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CONVOLUTION EQUATIONS IN COLOMBEAU’S
SPACES

Marko Nedeljkov!

Abstract. The modified Colombeau’s space Gt is used as the frame for
solving convolution equations via Fourier transformation and division.
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1. Introduction

The basic space in this paper is Gy which is introduced in [5]. The reason why
we use Gy and corresponding t-notions instead of Colombeau’s G, and 7-notions
is that 7-convolution is not associative and commutative in a general case while
t-convolution has both properties (in (g.t.d.) and (G.t.d) sense). Further on, in
Gt the exchange formula holds, and this is not the case in Colombeau’s space
g’T'

Using exchange formula we obtain sufficient conditions for solvability of a
convolution equation in the associated sense in Gg.

In this paper we use the idea of division in G, which is given in [6], and the
main result, Corrolary 1, of this paper is a generalization of Theorem 2 in [6].

2. Notation and Basic Notions

We shall recall some facts from [1]. A;, ¢ € N are subsets of D with the
following properties:

diam(supp(¢)) =1, /xc‘qb(:r)dx =0, and /¢($)dm =1,

for every ¢ € Ay, e N, @ € Njj, 1 < |a] < ¢q. Ap is a set of all ¢ € D such
that [ ¢(z)dx = 1. Put ¢.(-) = e "¢(-/¢). Obviously, 4g D A; D ...;

€ is defined as a set of all functions Fy . : Ag x (0,1) x R™ — C, which are
smooth on R™.

Cys is the set of all Ay, : Ag x (0,1) — C such that there exists N € N
such that for every ¢ € Ay there exist C' > 0 and n > 0 such that

(1) |Ape| < Ce™, e <.
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Enr is the set of all Gy € & such that for every compact set K and every
0 € Nf there exists N € Ny such that for every ¢ € Ay there exist C' > 0 and
1 > 0 such that
(2) 10°Gy(x)) < Ce™, e <n, € K.

Denote by I" the family of all increasing sequences which tend to infinity.
Cy is the set of all A € Cj; such that there exist g € I' and N € Ny such
that for every ¢ € Ay, ¢ > N, there exist C > 0 and 7 > 0 such that

(3) |[Ag | < CEQ(Q)*N, e<mn.

N is the set of all G € &)y such that for every 3 € NI and every compact
set K there exist N € Ny and g € I' such that for every ¢ € Ay, ¢ > N, there
exist C' > 0 and 1 > 0 such that

(4) 0°G4.(2)] < Ce9 DN c < ze K.

The spaces of Colombeau’s generalized complex numbers and generalized
functions are defined by C = Cp;/Cp and G = Epr /N
If g € D/, then by

Gye(x) =< g(§),e"d((§ —2)/e) >, z € R"

is denoted the representative of the corresponding element in £y;. Its class is
called Colombeau’s regularization of g and denoted by Cd(g).

The inclusions & C D’ C G are valid.

&t is the set of all elements G € £ with the following property: For every
0 € N{ there exist N € Ny and v > 0 such that for every ¢ € Ay there exist
C > 0 and n > 0 such that

(5) |8ﬁG¢,E(x)| <C(+|z[)7e™™, e<n, 2R

N; is the set of elements G € & with the following property: For every
B € Ny there exist v > 0, N € Ng and g € I' such that for every ¢ € A,
q > N, there exist C' > 0 and n > 0 such that

(6) |85G¢,5(z)| <C(+ |x\)”59(q)*N, e<n, zeR™

It is an ideal of &. The Colombeau’s space of tempered generalized functions
is defined by Gy = &/N;. In [1] this space is denoted by G,. In [5] we have
considered a class of spaces G, such that Gy is a special space of this class. From
now on we shall use notation and notions from [5].

A net of functions pe, € > 0 from D is called a unit net related to t if it
satisfies the following properties:

1. 0< pe(z) <1, z€R™ &> 0.
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2. For some b > 0 and r > 0,
ne(@) = 1]a| < b/e, pelw) = 0,]a > bje+1, ¢ > 0.

3. For every | € NP there exists ¢; > 0 such that [0'u.(z)| < ¢, z € R, € >
0.

Let pe be a unit net related to t, B a measurable subset of R™ and G € Gy.
Then we define

t,u _
G(z)dx € C by its representative / Gye(@)pe(z)dx € Cpy.
B B

If B =R" then the symbol ft’“ is used. In [5] is proved that Gy . € Ny implies
J5 Gg.c(x)pe(x)dz € Cy. (In this case we say that a definition is correct.)

