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CONVOLUTION EQUATIONS IN COLOMBEAU’S
SPACES

Marko Nedeljkov1

Abstract. The modified Colombeau’s space Gt is used as the frame for
solving convolution equations via Fourier transformation and division.
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1. Introduction

The basic space in this paper is Gt which is introduced in [5]. The reason why
we use Gt and corresponding t-notions instead of Colombeau’s Gτ and τ -notions
is that τ -convolution is not associative and commutative in a general case while
t-convolution has both properties (in (g.t.d.) and (G.t.d) sense). Further on, in
Gt the exchange formula holds, and this is not the case in Colombeau’s space
Gτ .

Using exchange formula we obtain sufficient conditions for solvability of a
convolution equation in the associated sense in Gt.

In this paper we use the idea of division in G, which is given in [6], and the
main result, Corrolary 1, of this paper is a generalization of Theorem 2 in [6].

2. Notation and Basic Notions

We shall recall some facts from [1]. Aq, q ∈ N are subsets of D with the
following properties:

diam(supp(φ)) = 1,

∫
xαφ(x)dx = 0, and

∫
φ(x)dx = 1,

for every φ ∈ Aq, q ∈ N, α ∈ Nn
0 , 1 ≤ |α| ≤ q. A0 is a set of all φ ∈ D such

that
∫

φ(x)dx = 1. Put φε(·) = ε−nφ(·/ε). Obviously, A0 ⊃ A1 ⊃ . . . ;
E is defined as a set of all functions Fφ,ε : A0 × (0, 1)×Rn → C, which are

smooth on Rn.
CM is the set of all Aφ,ε : A0 × (0, 1) → C such that there exists N ∈ N0

such that for every φ ∈ AN there exist C > 0 and η > 0 such that

|Aφ,ε| < Cε−N , ε < η.(1)
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EM is the set of all Gφ,ε ∈ E such that for every compact set K and every
β ∈ Nn

0 there exists N ∈ N0 such that for every φ ∈ AN there exist C > 0 and
η > 0 such that

|∂βGφ,ε(x)| < Cε−N , ε < η, x ∈ K.(2)

Denote by Γ the family of all increasing sequences which tend to infinity.
C0 is the set of all A ∈ CM such that there exist g ∈ Γ and N ∈ N0 such

that for every φ ∈ Aq, q ≥ N , there exist C > 0 and η > 0 such that

|Aφ,ε| < Cεg(q)−N , ε < η.(3)

N is the set of all G ∈ EM such that for every β ∈ Nn
0 and every compact

set K there exist N ∈ N0 and g ∈ Γ such that for every φ ∈ Aq, q ≥ N , there
exist C > 0 and η > 0 such that

|∂βGφ,ε(x)| < Cεg(q)−N , ε < η, x ∈ K.(4)

The spaces of Colombeau’s generalized complex numbers and generalized
functions are defined by C = CM/C0 and G = EM/N .

If g ∈ D′, then by

Gφ,ε(x) =< g(ξ), ε−nφ((ξ − x)/ε) >, x ∈ Rn

is denoted the representative of the corresponding element in EM . Its class is
called Colombeau’s regularization of g and denoted by Cd(g).

The inclusions E ⊂ D′ ⊂ G are valid.
Et is the set of all elements G ∈ E with the following property: For every

β ∈ Nn
0 there exist N ∈ N0 and γ > 0 such that for every φ ∈ AN there exist

C > 0 and η > 0 such that

|∂βGφ,ε(x)| < C(1 + |x|)γε−N , ε < η, x ∈ Rn.(5)

Nt is the set of elements G ∈ Et with the following property: For every
β ∈ Nn

0 there exist γ > 0, N ∈ N0 and g ∈ Γ such that for every φ ∈ Aq,
q ≥ N , there exist C > 0 and η > 0 such that

|∂βGφ,ε(x)| < C(1 + |x|)γεg(q)−N , ε < η, x ∈ Rn.(6)

It is an ideal of Et. The Colombeau’s space of tempered generalized functions
is defined by Gt = Et/Nt. In [1] this space is denoted by Gτ . In [5] we have
considered a class of spaces Ga such that Gt is a special space of this class. From
now on we shall use notation and notions from [5].

A net of functions µε, ε > 0 from D is called a unit net related to t if it
satisfies the following properties:

1. 0 ≤ µε(x) ≤ 1, x ∈ Rn, ε > 0.



Convolution equations in Colombeau’s spaces 183

2. For some b > 0 and r > 0,

µε(x) = 1, |x| < b/ε, µε(x) = 0, |x| > b/ε + r, ε > 0.

