t}, μ-Fourier transformation is defined by

$$
\begin{equation*}
\mathcal{F}_{\mathbf{t}, \mu}^{-1}(G)=(2 \pi)^{-n / 2} \int^{\mathbf{t}, \mu} G(y) e^{i x y} d y, x \in \mathbf{R}^{n} \tag{10}
\end{equation*}
$$

In the same way as for $\mathcal{F}_{\mathbf{t}, \mu}$, one can prove that the definition is correct.
Proposition 1. ([5]) Let G, G_{1}, G_{2} be in $\mathcal{G}_{\mathbf{t}}$ and let μ_{ε} be a unit net related to t. Then for every $\psi \in \mathcal{S}$

1. $<\mathcal{F}_{\mathbf{t}, \mu}(G), \psi>=<G, \mathcal{F}(\psi)>$.
2. implies that the Fourier transformation in \mathcal{G}_{t} does not depend on a unit net in the sense of (g.t.d.) equality, so we shall omit the symbol μ in the symbol for the Fourier transformation.
3. $\mathcal{F}_{\mathbf{t}}\left(G_{1}^{\mathbf{t}} \star^{\mu} G_{2}\right)=\mathcal{F}_{\mathbf{t}}\left(G_{1}\right) \mathcal{F}_{\mathbf{t}}\left(G_{2}\right)$ (g.t.d.).
4. $\mathcal{F}_{\mathbf{t}}\left(\partial^{\alpha} G\right)=(i .)^{\alpha} \mathcal{F}_{\mathbf{t}}(G)$ (g.t.d.).
5. If $\mathcal{F}_{\mathbf{t}}\left(G_{1}\right)=\mathcal{F}_{\mathbf{t}}\left(G_{2}\right)$ (g.t.d.) then $G_{1}=G_{2}$ (g.t.d.).
6. The quoted assertions hold with the use of the inverse Fourier transformation.
7. $\mathcal{F}_{\mathbf{t}}\left(\mathcal{F}_{\mathbf{t}}^{-1}(G)\right)=G($ g.t.d. $)$.
8. $G_{1}{ }^{\mathbf{t}} \star^{\mu} G_{2}=G_{2}{ }^{\mathbf{t}} \star^{\mu} G_{1}$ (g.t.d.).
9. $\left(G_{1}^{\mathbf{t}} \star^{\mu} G_{2}\right)^{\mathbf{t}} \star^{\mu} G_{3}=G_{1}^{\mathbf{t}} \star^{\mu}\left(G_{2}^{\mathbf{t}} \star^{\mu} G_{3}\right)$ (g.t.d.).
10. $\partial^{\alpha}\left(G_{1}{ }^{\mathbf{t}} \star^{\mu} G_{2}\right)=\partial^{\alpha} G_{1}{ }^{\mathbf{t}} \star^{\mu} G_{2}$ (g.t.d.).

For the unit nets $\mu_{1, \varepsilon}, \mu_{2, \varepsilon}$ related to \mathbf{t} and $\psi \in \mathcal{S}$

$$
\begin{gathered}
<G_{1}^{\mathbf{t}} \star^{\mu_{1}} G_{2}, \psi>=<\mathcal{F}_{\mathbf{t}}\left(\mathcal{F}_{\mathbf{t}}^{-1}\left(G_{1} \mathbf{t}^{\mathbf{t}} \star^{\mu_{1}} G_{2}\right)\right), \psi> \\
=<\mathcal{F}_{\mathbf{t}}\left(\mathcal{F}_{\mathbf{t}}^{-1}\left(G_{1}\right) \mathcal{F}_{\mathbf{t}}^{-1}\left(G_{2}\right)\right), \psi> \\
=<\mathcal{F}_{\mathbf{t}}\left(\mathcal{F}_{\mathbf{t}}^{-1}\left(G_{1}^{\mathbf{t}} \star^{\mu_{2}} G_{2}\right)\right), \psi>=<G_{1}^{\mathbf{t}} \star^{\mu_{2}} G_{2}, \psi>
\end{gathered}
$$

This implies that the \mathbf{t}-convolution does not depend in (g.t.d.) sense on the unit nets. So in the sequel for the \mathbf{t}-convolution we use the symbol \star and for the t-Fourier transformation the symbol \mathcal{F}.