Define Sg as the set of elements ¥ from G; for which there exists the rep-
resentative Wy . such that for every 8 € INjj there exists N € Ny such that for
every ¢ € Ay and p € N there exist C' > 0 and 1 > 0 such that

1070, (2)] < (14 |z|)Pe™™, e <n, 2 € R™

S¢ is called the space of generalized rapidly decreasing functions. Clearly, S C
S¢ and they are not equal. Let ¥ € Sg and G € Gy. Then we define

<G,¥ >= /G(w)\ll(a?)dx
given by the representative

(7) /G¢7€(x)\11¢75(x)d:c.

One can prove that this definition is correct. Moreover, for every G € Gy, U €
S, and a unit net p. related to t,

/ " )W () = / G(2)U(z)da.

It is said that G € G (G € G) is equal to H € G (H € Gt) in generalized
distribution sense, G = H(g.d.), (in generalized tempered distribution sense,
G=H(g.t.d))ifevery p € D (¢ € S)

<G-H,¢v>=0.

If we use U € Sg instead of ¢ € S we obtain (G.t.d.)-equality instead of
(g.t.d.)-equality.

A € C is associated to ¢ € C (A =~ ¢) if there exists N € Ny such that
lim._g Ag e = c for every ¢ € A,.
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G € G is associated to H € G (G = H) if there exists N € Ny such that for
every ¢ € D
lin% <Gge—Hype, ) >=0

for every ¢ € Ay.

If one takes i) € S (U € Si instead ¢ € D then the definition of t-association
(T-association) is obtained instead of association.

All defined associations and equalities are equivalence relations.

Now, we define a convolution in Gy. Let G1,G2 € Gy, and let u. be a unit
net related to t. Then we define G * x* G5 as an element of G; by

(8) G1 t+H Gy(x) = / i Gi(x — y)Ga(y)dy, x € R™.

The correctness of this definition and that G1, G2 € G; implies G; * +* G5 € Gy
are proved by standard methods in [5].

Let p be a unit net related to t. Then the t, u- Fourier transformation F
on Gy is defined by

9) Feu(G)(z) = / " G(y)e ™dy, x € R™.

It is an element of G;.
The inverse t, u-Fourier transformation is defined by

tp

t,n )
10 Fi HG) = (2m) /2 G(y)e™¥dy,z € R™.
( y y
In the same way as for F ,,, one can prove that the definition is correct.

Proposition 1. ([5]) Let G,G1,G2 be in Gy and let . be a unit net related to
t. Then for every ¢ € S

1. < Fo u(G), 0 >=< G, F(¢) > .

1. implies that the Fourier transformation in G; does not depend on a unit
net in the sense of (g.t.d.) equality, so we shall omit the symbol p in the
symbol for the Fourier transformation.

ft(Gl t *H Gg) = ft(Gl)ft(Gg)(gtd)
Fe(0°G) = (i)*Fo(G)(g.t.d.).

Cuots o e

The quoted assertions hold with the use of the inverse Fourier transfor-
mation.
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6. Fo(F H(G)) = G(g.t.d.).
7. Gy ¥+l Gy = Gy b4 Gy (g.t.d.).
8. (Gy % Go) t*M G3 = G P " (Go ¥ %" G3)(g.t.d.).
9. 9*(Gy t x" Go) = 0*Gy b+ Gy(g.t.d.).
For the unit nets p; ¢, p12, related to t and ¢ € S
< Gy PH Goyh >=< Fo(Fo UG T+ G)), b >
=< Fo(F HG)F N (Ga)), 0 >
=< Fo(F NG P2 Go)),h >=< Gy * %2 Go,¢p > .

This implies that the t-convolution does not depend in (g.t.d.) sense on the unit
nets. So in the sequel for the t-convolution we use the symbol x and for the
t-Fourier transformation the symbol F.

Remark If we use ¥ € Sg instead of ¢ € S, all assertions are valid for (G.t.d)-
equality because the t-Fourier transformation is bijection from Sg into Sg,
as one can prove by standard technique which is used to prove that Fourier
transformation is bijection from & onto S in classical case.

3. Convolution Equations

Let 1;, j € N, be a locally finite partition of unity from D such that for
every 3 € Ng there is Dg > 0 such that

(11) |079;(x)| < Dg, j € N.

