NOVI SAD J. MATH. Vol. 33, No. 2, 2003, 181-190

CONVOLUTION EQUATIONS IN COLOMBEAU'S SPACES

Marko Nedeljkov¹

Abstract. The modified Colombeau's space \mathcal{G}_t is used as the frame for solving convolution equations via Fourier transformation and division.

AMS Mathematics Subject Classification (2000): 46F10

Key words and phrases: Colombeau generalizaed functions, convolution

1. Introduction

The basic space in this paper is $\mathcal{G}_{\mathbf{t}}$ which is introduced in [5]. The reason why we use $\mathcal{G}_{\mathbf{t}}$ and corresponding **t**-notions instead of Colombeau's \mathcal{G}_{τ} and τ -notions is that τ -convolution is not associative and commutative in a general case while **t**-convolution has both properties (in (*g.t.d.*) and (*G.t.d*) sense). Further on, in $\mathcal{G}_{\mathbf{t}}$ the exchange formula holds, and this is not the case in Colombeau's space \mathcal{G}_{τ} .

Using exchange formula we obtain sufficient conditions for solvability of a convolution equation in the associated sense in \mathcal{G}_t .

In this paper we use the idea of division in \mathcal{G} , which is given in [6], and the main result, Corrolary 1, of this paper is a generalization of Theorem 2 in [6].

2. Notation and Basic Notions

We shall recall some facts from [1]. $\mathcal{A}_q, q \in \mathbf{N}$ are subsets of \mathcal{D} with the following properties:

diam(supp(
$$\phi$$
)) = 1, $\int x^{\alpha} \phi(x) dx = 0$, and $\int \phi(x) dx = 1$,

for every $\phi \in \mathcal{A}_q$, $q \in \mathbf{N}$, $\alpha \in \mathbf{N}_0^n$, $1 \leq |\alpha| \leq q$. \mathcal{A}_0 is a set of all $\phi \in \mathcal{D}$ such that $\int \phi(x) dx = 1$. Put $\phi_{\varepsilon}(\cdot) = \varepsilon^{-n} \phi(\cdot/\varepsilon)$. Obviously, $\mathcal{A}_0 \supset \mathcal{A}_1 \supset \ldots$;

 \mathcal{E} is defined as a set of all functions $F_{\phi,\varepsilon}: \mathcal{A}_0 \times (0,1) \times \mathbf{R}^n \to \mathbf{C}$, which are smooth on \mathbf{R}^n .

 \mathbf{C}_M is the set of all $A_{\phi,\varepsilon} : \mathcal{A}_0 \times (0,1) \to \mathbf{C}$ such that there exists $N \in \mathbf{N}_0$ such that for every $\phi \in \mathcal{A}_N$ there exist C > 0 and $\eta > 0$ such that

(1)
$$|A_{\phi,\varepsilon}| < C\varepsilon^{-N}, \ \varepsilon < \eta.$$

 $^{^1 \}rm Department$ of Mathematics and Informatics, Tr
g Dositeja Obradovića 4, 21000 Novi Sad, Serbia and Montenegro, e-mail: marko@im.ns.ac.yu

 \mathcal{E}_M is the set of all $G_{\phi,\varepsilon} \in \mathcal{E}$ such that for every compact set K and every $\beta \in \mathbf{N}_0^n$ there exists $N \in \mathbf{N}_0$ such that for every $\phi \in \mathcal{A}_N$ there exist C > 0 and $\eta > 0$ such that

(2)
$$|\partial^{\beta} G_{\phi,\varepsilon}(x)| < C\varepsilon^{-N}, \ \varepsilon < \eta, \ x \in K.$$

Denote by Γ the family of all increasing sequences which tend to infinity.

 \mathbf{C}_0 is the set of all $A \in \mathbf{C}_M$ such that there exist $g \in \Gamma$ and $N \in \mathbf{N}_0$ such that for every $\phi \in \mathcal{A}_q$, $q \geq N$, there exist C > 0 and $\eta > 0$ such that

(3)
$$|A_{\phi,\varepsilon}| < C\varepsilon^{g(q)-N}, \ \varepsilon < \eta.$$

 \mathcal{N} is the set of all $G \in \mathcal{E}_M$ such that for every $\beta \in \mathbf{N}_0^n$ and every compact set K there exist $N \in \mathbf{N}_0$ and $g \in \Gamma$ such that for every $\phi \in \mathcal{A}_q$, $q \geq N$, there exist C > 0 and $\eta > 0$ such that

(4)
$$|\partial^{\beta} G_{\phi,\varepsilon}(x)| < C\varepsilon^{g(q)-N}, \ \varepsilon < \eta, \ x \in K.$$

The spaces of Colombeau's generalized complex numbers and generalized functions are defined by $\overline{\mathbf{C}} = \mathbf{C}_M / \mathbf{C}_0$ and $\mathcal{G} = \mathcal{E}_M / \mathcal{N}$.