Remark If we use $\Psi \in \mathcal{S}_{G}$ instead of $\psi \in \mathcal{S}$, all assertions are valid for (G.t.d)equality because the t-Fourier transformation is bijection from \mathcal{S}_{G} into \mathcal{S}_{G}, as one can prove by standard technique which is used to prove that Fourier transformation is bijection from \mathcal{S} onto \mathcal{S} in classical case.

3. Convolution Equations

Let $\psi_{j}, j \in \mathbf{N}$, be a locally finite partition of unity from \mathcal{D} such that for every $\beta \in \mathbf{N}_{0}^{n}$ there is $D_{\beta}>0$ such that

$$
\begin{equation*}
\left|\partial^{\beta} \psi_{j}(x)\right| \leq D_{\beta}, j \in \mathbf{N} \tag{11}
\end{equation*}
$$

Denote

$$
K_{j}=\operatorname{supp} \psi_{j}, K_{j, 1}=\left\{x \in \mathbf{R}^{n} \mid d\left(x, K_{j}\right) \leq 1\right\}, j \in \mathbf{N}
$$

$k_{x}=\left\{j \mid x \in K_{j, 1}\right\}$, and card $\left(k_{x}\right)$ is its cardinal number, $x \in \mathbf{R}^{n}\left(d\left(x, K_{j}\right)\right.$ is the distance between x and K_{j}).

We shall assume

$$
\sup _{x \in \mathbf{R}^{n}}\left(\operatorname{card} k_{x}\right)=r<\infty, \text { and } \operatorname{mes}\left(K_{j}\right) \leq 1
$$

It is easy to find such partition of unity.
Our aim is to find the solution to

$$
\begin{equation*}
F \cdot G \approx^{T} 1 \tag{12}
\end{equation*}
$$

where $F \in \mathcal{G}$ satisfies the following assumptions.
(I) $\operatorname{mes}(V)=0, V=\overline{\operatorname{compl}(U)}$, where U is the set of all $x \in \mathbf{R}^{n}$ such that for every K_{j} there exists $N_{j, F} \in \mathbf{N}_{0}$ such that for every $\phi \in \mathcal{A}_{N_{j, F}}$ there exist $C_{j, F}>0, \gamma_{j}>0$, and $\eta_{j, F}>0$ such that

$$
\begin{equation*}
\left|F_{\phi, \varepsilon}(x)\right| \geq C_{j, F}(1+|x|)^{-\gamma_{j}} \varepsilon^{N_{j, F}}, \varepsilon<\eta_{j, F}, x \in K_{j} \cap U \tag{13}
\end{equation*}
$$

and

$$
\begin{aligned}
& \gamma_{1, F}=\sup _{j \in \mathbf{N}} \gamma_{j}<\infty, C_{1, F}=\sup _{j \in \mathbf{N}} C_{j, F}<\infty \\
& N_{1, F}=\sup _{j \in \mathbf{N}} N_{j, F}<\infty, \eta_{1, F}=\inf _{j \in \mathbf{N}} \eta_{j, F}>0
\end{aligned}
$$

(II) For every K_{j} there exists $N_{j} \in \mathbf{N}_{0}$ such that for every $\phi \in \mathcal{A}_{N_{j}}$ there exist $m_{j}>1, C_{j}>0$ and $\eta_{j}>0$ such that

$$
\begin{gather*}
\left|F_{\phi, \varepsilon}(x)\right| \geq C_{j} \cdot d(x, V)^{m} \varepsilon^{N_{j}}, \varepsilon<\eta_{j}, x \in K_{j}, \tag{14}\\
\sup _{j \in \mathbf{N}} m_{j}=m<\infty, \inf _{j \in \mathbf{N}} \eta_{j}=\eta>0, \sup _{j \in \mathbf{N}} N_{j}=N_{2}<\infty \tag{15}
\end{gather*}
$$

and

$$
\begin{equation*}
C_{x}=\max _{j \in k_{x}} 1 / C_{j} \leq C_{2}(1+|x|)^{\gamma} . \tag{16}
\end{equation*}
$$