Denote
Kj = Supp'l/]ja Kj,l = {.’E € Rn| d(xvK]) S 1}a .7 S Nv

ky = {jl z € K;1}, and card(k;) is its cardinal number, z € R" (d(z, K;) is
the distance between = and Kj).
We shall assume

sup (card kg) = r < 0o, and mes(K;) < 1.
zeR™

It is easy to find such partition of unity.
Our aim is to find the solution to

(12) F-G="1,

where I’ € G satisfies the following assumptions.
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(I) mes(V) =0, V = compl(U), where U is the set of all x € R™ such that
for every K there exists N; » € Ng such that for every ¢ € Ay, ,. there exist
Ojj‘ >0, v; >0, and n,r >0 such that

(13) ‘F¢75(l‘)| > Cj7F( + |Z‘|) RZSALD Foe<nr, x e K;NU,

and
fy1p—sup%<oo Cip =supCjr < 00,
JEN JEN

Ni,rp =sup N rp < 00, an—lnfn]F>O
JEN

(IT) For every K; there exists N; € Ng such that for every ¢ € Ay, there
exist m; > 1, C; > 0 and 7; > 0 such that

(14) |[Fpe(2)] = Cj - d(a, V)™M, e <y, w € K,
(15) sup m; = m < o0, 1nfnj—77>0 sup NV; = Ny < o0,
JEN JEN

and
(16) Cp = max1/C; < Co(1 + [])".
JEEK

(IIT) V' can be decomposed in a finite union of subvarieties of dimension less
or equal ton — 1,

V:V1U UV,.V,dimVi:nign—l,
such that every x € V; is given by

T = (K1(@1y ooy Ty )y eoes By (1 ooy Ty )y Byt 1 (1 ooty Ty )y eoey Ko (T1 ooy Ty ),

where ki (21, ..., Tpn,) = @y, for | <n;, and z; = Ky (z1, ..., Ty,), L > 0y,

(1, .y Tpn,) € R™, are of polynomial growth in infinity with respect to
variables z1, ..., Zp, .

The following result is obtained by adopting division procedure from the
space G ([6]) to the space Gy.

Theorem 1. Let F' € Gy satisfies assumptions (I), (II), and (III). Then there
exists G € Gy such that F - G =~

Proof. We can suppose that inf m; = mg > 1, n; <n;r. Put Cy = C r + Cs,
and N = Nl,F + Ng.

Let ¥ € Si. Then there exists Ny such that for every ¢ € Ay, there exist
ny and Cy such that for every s > 0

[Wp,e(2)] < Co(l+[a)) 7™, e <ny, z € R™
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Let j € N and ¢ € A,, where ¢ will be chosen later. Put

1/F, d(z, V) >el/mi e K;,
(17) G, ¢,E]( ) { 0’/ ¢E( ) OEhGI'W?iSG, !
Goe (1) = 1j(2)(G1p.c * Gemi )(2), Gy e(x) = Y Gy j(2), € R™
JEN
We shall use
Fyeli = cm™iy) = Fyo(a) + 3 / 0% Fp o — teT™iy) (™),

lal=1

which implies that there exists Np € Ng and yp > 0, independent on ¢ because
[te?™iy| < 1, such that for every ¢ € Ay, there exist Cp > 0 and np > 0 such
that

(18) |Foe(x) = Foe(z — e™y)| < Op(1+ [a])1Pet™~ NP,

for0<e<np,zeR", z—ct™iye K, |yl <1.
First, we will prove that G, . € &. Suppose ¢ > max{N, Ny} and gmg —
q— N — Np — Ny > 0. Then, by the Leibnitz formula

10°G g - (x)] < 2/ max A, 3, zeR",

where

Avp =1 07(x)0” / G1e.i(W)e "M d((x —y) /™) dy|
d(y V)>sq/mj

J€ka

<3 e [ G (™) 9(/ ™ — y)dy

jeky d(eamiy,V)>e?/™i

<Dy 3 eI (sup (Gl (€ (9P [9°9(a/H™ — ) mes A

j€ka veA; yeA;
where D, is from (11) and
Aj = {y|e™iy € K;,d(e™iy, V) > V™ |y — 2/t | < 1}.
From (I) and (IT) we have
|Grg,es () = [1/Fp.) (e iy)| < 1/(Ci(e¥ ™)™~ M)

= 1/(Cj€q7N), yeAje<n.

If ly — z/e?i| < 1 then |y| < |z|/e9™ + 1 and the ball with the radius
R = |z|/e?™ 4+ 1 at the center 0 has the volume

R
= = " Ldr)dw = max (2772 /T(n x| /et " /n.
= [av= [ ([ tans = max (e /) (el /e 4 1)
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This implies

mes(4;) < %%QWWWF(H&)) (|l /™ + 1) /n.