If $g \in \mathcal{D}'$, then by

$$G_{\phi,\varepsilon}(x) = \langle g(\xi), \varepsilon^{-n}\phi((\xi - x)/\varepsilon) \rangle, \ x \in \mathbf{R}^n$$

is denoted the representative of the corresponding element in \mathcal{E}_M . Its class is called Colombeau's regularization of g and denoted by $\mathrm{Cd}(g)$.

The inclusions $\mathcal{E} \subset \mathcal{D}' \subset \mathcal{G}$ are valid.

 $\mathcal{E}_{\mathbf{t}}$ is the set of all elements $G \in \mathcal{E}$ with the following property: For every $\beta \in \mathbf{N}_0^n$ there exist $N \in \mathbf{N}_0$ and $\gamma > 0$ such that for every $\phi \in \mathcal{A}_N$ there exist C > 0 and $\eta > 0$ such that

(5)
$$|\partial^{\beta} G_{\phi,\varepsilon}(x)| < C(1+|x|)^{\gamma} \varepsilon^{-N}, \ \varepsilon < \eta, \ x \in \mathbf{R}^{n}.$$

 $\mathcal{N}_{\mathbf{t}}$ is the set of elements $G \in \mathcal{E}_{\mathbf{t}}$ with the following property: For every $\beta \in \mathbf{N}_0^n$ there exist $\gamma > 0$, $N \in \mathbf{N}_0$ and $g \in \Gamma$ such that for every $\phi \in \mathcal{A}_q$, $q \geq N$, there exist C > 0 and $\eta > 0$ such that

(6)
$$|\partial^{\beta} G_{\phi,\varepsilon}(x)| < C(1+|x|)^{\gamma} \varepsilon^{g(q)-N}, \ \varepsilon < \eta, \ x \in \mathbf{R}^{n}.$$

It is an ideal of $\mathcal{E}_{\mathbf{t}}$. The Colombeau's space of tempered generalized functions is defined by $\mathcal{G}_{\mathbf{t}} = \mathcal{E}_{\mathbf{t}}/\mathcal{N}_{\mathbf{t}}$. In [1] this space is denoted by \mathcal{G}_{τ} . In [5] we have considered a class of spaces $\mathcal{G}_{\mathbf{a}}$ such that $\mathcal{G}_{\mathbf{t}}$ is a special space of this class. From now on we shall use notation and notions from [5].

A net of functions μ_{ε} , $\varepsilon > 0$ from \mathcal{D} is called a unit net related to **t** if it satisfies the following properties:

1.
$$0 \leq \mu_{\varepsilon}(x) \leq 1, x \in \mathbf{R}^n, \varepsilon > 0.$$

Convolution equations in Colombeau's spaces

2. For some b > 0 and r > 0,

$$\mu_{\varepsilon}(x) = 1, |x| < b/\varepsilon, \ \mu_{\varepsilon}(x) = 0, |x| > b/\varepsilon + r, \ \varepsilon > 0.$$

3. For every $l \in \mathbf{N}_0^n$ there exists $c_l > 0$ such that $|\partial^l \mu_{\varepsilon}(x)| \leq c_l, x \in \mathbf{R}^n, \varepsilon > 0$.

Let μ_{ε} be a unit net related to \mathbf{t} , B a measurable subset of \mathbf{R}^n and $G \in \mathcal{G}_{\mathbf{t}}$. Then we define

$$\int_{B}^{\mathbf{t},\mu} \mathbf{G}(x) dx \in \overline{\mathbf{C}} \text{ by its representative } \int_{B} G_{\phi,\varepsilon}(x) \mu_{\varepsilon}(x) dx \in \mathbf{C}_{M}.$$

If $B = \mathbf{R}^n$ then the symbol $\int^{\mathbf{t},\mu}$ is used. In [5] is proved that $G_{\phi,\varepsilon} \in \mathcal{N}_{\mathbf{t}}$ implies $\int_B G_{\phi,\varepsilon}(x)\mu_{\varepsilon}(x)dx \in \mathbf{C}_0$. (In this case we say that a definition is correct.)