(III) V can be decomposed in a finite union of subvarieties of dimension less or equal to $n-1$,

$$
V=V_{1} \cup \ldots \cup V_{r_{V}}, \quad \operatorname{dim} V_{i}=n_{i} \leq n-1
$$

such that every $x \in V_{i}$ is given by

$$
x=\left(\kappa_{1}\left(x_{1}, \ldots, x_{n_{i}}\right), \ldots, \kappa_{n_{i}}\left(x_{1}, \ldots, x_{n_{i}}\right), \kappa_{n_{i}+1}\left(x_{1}, \ldots, x_{n_{i}}\right), \ldots, \kappa_{n}\left(x_{1}, \ldots, x_{n_{i}}\right)\right),
$$

where $\kappa_{l}\left(x_{1}, \ldots, x_{n_{i}}\right)=x_{l}$, for $l \leq n_{i}$, and $x_{l}=\kappa_{l}\left(x_{1}, \ldots, x_{n_{i}}\right), l>n_{i}$,
$\left(x_{1}, \ldots, x_{n_{i}}\right) \in \mathbf{R}^{n_{i}}$, are of polynomial growth in infinity with respect to variables $x_{1}, \ldots, x_{n_{i}}$.

The following result is obtained by adopting division procedure from the space $\mathcal{G}([6])$ to the space $\mathcal{G}_{\mathbf{t}}$.

Theorem 1. Let $F \in \mathcal{G}_{\mathbf{t}}$ satisfies assumptions (I), (II), and (III). Then there exists $G \in \mathcal{G}_{\mathbf{t}}$ such that $F \cdot G \approx^{t} 1$.

Proof. We can suppose that inf $m_{j}=m_{0}>1, \eta_{j} \leq \eta_{j, F}$. Put $C_{0}=C_{1, F}+C_{2}$, and $N=N_{1, F}+N_{2}$.

Let $\Psi \in \mathcal{S}_{G}$. Then there exists N_{Ψ} such that for every $\phi \in \mathcal{A}_{N_{\Psi}}$ there exist η_{Ψ} and C_{Ψ} such that for every $s>0$

$$
\left|\Psi_{\phi, \varepsilon}(x)\right| \leq C_{\Psi}(1+|x|)^{-s} \varepsilon^{-N_{\Psi}}, \varepsilon<\eta_{\Psi}, x \in \mathbf{R}^{n}
$$

Let $j \in \mathbf{N}$ and $\phi \in \mathcal{A}_{q}$, where q will be chosen later. Put

$$
\begin{gather*}
G_{1, \phi, \varepsilon, j}(x)= \begin{cases}1 / F_{\phi, \varepsilon}(x), & d(x, V)>\varepsilon^{q / m_{j}}, x \in K_{j} \\
0, & \text { otherwise }\end{cases} \tag{17}\\
G_{\phi, \varepsilon, j}(x)=\psi_{j}(x)\left(G_{1, \phi, \varepsilon, j} \star \phi_{\varepsilon^{q m_{j}}}\right)(x), G_{\phi, \varepsilon}(x)=\sum_{j \in \mathbf{N}} G_{\phi, \varepsilon, j}(x), x \in \mathbf{R}^{n} .
\end{gather*}
$$

We shall use

$$
F_{\phi, \varepsilon}\left(x-\varepsilon^{q m_{j}} y\right)=F_{\phi, \varepsilon}(x)+\sum_{|\alpha|=1} \int_{0}^{1} \partial^{\alpha} F_{\phi, \varepsilon}\left(x-t \varepsilon^{q m_{j}} y\right)\left(-\varepsilon^{q m_{j}} y\right)^{\alpha} d t
$$

which implies that there exists $N_{D} \in \mathbf{N}_{0}$ and $\gamma_{D}>0$, independent on q because $\left|t \varepsilon^{q m_{j}} y\right| \leq 1$, such that for every $\phi \in \mathcal{A}_{N_{D}}$ there exist $C_{D}>0$ and $\eta_{D}>0$ such that

$$
\begin{equation*}
\left|F_{\phi, \varepsilon}(x)-F_{\phi, \varepsilon}\left(x-\varepsilon^{q m_{j}} y\right)\right| \leq C_{D}(1+|x|)^{\gamma_{D}} \varepsilon^{q m_{j}-N_{D}} \tag{18}
\end{equation*}
$$