3. For every l ∈ Nn
0 there exists cl > 0 such that |∂lµε(x)| ≤ cl, x ∈ Rn, ε >

0.

Let µε be a unit net related to t, B a measurable subset of Rn and G ∈ Gt.
Then we define

∫ t,µ

B

G(x)dx ∈ C by its representative
∫

B

Gφ,ε(x)µε(x)dx ∈ CM .

If B = Rn then the symbol
∫ t,µ is used. In [5] is proved that Gφ,ε ∈ Nt implies∫

B
Gφ,ε(x)µε(x)dx ∈ C0. (In this case we say that a definition is correct.)
Define SG as the set of elements Ψ from Gt for which there exists the rep-

resentative Ψφ,ε such that for every β ∈ Nn
0 there exists N ∈ N0 such that for

every φ ∈ AN and p ∈ N there exist C > 0 and η > 0 such that

|∂βΨφ,ε(x)| < (1 + |x|)−pε−N , ε < η, x ∈ Rn.

SG is called the space of generalized rapidly decreasing functions. Clearly, S ⊂
SG and they are not equal. Let Ψ ∈ SG and G ∈ Gt. Then we define

< G,Ψ >=
∫

G(x)Ψ(x)dx

given by the representative
∫

Gφ,ε(x)Ψφ,ε(x)dx.(7)

One can prove that this definition is correct. Moreover, for every G ∈ Gt, Ψ ∈
SG, and a unit net µε related to t,

∫ t,µ

G(x)Ψ(x)dx =
∫

G(x)Ψ(x)dx.

It is said that G ∈ G (G ∈ Gt) is equal to H ∈ G (H ∈ Gt) in generalized
distribution sense, G = H(g.d.), (in generalized tempered distribution sense,
G = H(g.t.d.)) if every ψ ∈ D (ψ ∈ S)

< G−H, ψ >= 0.

If we use Ψ ∈ SG instead of φ ∈ S we obtain (G.t.d.)-equality instead of
(g.t.d.)-equality.

A ∈ C is associated to c ∈ C (A ≈ c) if there exists N ∈ N0 such that
limε→0 Aφ,ε = c for every φ ∈ Aq.
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G ∈ G is associated to H ∈ G (G ≈ H) if there exists N ∈ N0 such that for
every ψ ∈ D

lim
ε→0

< Gφ,ε −Hφ,ε, ψ >= 0

for every φ ∈ AN .
If one takes ψ ∈ S (Ψ ∈ SG instead φ ∈ D then the definition of t-association

(T-association) is obtained instead of association.
All defined associations and equalities are equivalence relations.
Now, we define a convolution in Gt. Let G1, G2 ∈ Gt, and let µε be a unit

net related to t. Then we define G1
t ?µ G2 as an element of Gt by

G1
t ?µ G2(x) =

∫ t,µ

G1(x− y)G2(y)dy, x ∈ Rn.(8)

The correctness of this definition and that G1, G2 ∈ Gt implies G1
t ?µ G2 ∈ Gt

are proved by standard methods in [5].
Let µ be a unit net related to t. Then the t, µ- Fourier transformation Ft,µ

on Gt is defined by

Ft,µ(G)(x) =
∫ t,µ

G(y)e−ixydy, x ∈ Rn.(9)

It is an element of Gt.
The inverse t, µ-Fourier transformation is defined by

F−1
t,µ(G) = (2π)−n/2

∫ t,µ

G(y)eixydy, x ∈ Rn.(10)

In the same way as for Ft,µ, one can prove that the definition is correct.

Proposition 1. ([5]) Let G, G1, G2 be in Gt and let µε be a unit net related to
t. Then for every ψ ∈ S

1. < Ft,µ(G), ψ >=< G,F(ψ) > .

1. implies that the Fourier transformation in Gt does not depend on a unit
net in the sense of (g.t.d.) equality, so we shall omit the symbol µ in the
symbol for the Fourier transformation.

2. Ft(G1
t ?µ G2) = Ft(G1)Ft(G2)(g.t.d.).

3. Ft(∂αG) = (i·)αFt(G)(g.t.d.).

4. If Ft(G1) = Ft(G2)(g.t.d.) then G1 = G2(g.t.d.).

5. The quoted assertions hold with the use of the inverse Fourier transfor-
mation.
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6. Ft(F−1
t (G)) = G(g.t.d.).

7. G1
t ?µ G2 = G2

t ?µ G1(g.t.d.).