Since sup,cgn [0°6(t)| = D < 00, we have

|0°G ()] < 21 Sup D, Z 1/C;)ealplmita)
v+B= ke
Dp(2n2 D /D) ] + 1™ ) (nem™), ¢ € R 2 <

This proves that Gy . € &.

Let us prove that for every ¥y . € Sg, < Fy Gy — 1, Vg . >— 0, when
e — 0.

Put

Ai(x) ={yeR"||y| <1, d(x — ™y, V) >e¥™i zc K;, x—e™yc K},

A (z) = {y € R"| Jy] < 1}\ A, (2).

Since
/ - @(y)dy =0 for d(x,V) > 2™,z € K;,
A7 (x)
we have
/ Fye(z Z’l/}] /Gl,¢> cj(@—y)peam; (y)dy — 1) Wy o (z)dx
JEN
Fye( Fyo(x—et™iy
[ e S o)y (o)
j€Eka x
/Z/ dyWy . (zx)de = I, + I.
Jj€Eka A]
We have
Cped™i—No(1 4 |z
nis [ 1] S Dt o) o)y
j€ky +\® J

/ZC LD; Doe s ~INTND (14 a1 0P Wy, ()]
JjE€ky

< Cy /(1 + \x|)“’F+7D_de . Eqm—q—N—NH—N\p.
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On the other hand,

1 < 052 P2 [(f | vl

= (22 (/) [ Voo (a)ld

i |<1/e,d(w,V)>2e9/ ™

+/ [Wse(2)] = Ji + Ja.
|xi|>1/87d(a;7v)>25q/'mj

By standard arguments one can prove that

LG dz € Cy,
/zi>1/e,d(z,v>>zgq/m| s.c(@)ldz € Co

which implies that Jo € Cy. Let us prove that J; — 0 as ¢ — 0. From
assumption (III) it follows that the measure of V; in R™ is bounded by Cy,e =
for some Cy, > 0 and N; > 0 if |2;] < &1, 1 <1 < n; because

mes(V;) = / (det(ai;)) '/ 2dwy...dwy,,
| |<1/e,1<I<n;

a--:(aﬁl al‘in) % %)
= e ) o, 0y

Let N = maxi<;<r, IV;. we can suppose that g > (]\7 + Ng)/m. Let ¢ € Aq.
Then

M; = mes{z € R"| |z;| < 1/e, 1 <1< ny, d(z,V;) < 2e9™}
< (Cy,e N 4 2¢7™) . mes{z € R"| || < 2c7/™}
which implies

mes{z € R"| || < 1/e, 1 <1 <n, d(z,V) < 2™}

< 3" M; < (20"2/T(n/2))( max Cy,e™ 4 1) - 2:9/™,

‘ 1<i<ry
=1

Since

(&ngx Ovie ™™ +1)- 229 Nvg (14 |2))™* - 0ase — 0,
SISTV

it follows that J; — 0 as € — 0. This proves the theorem.
Now we shall give the main result of the paper.
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Corollary 1. Let F € Gy. If F(F) satisfies the conditions of Theorem 1. Then
for every H € G there exists G € Gy such that

(19) FxG~T H.

Proof. Since H¥ € S¢; for H € Gy and ¥ € Si, we have that [ GUdz ~ [ F¥dx
implies [ GHVdx ~ [ FHVdz, i.e. that G ~7 F implies GH ~* FH for every
F,G,H € G.

The bijectivity of the t-Fourier and inverse t-Fourier transformation from S¢g
onto Sg implies that from F ~7 G we obtain F(F) ~* F(G) and F~1(F) =T
F~HG) because

/]-‘(F)\Ifdx ~T /F}'(\Il)dgg T /Gf(q,)dz T /HG)%.

These statements enable us to prove that F ~” G implies F « H ~T G x H,
for every F,G, H € Gy:

F(FxH)~" F(F)F(H) ~" F(G)F(H) ~" F(Gx H).

Because of that, the equation F x G =T § by t-Fourier transformation be-
comes F(F)F(G) =T 1, and by Theorem 1 this equation has the solution F(G).
Then G = F~1(F(G)) is a solution to FxG ~T §, and G; = Gx H is a solution
to F« Gy ~T H, for every H € G;. This proves the corollary.

Remark Theorem 2 in [6] is special case of this corrolary.
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