for $0<\varepsilon<\eta_{D}, x \in \mathbf{R}^{n}, x-\varepsilon^{q m_{j}} y \in K_{j},|y|<1$.
First, we will prove that $G_{\phi, \varepsilon} \in \mathcal{E}_{\mathbf{t}}$. Suppose $q \geq \max \left\{N, N_{\Psi}\right\}$ and $q m_{0}-$ $q-N-N_{D}-N_{\Psi}>0$. Then, by the Leibnitz formula

$$
\left|\partial^{\alpha} G_{\phi, \varepsilon}(x)\right| \leq 2^{|\alpha|} \max _{\gamma+\beta=\alpha} A_{\gamma, \beta}, x \in \mathbf{R}^{n}
$$

where

$$
\begin{aligned}
& A_{\gamma, \beta}=\left|\sum_{j \in k_{x}} \partial^{\gamma} \psi_{j}(x) \partial^{\beta} \int_{d(y, V)>\varepsilon^{q / m_{j}}} G_{1, \phi, \varepsilon, j}(y) \varepsilon^{-n q m_{j}} \phi\left((x-y) / \varepsilon^{q m_{j}}\right) d y\right| \\
\leq & \sum_{j \in k_{x}} \varepsilon^{-q|\beta| m_{j}}\left|\partial^{\gamma} \psi_{j}(x) \int_{d\left(\varepsilon^{q m_{j}} y, V\right)>\varepsilon^{q / m_{j}}} G_{1, \phi, \varepsilon, j}\left(\varepsilon^{q m_{j}} y\right) \partial^{\beta} \phi\left(x / \varepsilon^{q m_{j}}-y\right) d y\right| \\
\leq & D_{\gamma} \sum_{j \in k_{x}} \varepsilon^{-q|\beta| m_{j}}\left(\sup _{y \in A_{j}}\left|G_{1, \phi, \varepsilon, j}\left(\varepsilon^{q m_{j}} y\right)\right|\right)\left(\sup _{y \in A_{j}}\left|\partial^{\beta} \phi\left(x / \varepsilon^{q m_{j}}-y\right)\right|\right) \cdot \text { mes } A_{j},
\end{aligned}
$$

where D_{γ} is from (11) and

$$
A_{j}=\left\{y\left|\varepsilon^{q m_{j}} y \in K_{j}, d\left(\varepsilon^{q m_{j}} y, V\right)>\varepsilon^{q / m_{j}},\left|y-x / \varepsilon^{q m_{j}}\right|<1\right\}\right.
$$

From (I) and (II) we have

$$
\begin{gathered}
\left.\left|G_{1, \phi, \varepsilon, j}\left(\varepsilon^{q m_{j}} y\right)\right|=\mid 1 / F_{\phi, \varepsilon}\right)\left(\varepsilon^{q m_{j}} y\right) \mid \leq 1 /\left(C_{j}\left(\varepsilon^{q / m_{j}}\right)^{m_{j}-N}\right) \\
=1 /\left(C_{j} \varepsilon^{q-N}\right), y \in A_{j}, \varepsilon<\eta
\end{gathered}
$$

If $\left|y-x / \varepsilon^{q m_{j}}\right| \leq 1$ then $|y| \leq|x| / \varepsilon^{q m_{j}}+1$ and the ball with the radius $R=|x| / \varepsilon^{q m_{j}}+1$ at the center 0 has the volume

$$
V=\int d V=\int_{S^{n-1}}\left(\int_{0}^{R} r^{n-1} d r\right) d \omega=\max _{x \in K_{j}}\left(2 \pi^{n / 2} / \Gamma(n / 2)\right)\left(|x| / \varepsilon^{q m_{j}}+1\right)^{n} / n
$$

This implies

$$
\operatorname{mes}\left(A_{j}\right) \leq \max _{x \in K_{j}}\left(2 \pi^{n / 2} / \Gamma(n / 2)\right) \cdot\left(|x| / \varepsilon^{q m_{j}}+1\right)^{n} / n
$$