Define \mathcal{S}_G as the set of elements Ψ from \mathcal{G}_t for which there exists the representative $\Psi_{\phi,\varepsilon}$ such that for every $\beta \in \mathbf{N}_0^n$ there exists $N \in \mathbf{N}_0$ such that for every $\phi \in \mathcal{A}_N$ and $p \in \mathbf{N}$ there exist C > 0 and $\eta > 0$ such that

$$\partial^{\beta} \Psi_{\phi,\varepsilon}(x) | < (1+|x|)^{-p} \varepsilon^{-N}, \ \varepsilon < \eta, \ x \in \mathbf{R}^n.$$

 \mathcal{S}_G is called the space of generalized rapidly decreasing functions. Clearly, $\mathcal{S} \subset \mathcal{S}_G$ and they are not equal. Let $\Psi \in \mathcal{S}_G$ and $G \in \mathcal{G}_t$. Then we define

$$< G, \Psi > = \int G(x) \Psi(x) dx$$

given by the representative

(7)
$$\int G_{\phi,\varepsilon}(x)\Psi_{\phi,\varepsilon}(x)dx.$$

One can prove that this definition is correct. Moreover, for every $\mathbf{G} \in \mathcal{G}_{\mathbf{t}}, \Psi \in \mathcal{S}_{G}$, and a unit net μ_{ε} related to \mathbf{t} ,

$$\int^{\mathbf{t},\mu} G(x)\Psi(x)dx = \int G(x)\Psi(x)dx.$$

It is said that $G \in \mathcal{G}$ ($G \in \mathcal{G}_t$) is equal to $H \in \mathcal{G}$ ($H \in \mathcal{G}_t$) in generalized distribution sense, G = H(g.d.), (in generalized tempered distribution sense, G = H(g.t.d.)) if every $\psi \in \mathcal{D}$ ($\psi \in \mathcal{S}$)

$$\langle G - H, \psi \rangle = 0.$$

If we use $\Psi \in S_G$ instead of $\phi \in S$ we obtain (*G.t.d.*)-equality instead of (*g.t.d.*)-equality.

 $A \in \overline{\mathbf{C}}$ is associated to $c \in \mathbf{C}$ $(A \approx c)$ if there exists $N \in \mathbf{N}_0$ such that $\lim_{\varepsilon \to 0} A_{\phi,\varepsilon} = c$ for every $\phi \in \mathcal{A}_q$.

 $G \in \mathcal{G}$ is associated to $H \in \mathcal{G}$ $(G \approx H)$ if there exists $N \in \mathbf{N}_0$ such that for every $\psi \in \mathcal{D}$

$$\lim_{\varepsilon \to 0} \langle G_{\phi,\varepsilon} - H_{\phi,\varepsilon}, \psi \rangle = 0$$

for every $\phi \in \mathcal{A}_N$.

If one takes $\psi \in \mathcal{S}$ ($\Psi \in \mathcal{S}_G$ instead $\phi \in \mathcal{D}$ then the definition of **t**-association (**T**-association) is obtained instead of association.

All defined associations and equalities are equivalence relations.

Now, we define a convolution in $\mathcal{G}_{\mathbf{t}}$. Let $G_1, G_2 \in \mathcal{G}_{\mathbf{t}}$, and let μ_{ε} be a unit net related to \mathbf{t} . Then we define $G_1 \stackrel{\mathbf{t}}{} \star^{\mu} G_2$ as an element of $\mathcal{G}_{\mathbf{t}}$ by

(8)
$$G_1^{\mathbf{t}} \star^{\mu} G_2(x) = \int^{\mathbf{t},\mu} G_1(x-y) G_2(y) dy, \ x \in \mathbf{R}^n.$$

The correctness of this definition and that $G_1, G_2 \in \mathcal{G}_t$ implies $G_1 {}^{\mathbf{t}} \star^{\mu} G_2 \in \mathcal{G}_t$ are proved by standard methods in [5].

Let μ be a unit net related to **t**. Then the **t**, μ - Fourier transformation $\mathcal{F}_{\mathbf{t},\mu}$ on $\mathcal{G}_{\mathbf{t}}$ is defined by

(9)
$$\mathcal{F}_{\mathbf{t},\mu}(G)(x) = \int^{\mathbf{t},\mu} G(y) e^{-ixy} dy, \ x \in \mathbf{R}^n.$$

It is an element of $\mathcal{G}_{\mathbf{t}}$.

The inverse \mathbf{t}, μ -Fourier transformation is defined by

(10)
$$\mathcal{F}_{\mathbf{t},\mu}^{-1}(G) = (2\pi)^{-n/2} \int^{\mathbf{t},\mu} G(y) e^{ixy} dy, x \in \mathbf{R}^n.$$

In the same way as for $\mathcal{F}_{\mathbf{t},\mu}$, one can prove that the definition is correct.

Proposition 1. ([5]) Let G, G_1, G_2 be in \mathcal{G}_t and let μ_{ε} be a unit net related to t. Then for every $\psi \in S$

1. $< \mathcal{F}_{\mathbf{t},\mu}(G), \psi > = < G, \mathcal{F}(\psi) > .$

1. implies that the Fourier transformation in \mathcal{G}_t does not depend on a unit net in the sense of (g.t.d.) equality, so we shall omit the symbol μ in the symbol for the Fourier transformation.