Since $\sup _{t \in \mathbf{R}^{n}}\left|\partial^{\beta} \phi(t)\right|=\tilde{D}_{\beta}<\infty$, we have

$$
\begin{gathered}
\left.\left|\partial^{\alpha} G_{\phi, \varepsilon}(x)\right| \leq 2^{|\alpha|} \sup _{\gamma+\beta=\alpha} D_{\gamma} \sum_{j \in k_{x}}\left(1 / C_{j}\right) \varepsilon^{-q|\beta| m_{j}+q}\right) \\
\cdot \tilde{D}_{\beta}\left(2 \pi^{n / 2} / \Gamma(n / 2)\right)\left(|x|+\varepsilon^{q m_{j}}\right)^{n} /\left(n \varepsilon^{n q m_{j}}\right), x \in \mathbf{R}^{n}, \varepsilon<\eta
\end{gathered}
$$

This proves that $G_{\phi, \varepsilon} \in \mathcal{E}_{\mathbf{t}}$.
Let us prove that for every $\Psi_{\phi, \varepsilon} \in \mathcal{S}_{G},<F_{\phi, \varepsilon} G_{\phi, \varepsilon}-1, \Psi_{\phi, \varepsilon}>\rightarrow 0$, when $\varepsilon \rightarrow 0$.

Put
$\Lambda_{+}^{j}(x)=\left\{y \in \mathbf{R}^{n}| | y \mid \leq 1, d\left(x-\varepsilon^{q m_{j}} y, V\right)>\varepsilon^{q / m_{j}}, x \in K_{j}, x-\varepsilon^{q m_{j}} y \in K_{j}\right\}$,

$$
\Lambda_{-}^{j}(x)=\left\{y \in \mathbf{R}^{n}| | y \mid \leq 1\right\} \backslash \Lambda_{+}^{j}(x)
$$

Since

$$
\int_{\Lambda_{-}^{j}(x)} \phi(y) d y=0 \text { for } d(x, V)>2 \varepsilon^{q / m_{j}}, x \in K_{j}
$$

we have

$$
\begin{gathered}
\int\left(F_{\phi, \varepsilon}(x) \sum_{j \in \mathbf{N}} \psi_{j}(x) \int G_{1, \phi, \varepsilon, j}(x-y) \phi_{\varepsilon^{q m_{j}}}(y) d y-1\right) \Psi_{\phi, \varepsilon}(x) d x \\
=\int \sum_{j \in k_{x}} \left\lvert\, \int_{\Lambda_{+}^{j}(x)} \frac{F_{\phi, \varepsilon}(x)-F_{\phi, \varepsilon}\left(x-\varepsilon^{q m_{j}} y\right)}{F_{\phi, \varepsilon}\left(x-\varepsilon^{q m_{j}} y\right)} \psi_{j}(x) \phi(y) d y \Psi_{\phi, \varepsilon}(x) d x\right. \\
\quad+\int \sum_{j \in k_{x}} \int_{\Lambda_{-}^{j}(x)} d y \Psi_{\phi, \varepsilon}(x) d x=I_{1}+I_{2}
\end{gathered}
$$

We have

$$
\begin{gathered}
\left|I_{1}\right| \leq \int \sum_{j \in k_{x}}\left|\int_{\Lambda_{+}^{j}(x)} \frac{C_{D} \varepsilon^{q m_{j}-N_{D}}(1+|x|)^{\gamma_{D}}}{C_{j}\left(\varepsilon^{q m_{j}}\right)^{1 / m_{j}}} \tilde{\tilde{D}}_{j} \psi_{j}(x) \phi(y)\right|\left|\Psi_{\phi, \varepsilon}(x)\right| d y d x \\
\leq \int \sum_{j \in k_{x}} C_{j}^{-1} \tilde{\tilde{D}}_{j} \tilde{D}_{0} \varepsilon^{q m_{j}-q-N-N_{D}}(1+|x|)^{\gamma_{j}+\gamma_{D}}\left|\Psi_{\phi, \varepsilon}(x)\right| d x \\
\quad<C_{\Psi} \int(1+|x|)^{\gamma_{F}+\gamma_{D}-s} d x \cdot \varepsilon^{q m-q-N-N_{H}-N_{\Psi}} .
\end{gathered}
$$