- 2. $\mathcal{F}_{\mathbf{t}}(G_1 \overset{\mathbf{t}}{\star} \star^{\mu} G_2) = \mathcal{F}_{\mathbf{t}}(G_1)\mathcal{F}_{\mathbf{t}}(G_2)(g.t.d.).$
- 3. $\mathcal{F}_{\mathbf{t}}(\partial^{\alpha}G) = (i \cdot)^{\alpha} \mathcal{F}_{\mathbf{t}}(G)(g.t.d.).$
- 4. If $\mathcal{F}_{\mathbf{t}}(G_1) = \mathcal{F}_{\mathbf{t}}(G_2)(g.t.d.)$ then $G_1 = G_2(g.t.d.)$.
- 5. The quoted assertions hold with the use of the inverse Fourier transformation.

Convolution equations in Colombeau's spaces

- 6. $\mathcal{F}_{\mathbf{t}}(\mathcal{F}_{\mathbf{t}}^{-1}(G)) = G(g.t.d.).$
- 7. $G_1^{\mathbf{t}} \star^{\mu} G_2 = G_2^{\mathbf{t}} \star^{\mu} G_1(g.t.d.).$
- 8. $(G_1^{t} \star^{\mu} G_2)^{t} \star^{\mu} G_3 = G_1^{t} \star^{\mu} (G_2^{t} \star^{\mu} G_3)(g.t.d.).$
- 9. $\partial^{\alpha}(G_1^{\mathbf{t}} \star^{\mu} G_2) = \partial^{\alpha}G_1^{\mathbf{t}} \star^{\mu} G_2(g.t.d.).$

For the unit nets $\mu_{1,\varepsilon}, \mu_{2,\varepsilon}$ related to **t** and $\psi \in S$

$$< G_1^{\mathbf{t}} \star^{\mu_1} G_2, \psi > = < \mathcal{F}_{\mathbf{t}}(\mathcal{F}_{\mathbf{t}}^{-1}(G_1^{\mathbf{t}} \star^{\mu_1} G_2)), \psi >$$

$$= < \mathcal{F}_{\mathbf{t}}(\mathcal{F}_{\mathbf{t}}^{-1}(G_1)\mathcal{F}_{\mathbf{t}}^{-1}(G_2)), \psi >$$

$$= < \mathcal{F}_{\mathbf{t}}(\mathcal{F}_{\mathbf{t}}^{-1}(G_1^{\mathbf{t}} \star^{\mu_2} G_2)), \psi > = < G_1^{\mathbf{t}} \star^{\mu_2} G_2, \psi > .$$

This implies that the **t**-convolution does not depend in (g.t.d.) sense on the unit nets. So in the sequel for the **t**-convolution we use the symbol \star and for the **t**-Fourier transformation the symbol \mathcal{F} .

Remark If we use $\Psi \in S_G$ instead of $\psi \in S$, all assertions are valid for (G.t.d)equality because the **t**-Fourier transformation is bijection from S_G into S_G ,
as one can prove by standard technique which is used to prove that Fourier
transformation is bijection from S onto S in classical case.

3. Convolution Equations

Let ψ_j , $j \in \mathbf{N}$, be a locally finite partition of unity from \mathcal{D} such that for every $\beta \in \mathbf{N}_0^n$ there is $D_\beta > 0$ such that

(11)
$$|\partial^{\beta}\psi_j(x)| \le D_{\beta}, \ j \in \mathbf{N}.$$

Denote

$$K_j = \operatorname{supp} \psi_j, \ K_{j,1} = \{ x \in \mathbf{R}^n | \ d(x, K_j) \le 1 \}, \ j \in \mathbf{N},$$

 $k_x = \{j \mid x \in K_{j,1}\}$, and card (k_x) is its cardinal number, $x \in \mathbf{R}^n$ $(d(x, K_j)$ is the distance between x and K_j).

We shall assume

$$\sup_{x \in \mathbf{R}^n} (\text{card } k_x) = r < \infty, \text{ and } \max(K_j) \le 1.$$

It is easy to find such partition of unity.

Our aim is to find the solution to

(12)
$$F \cdot G \approx^T 1,$$

where $F \in \mathcal{G}$ satisfies the following assumptions.

(I) $\operatorname{mes}(V) = 0$, $V = \overline{\operatorname{compl}(U)}$, where U is the set of all $x \in \mathbb{R}^n$ such that for every K_j there exists $N_{j,F} \in \mathbb{N}_0$ such that for every $\phi \in \mathcal{A}_{N_{j,F}}$ there exist $C_{j,F} > 0$, $\gamma_j > 0$, and $\eta_{j,F} > 0$ such that

(13)
$$|F_{\phi,\varepsilon}(x)| \ge C_{j,F}(1+|x|)^{-\gamma_j}\varepsilon^{N_{j,F}}, \ \varepsilon < \eta_{j,F}, \ x \in K_j \cap U,$$

and

$$\gamma_{1,F} = \sup_{j \in \mathbf{N}} \gamma_j < \infty, \ C_{1,F} = \sup_{j \in \mathbf{N}} C_{j,F} < \infty,$$
$$N_{1,F} = \sup_{j \in \mathbf{N}} N_{j,F} < \infty, \ \eta_{1,F} = \inf_{j \in \mathbf{N}} \eta_{j,F} > 0.$$

(II) For every K_j there exists $N_j \in \mathbf{N}_0$ such that for every $\phi \in \mathcal{A}_{N_j}$ there exist $m_j > 1$, $C_j > 0$ and $\eta_j > 0$ such that

(14)
$$|F_{\phi,\varepsilon}(x)| \ge C_j \cdot d(x,V)^m \varepsilon^{N_j}, \ \varepsilon < \eta_j, \ x \in K_j,$$

(15)
$$\sup_{j \in \mathbf{N}} m_j = m < \infty, \inf_{j \in \mathbf{N}} \eta_j = \eta > 0, \sup_{j \in \mathbf{N}} N_j = N_2 < \infty,$$

and

(16)
$$C_x = \max_{j \in k_x} 1/C_j \le C_2 (1+|x|)^{\gamma}.$$

(III) V can be decomposed in a finite union of subvarieties of dimension less or equal to n-1,

$$V = V_1 \cup \ldots \cup V_{r_V}, \ \dim V_i = n_i \le n - 1,$$

such that every $x \in V_i$ is given by

$$x = (\kappa_1(x_1, ..., x_{n_i}), ..., \kappa_{n_i}(x_1, ..., x_{n_i}), \kappa_{n_i+1}(x_1, ..., x_{n_i}), ..., \kappa_n(x_1, ..., x_{n_i})),$$

where $\kappa_l(x_1, ..., x_{n_i}) = x_l$, for $l \le n_i$, and $x_l = \kappa_l(x_1, ..., x_{n_i}), l > n_i$,

 $(x_1, ..., x_{n_i}) \in \mathbf{R}^{n_i}$, are of polynomial growth in infinity with respect to variables $x_1, ..., x_{n_i}$.

The following result is obtained by adopting division procedure from the space \mathcal{G} ([6]) to the space $\mathcal{G}_{\mathbf{t}}$.

Theorem 1. Let $F \in \mathcal{G}_t$ satisfies assumptions (I), (II), and (III). Then there exists $G \in \mathcal{G}_t$ such that $F \cdot G \approx^t 1$.

Proof. We can suppose that $\inf m_j = m_0 > 1$, $\eta_j \leq \eta_{j,F}$. Put $C_0 = C_{1,F} + C_2$, and $N = N_{1,F} + N_2$.

Let $\Psi \in \mathcal{S}_G$. Then there exists N_{Ψ} such that for every $\phi \in \mathcal{A}_{N_{\Psi}}$ there exist η_{Ψ} and C_{Ψ} such that for every s > 0

$$|\Psi_{\phi,\varepsilon}(x)| \le C_{\Psi}(1+|x|)^{-s}\varepsilon^{-N_{\Psi}}, \ \varepsilon < \eta_{\Psi}, \ x \in \mathbf{R}^n.$$

Convolution equations in Colombeau's spaces

Let $j \in \mathbf{N}$ and $\phi \in \mathcal{A}_q$, where q will be chosen later. Put

(17)
$$G_{1,\phi,\varepsilon,j}(x) = \begin{cases} 1/F_{\phi,\varepsilon}(x), & d(x,V) > \varepsilon^{q/m_j}, x \in K_j, \\ 0, & \text{otherwise}, \end{cases}$$

$$G_{\phi,\varepsilon,j}(x) = \psi_j(x)(G_{1,\phi,\varepsilon,j} \star \phi_{\varepsilon^{qm_j}})(x), G_{\phi,\varepsilon}(x) = \sum_{j \in \mathbf{N}} G_{\phi,\varepsilon,j}(x), \ x \in \mathbf{R}^n.$$

We shall use

$$F_{\phi,\varepsilon}(x-\varepsilon^{qm_j}y) = F_{\phi,\varepsilon}(x) + \sum_{|\alpha|=1} \int_0^1 \partial^\alpha F_{\phi,\varepsilon}(x-t\varepsilon^{qm_j}y)(-\varepsilon^{qm_j}y)^\alpha dt,$$

which implies that there exists $N_D \in \mathbf{N}_0$ and $\gamma_D > 0$, independent on q because $|t\varepsilon^{qm_j}y| \leq 1$, such that for every $\phi \in \mathcal{A}_{N_D}$ there exist $C_D > 0$ and $\eta_D > 0$ such that

(18)
$$|F_{\phi,\varepsilon}(x) - F_{\phi,\varepsilon}(x - \varepsilon^{qm_j}y)| \le C_D (1 + |x|)^{\gamma_D} \varepsilon^{qm_j - N_D},$$

for $0 < \varepsilon < \eta_D$, $x \in \mathbf{R}^n$, $x - \varepsilon^{qm_j} y \in K_j$, |y| < 1.