On the other hand,

$$
\begin{aligned}
& \left|I_{2}\right| \leq\left(2 \pi^{n / 2} / \Gamma(n / 2)\right) \int\left(\int_{\Lambda_{-}^{j}(x)} \psi(y) d y\right)\left|\Psi_{\phi, \varepsilon}(x)\right| d x \\
& =\left(2 \pi^{n / 2} / \Gamma(n / 2)\right)\left(\int_{\left|x_{i}\right| \leq 1 / \varepsilon, d(x, V)>2 \varepsilon^{q / m_{j}}}\left|\Psi_{\phi, \varepsilon}(x)\right| d x\right. \\
& \quad+\int_{\left|x_{i}\right|>1 / \varepsilon, d(x, V)>2 \varepsilon^{q / m_{j}}}\left|\Psi_{\phi, \varepsilon}(x)\right|=J_{1}+J_{2} .
\end{aligned}
$$

By standard arguments one can prove that

$$
\int_{\left|x_{i}\right|>1 / \varepsilon, d(x, V)>2 \varepsilon^{q / m_{j}}}\left|\Psi_{\phi, \varepsilon}(x)\right| d x \in \mathbf{C}_{0},
$$

which implies that $J_{2} \in \mathbf{C}_{0}$. Let us prove that $J_{1} \rightarrow 0$ as $\varepsilon \rightarrow 0$. From assumption (III) it follows that the measure of V_{i} in $\mathbf{R}^{n_{i}}$ is bounded by $C_{V_{i}} \varepsilon^{-N_{i}}$ for some $C_{V_{i}}>0$ and $N_{i}>0$ if $\left|x_{l}\right| \leq \varepsilon^{-1}, 1 \leq l \leq n_{i}$ because

$$
\begin{aligned}
\operatorname{mes}\left(V_{i}\right) & =\int_{\left|x_{l}\right| \leq 1 / \varepsilon, 1 \leq l \leq n_{i}}\left(\operatorname{det}\left(a_{i j}\right)\right)^{1 / 2} d x_{1} \ldots d x_{n_{i}} \\
a_{i j} & =\left(\frac{\partial \kappa_{1}}{\partial x_{i}}, \ldots, \frac{\partial \kappa_{n}}{\partial x_{i}}\right) \cdot\left(\frac{\partial \kappa_{1}}{\partial x_{j}}, \ldots, \frac{\partial \kappa_{n}}{\partial x_{j}}\right)
\end{aligned}
$$

Let $\tilde{N}=\max _{1 \leq i \leq r_{V}} N_{i}$. we can suppose that $q>\left(\tilde{N}+N_{\Psi}\right) / m$. Let $\phi \in \mathcal{A}_{q}$. Then

$$
\begin{aligned}
M_{i}= & \operatorname{mes}\left\{x \in \mathbf{R}^{n}| | x_{l} \mid \leq 1 / \varepsilon, 1 \leq l \leq n_{i}, d\left(x, V_{i}\right) \leq 2 \varepsilon^{q / m}\right\} \\
& \leq\left(C_{V_{i}} \varepsilon^{-N_{i}}+2 \varepsilon^{q / m}\right) \cdot \operatorname{mes}\left\{x \in \mathbf{R}^{n}| | x \mid \leq 2 \varepsilon^{q / m}\right\}
\end{aligned}
$$

which implies

$$
\begin{aligned}
& \operatorname{mes}\left\{x \in \mathbf{R}^{n}| | x_{l} \mid \leq 1 / \varepsilon, 1 \leq l \leq n, d(x, V) \leq 2 \varepsilon^{q / m}\right\} \\
\leq & \sum_{i=1}^{r_{V}} M_{i} \leq\left(2 \pi^{n / 2} / \Gamma(n / 2)\right)\left(\max _{1 \leq i \leq r_{V}} C_{V_{i}} \varepsilon^{\tilde{N}}+1\right) \cdot 2 \varepsilon^{q / m}
\end{aligned}
$$

Since

$$
\left(\max _{1 \leq i \leq r_{V}} C_{V_{i}} \varepsilon^{-\tilde{N}}+1\right) \cdot 2 \varepsilon^{q / m-N_{\Psi}} C_{\psi}(1+|x|)^{-s} \rightarrow 0 \text { as } \varepsilon \rightarrow 0
$$

it follows that $J_{1} \rightarrow 0$ as $\varepsilon \rightarrow 0$. This proves the theorem.
Now we shall give the main result of the paper.