First, we will prove that $G_{\phi,\varepsilon} \in \mathcal{E}_t$. Suppose $q \ge \max\{N, N_{\Psi}\}$ and $qm_0 - q - N - N_D - N_{\Psi} > 0$. Then, by the Leibnitz formula

$$|\partial^{\alpha} G_{\phi,\varepsilon}(x)| \le 2^{|\alpha|} \max_{\gamma+\beta=\alpha} A_{\gamma,\beta}, \ x \in \mathbf{R}^n,$$

where

$$\begin{split} A_{\gamma,\beta} &= |\sum_{j \in k_x} \partial^{\gamma} \psi_j(x) \partial^{\beta} \int_{d(y,V) > \varepsilon^{q/m_j}} G_{1,\phi,\varepsilon,j}(y) \varepsilon^{-nqm_j} \phi((x-y)/\varepsilon^{qm_j}) dy| \\ &\leq \sum_{j \in k_x} \varepsilon^{-q|\beta|m_j} |\partial^{\gamma} \psi_j(x) \int_{d(\varepsilon^{qm_j}y,V) > \varepsilon^{q/m_j}} G_{1,\phi,\varepsilon,j}(\varepsilon^{qm_j}y) \partial^{\beta} \phi(x/\varepsilon^{qm_j}-y) dy| \\ &\leq D_{\gamma} \sum_{j \in k_x} \varepsilon^{-q|\beta|m_j} (\sup_{y \in A_j} |G_{1,\phi,\varepsilon,j}(\varepsilon^{qm_j}y)|) (\sup_{y \in A_j} |\partial^{\beta} \phi(x/\varepsilon^{qm_j}-y)|) \cdot \text{ mes } A_j, \end{split}$$

where D_{γ} is from (11) and

$$A_j = \{ y | \varepsilon^{qm_j} y \in K_j, d(\varepsilon^{qm_j} y, V) > \varepsilon^{q/m_j}, |y - x/\varepsilon^{qm_j}| < 1 \}.$$

From (I) and (II) we have

$$|G_{1,\phi,\varepsilon,j}(\varepsilon^{qm_j}y)| = |1/F_{\phi,\varepsilon})(\varepsilon^{qm_j}y)| \le 1/(C_j(\varepsilon^{q/m_j})^{m_j-N})$$
$$= 1/(C_j\varepsilon^{q-N}), \ y \in A_j, \varepsilon < \eta.$$

If $|y - x/\varepsilon^{qm_j}| \le 1$ then $|y| \le |x|/\varepsilon^{qm_j} + 1$ and the ball with the radius $R = |x|/\varepsilon^{qm_j} + 1$ at the center 0 has the volume

$$V = \int dV = \int_{S^{n-1}} (\int_0^R r^{n-1} dr) d\omega = \max_{x \in K_j} (2\pi^{n/2} / \Gamma(n/2)) (|x| / \varepsilon^{qm_j} + 1)^n / n.$$

M. Nedeljkov

This implies

$$\max(A_j) \le \max_{x \in K_j} (2\pi^{n/2} / \Gamma(n/2)) \cdot (|x| / \varepsilon^{qm_j} + 1)^n / n.$$

Since $\sup_{t\in\mathbf{R}^n} |\partial^{\beta}\phi(t)| = \tilde{D}_{\beta} < \infty$, we have

$$|\partial^{\alpha} G_{\phi,\varepsilon}(x)| \le 2^{|\alpha|} \sup_{\gamma+\beta=\alpha} D_{\gamma} \sum_{j \in k_x} (1/C_j) \varepsilon^{-q|\beta|m_j+q})$$

$$\cdot \tilde{D}_{\beta}(2\pi^{n/2}/\Gamma(n/2))(|x|+\varepsilon^{qm_j})^n/(n\varepsilon^{nqm_j}), x \in \mathbf{R}^n, \varepsilon < \eta.$$

This proves that $G_{\phi,\varepsilon} \in \mathcal{E}_{\mathbf{t}}$. Let us prove that for every $\Psi_{\phi,\varepsilon} \in \mathcal{S}_G$, $\langle F_{\phi,\varepsilon}G_{\phi,\varepsilon} - 1, \Psi_{\phi,\varepsilon} \rangle \rightarrow 0$, when $\varepsilon \rightarrow 0$.

Put

$$\Lambda^{j}_{+}(x) = \{ y \in \mathbf{R}^{n} | |y| \le 1, \ d(x - \varepsilon^{qm_{j}}y, V) > \varepsilon^{q/m_{j}}, \ x \in K_{j}, \ x - \varepsilon^{qm_{j}}y \in K_{j} \},$$
$$\Lambda^{j}_{-}(x) = \{ y \in \mathbf{R}^{n} | \ |y| \le 1 \} \setminus \Lambda^{j}_{+}(x).$$

Since

$$\int_{\Lambda_{-}^{j}(x)} \phi(y) dy = 0 \text{ for } d(x, V) > 2\varepsilon^{q/m_{j}}, \ x \in K_{j},$$

we have

$$\begin{split} &\int (F_{\phi,\varepsilon}(x)\sum_{j\in\mathbf{N}}\psi_j(x)\int G_{1,\phi,\varepsilon,j}(x-y)\phi_{\varepsilon^{qm_j}}(y)dy-1)\Psi_{\phi,\varepsilon}(x)dx\\ &=\int \sum_{j\in k_x}|\int_{\Lambda^j_+(x)}\frac{F_{\phi,\varepsilon}(x)-F_{\phi,\varepsilon}(x-\varepsilon^{qm_j}y)}{F_{\phi,\varepsilon}(x-\varepsilon^{qm_j}y)}\psi_j(x)\phi(y)dy\Psi_{\phi,\varepsilon}(x)dx\\ &\quad +\int \sum_{j\in k_x}\int_{\Lambda^j_-(x)}dy\Psi_{\phi,\varepsilon}(x)dx=I_1+I_2. \end{split}$$

We have

$$\begin{aligned} |I_1| &\leq \int \sum_{j \in k_x} |\int_{\Lambda_+^j(x)} \frac{C_D \varepsilon^{qm_j - N_D} (1+|x|)^{\gamma_D}}{C_j (\varepsilon^{qm_j})^{1/m_j}} \tilde{\tilde{D}}_j \psi_j(x) \phi(y)| |\Psi_{\phi,\varepsilon}(x)| dy dx \\ &\leq \int \sum_{j \in k_x} C_j^{-1} \tilde{\tilde{D}}_j \tilde{D}_0 \varepsilon^{qm_j - q - N - N_D} (1+|x|)^{\gamma_j + \gamma_D} |\Psi_{\phi,\varepsilon}(x)| dx \\ &\quad < C_\Psi \int (1+|x|)^{\gamma_F + \gamma_D - s} dx \cdot \varepsilon^{qm - q - N - N_H - N_\Psi}. \end{aligned}$$

On the other hand,

$$\begin{aligned} |I_2| &\leq (2\pi^{n/2}/\Gamma(n/2)) \int (\int_{\Lambda_-^j(x)} \psi(y) dy) |\Psi_{\phi,\varepsilon}(x)| dx \\ &= (2\pi^{n/2}/\Gamma(n/2)) (\int_{|x_i| \leq 1/\varepsilon, d(x,V) > 2\varepsilon^{q/m_j}} |\Psi_{\phi,\varepsilon}(x)| dx \\ &+ \int_{|x_i| > 1/\varepsilon, d(x,V) > 2\varepsilon^{q/m_j}} |\Psi_{\phi,\varepsilon}(x)| = J_1 + J_2. \end{aligned}$$

By standard arguments one can prove that

$$\int_{|x_i|>1/\varepsilon, d(x,V)>2\varepsilon^{q/m_j}} |\Psi_{\phi,\varepsilon}(x)| dx \in \mathbf{C}_0,$$

which implies that $J_2 \in \mathbf{C}_0$. Let us prove that $J_1 \to 0$ as $\varepsilon \to 0$. From assumption (III) it follows that the measure of V_i in \mathbf{R}^{n_i} is bounded by $C_{V_i}\varepsilon^{-N_i}$ for some $C_{V_i} > 0$ and $N_i > 0$ if $|x_l| \le \varepsilon^{-1}$, $1 \le l \le n_i$ because

$$\operatorname{mes}(V_i) = \int_{|x_i| \le 1/\varepsilon, 1 \le l \le n_i} (\det(a_{ij}))^{1/2} dx_1 \dots dx_{n_i},$$
$$a_{ij} = (\frac{\partial \kappa_1}{\partial x_i}, \dots, \frac{\partial \kappa_n}{\partial x_i}) \cdot (\frac{\partial \kappa_1}{\partial x_j}, \dots, \frac{\partial \kappa_n}{\partial x_j}).$$