Corollary 1. Let $F \in \mathcal{G}_{\mathbf{t}}$. If $\mathcal{F}(F)$ satisfies the conditions of Theorem 1. Then for every $H \in \mathcal{G}_{\mathbf{t}}$ there exists $G \in \mathcal{G}_{\mathbf{t}}$ such that

$$
\begin{equation*}
F \star G \approx^{T} H \tag{19}
\end{equation*}
$$

Proof. Since $H \Psi \in \mathcal{S}_{G}$ for $H \in \mathcal{G}_{\mathbf{t}}$ and $\Psi \in \mathcal{S}_{G}$, we have that $\int G \Psi d x \approx \int F \Psi d x$ implies $\int G H \Psi d x \approx \int F H \Psi d x$, i.e. that $G \approx^{T} F$ implies $G H \approx^{T} F H$ for every $F, G, H \in \mathcal{G}_{\mathrm{t}}$.

The bijectivity of the t-Fourier and inverse t-Fourier transformation from \mathcal{S}_{G} onto \mathcal{S}_{G} implies that from $F \approx^{T} G$ we obtain $\mathcal{F}(F) \approx^{T} \mathcal{F}(G)$ and $\mathcal{F}^{-1}(F) \approx^{T}$ $\mathcal{F}^{-1}(G)$ because

$$
\int \mathcal{F}(F) \Psi d x \approx^{T} \int F \mathcal{F}(\Psi) d x \approx^{T} \int G \mathcal{F}(\Psi) d x \approx^{T} \int \mathcal{F}(G) \Psi d x
$$

These statements enable us to prove that $F \approx^{T} G$ implies $F \star H \approx^{T} G \star H$, for every $F, G, H \in \mathcal{G}_{\mathrm{t}}$:

$$
\mathcal{F}(F \star H) \approx^{T} \mathcal{F}(F) \mathcal{F}(H) \approx^{T} \mathcal{F}(G) \mathcal{F}(H) \approx^{T} \mathcal{F}(G \star H)
$$

Because of that, the equation $F \star G \approx^{T} \delta$ by t-Fourier transformation becomes $\mathcal{F}(F) \mathcal{F}(G) \approx^{T} 1$, and by Theorem 1 this equation has the solution $\mathcal{F}(G)$. Then $G=\mathcal{F}^{-1}(\mathcal{F}(G))$ is a solution to $F \star G \approx^{T} \delta$, and $G_{1}=G \star H$ is a solution to $F \star G_{1} \approx^{T} H$, for every $H \in \mathcal{G}_{\mathrm{t}}$. This proves the corollary.

Remark Theorem 2 in [6] is special case of this corrolary.

References

[1] Colombeau, J. F., Elementary Introduction to New Generalized Functions, North Holland, 1985.
[2] Egorov, J. V., Theory of generalized functions, Uspekhi math. nauk, 45, no. 5, 1-40 (1990).
[3] Hörmander, L., The Analysis of Linear Partial Differential Operators Vol. I, II, Springer 1983.
[4] Lojasiewicz, S., Sur le probleme de division, Stud. Math., 18, 87-136 (1959).
[5] Nedeljkov, M., Pilipović, S., Convolution in Colombeau's Spaces of Generalized Functions, Part I and Part II, Publ. Inst. Math., Belgrade, 52(66) (1992), 95-105.
[6] Nedeljkov, M., Pilipović, S., Scarpalézos, D., Division problem and partial differential equations with constant coefficients in Colombeau's space of new generalized functions, Mh. Math. 122, No.2, 157-170 (1996).
[7] Scarpalézos, D., Colombeau's generalized functions: topological structures; microlocal properties. A simplified point of view, preprint.

Received by the editors November 22, 1999

[^0]: ${ }^{1}$ Department of Mathematics and Informatics, Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia and Montenegro, e-mail: marko@im.ns.ac.yu