Let $\tilde{N} = \max_{1 \leq i \leq r_V} N_i$. we can suppose that $q > (\tilde{N} + N_{\Psi})/m$. Let $\phi \in \mathcal{A}_q$. Then

$$M_{i} = \max\{x \in \mathbf{R}^{n} | |x_{l}| \leq 1/\varepsilon, \ 1 \leq l \leq n_{i}, \ d(x, V_{i}) \leq 2\varepsilon^{q/m}\}$$
$$\leq (C_{V_{i}}\varepsilon^{-N_{i}} + 2\varepsilon^{q/m}) \cdot \max\{x \in \mathbf{R}^{n} | |x| \leq 2\varepsilon^{q/m}\}$$

which implies

$$\max\{x \in \mathbf{R}^n | |x_l| \le 1/\varepsilon, \ 1 \le l \le n, \ d(x, V) \le 2\varepsilon^{q/m}\}$$
$$\le \sum_{i=1}^{r_V} M_i \le (2\pi^{n/2}/\Gamma(n/2)) (\max_{1 \le i \le r_V} C_{V_i}\varepsilon^{\tilde{N}} + 1) \cdot 2\varepsilon^{q/m}.$$

Since

$$(\max_{1\leq i\leq r_V} C_{V_i}\varepsilon^{-\tilde{N}}+1)\cdot 2\varepsilon^{q/m-N_{\Psi}}C_{\psi}(1+|x|)^{-s}\to 0 \text{ as } \varepsilon\to 0,$$

it follows that $J_1 \to 0$ as $\varepsilon \to 0$. This proves the theorem.

Now we shall give the main result of the paper.

Corollary 1. Let $F \in \mathcal{G}_t$. If $\mathcal{F}(F)$ satisfies the conditions of Theorem 1. Then for every $H \in \mathcal{G}_t$ there exists $G \in \mathcal{G}_t$ such that

(19)
$$F \star G \approx^T H.$$

Proof. Since $H\Psi \in \mathcal{S}_G$ for $H \in \mathcal{G}_{\mathbf{t}}$ and $\Psi \in \mathcal{S}_G$, we have that $\int G\Psi dx \approx \int F\Psi dx$ implies $\int GH\Psi dx \approx \int FH\Psi dx$, i.e. that $G \approx^T F$ implies $GH \approx^T FH$ for every $F, G, H \in \mathcal{G}_{\mathbf{t}}$.

The bijectivity of the **t**-Fourier and inverse **t**-Fourier transformation from S_G onto S_G implies that from $F \approx^T G$ we obtain $\mathcal{F}(F) \approx^T \mathcal{F}(G)$ and $\mathcal{F}^{-1}(F) \approx^T \mathcal{F}^{-1}(G)$ because

$$\int \mathcal{F}(F)\Psi dx \approx^T \int F\mathcal{F}(\Psi) dx \approx^T \int G\mathcal{F}(\Psi) dx \approx^T \int \mathcal{F}(G)\Psi dx.$$

These statements enable us to prove that $F \approx^T G$ implies $F \star H \approx^T G \star H$, for every $F, G, H \in \mathcal{G}_t$:

$$\mathcal{F}(F \star H) \approx^T \mathcal{F}(F)\mathcal{F}(H) \approx^T \mathcal{F}(G)\mathcal{F}(H) \approx^T \mathcal{F}(G \star H).$$

Because of that, the equation $F \star G \approx^T \delta$ by t-Fourier transformation becomes $\mathcal{F}(F)\mathcal{F}(G) \approx^T 1$, and by Theorem 1 this equation has the solution $\mathcal{F}(G)$. Then $G = \mathcal{F}^{-1}(\mathcal{F}(G))$ is a solution to $F \star G \approx^T \delta$, and $G_1 = G \star H$ is a solution to $F \star G_1 \approx^T H$, for every $H \in \mathcal{G}_t$. This proves the corollary.

Remark Theorem 2 in [6] is special case of this corrolary.

References

- Colombeau, J. F., Elementary Introduction to New Generalized Functions, North Holland, 1985.
- [2] Egorov, J. V., Theory of generalized functions, Uspekhi math. nauk, 45, no. 5, 1-40 (1990).
- [3] Hörmander, L., The Analysis of Linear Partial Differential Operators Vol. I, II, Springer 1983.
- [4] Lojasiewicz, S., Sur le probleme de division, Stud. Math., 18, 87-136 (1959).
- [5] Nedeljkov, M., Pilipović, S., Convolution in Colombeau's Spaces of Generalized Functions, Part I and Part II, Publ. Inst. Math., Belgrade, 52(66) (1992), 95-105.
- [6] Nedeljkov, M., Pilipović, S., Scarpalézos, D., Division problem and partial differential equations with constant coefficients in Colombeau's space of new generalized functions, Mh. Math. 122, No.2, 157-170 (1996).
- [7] Scarpalézos, D., Colombeau's generalized functions: topological structures; microlocal properties. A simplified point of view, preprint.

Received by the editors November 22, 1999