8. (G1
t ?µ G2) t ?µ G3 = G1

t ?µ (G2
t ?µ G3)(g.t.d.).

9. ∂α(G1
t ?µ G2) = ∂αG1

t ?µ G2(g.t.d.).

For the unit nets µ1,ε, µ2,ε related to t and ψ ∈ S

< G1
t ?µ1 G2, ψ >=< Ft(F−1

t (G1
t ?µ1 G2)), ψ >

=< Ft(F−1
t (G1)F−1

t (G2)), ψ >

=< Ft(F−1
t (G1

t ?µ2 G2)), ψ >=< G1
t ?µ2 G2, ψ > .

This implies that the t-convolution does not depend in (g.t.d.) sense on the unit
nets. So in the sequel for the t-convolution we use the symbol ? and for the
t-Fourier transformation the symbol F .

Remark If we use Ψ ∈ SG instead of ψ ∈ S, all assertions are valid for (G.t.d)-
equality because the t-Fourier transformation is bijection from SG into SG,
as one can prove by standard technique which is used to prove that Fourier
transformation is bijection from S onto S in classical case.

3. Convolution Equations

Let ψj , j ∈ N, be a locally finite partition of unity from D such that for
every β ∈ Nn

0 there is Dβ > 0 such that

|∂βψj(x)| ≤ Dβ , j ∈ N.(11)

Denote
Kj = suppψj , Kj,1 = {x ∈ Rn| d(x,Kj) ≤ 1}, j ∈ N,

kx = {j| x ∈ Kj,1}, and card(kx) is its cardinal number, x ∈ Rn (d(x,Kj) is
the distance between x and Kj).

We shall assume

sup
x∈Rn

(card kx) = r < ∞, and mes(Kj) ≤ 1.

It is easy to find such partition of unity.
Our aim is to find the solution to

F ·G ≈T 1,(12)

where F ∈ G satisfies the following assumptions.
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(I) mes(V ) = 0, V = compl(U), where U is the set of all x ∈ Rn such that
for every Kj there exists Nj,F ∈ N0 such that for every φ ∈ ANj,F

there exist
Cj,F > 0, γj > 0, and ηj,F > 0 such that

|Fφ,ε(x)| ≥ Cj,F (1 + |x|)−γj εNj,F , ε < ηj,F , x ∈ Kj ∩ U,(13)

and
γ1,F = sup

j∈N
γj < ∞, C1,F = sup

j∈N
Cj,F < ∞,

N1,F = sup
j∈N

Nj,F < ∞, η1,F = inf
j∈N

ηj,F > 0.

(II) For every Kj there exists Nj ∈ N0 such that for every φ ∈ ANj
there

exist mj > 1, Cj > 0 and ηj > 0 such that

|Fφ,ε(x)| ≥ Cj · d(x, V )mεNj , ε < ηj , x ∈ Kj ,(14)

sup
j∈N

mj = m < ∞, inf
j∈N

ηj = η > 0, sup
j∈N

Nj = N2 < ∞,(15)

and
Cx = max

j∈kx

1/Cj ≤ C2(1 + |x|)γ .(16)

(III) V can be decomposed in a finite union of subvarieties of dimension less
or equal to n− 1,

V = V1 ∪ ... ∪ VrV
, dimVi = ni ≤ n− 1,

such that every x ∈ Vi is given by

x = (κ1(x1, ..., xni), ..., κni(x1, ..., xni), κni+1(x1, ..., xni), ..., κn(x1, ..., xni)),

where κl(x1, ..., xni) = xl, for l ≤ ni, and xl = κl(x1, ..., xni), l > ni,
(x1, ..., xni) ∈ Rni , are of polynomial growth in infinity with respect to

variables x1, ..., xni .
The following result is obtained by adopting division procedure from the

space G ([6]) to the space Gt.

Theorem 1. Let F ∈ Gt satisfies assumptions (I), (II), and (III). Then there
exists G ∈ Gt such that F ·G ≈t 1.

Proof. We can suppose that inf mj = m0 > 1, ηj ≤ ηj,F . Put C0 = C1,F + C2,
and N = N1,F + N2.

Let Ψ ∈ SG. Then there exists NΨ such that for every φ ∈ ANΨ there exist
ηΨ and CΨ such that for every s > 0

|Ψφ,ε(x)| ≤ CΨ(1 + |x|)−sε−NΨ , ε < ηΨ, x ∈ Rn.
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Let j ∈ N and φ ∈ Aq, where q will be chosen later. Put

G1,φ,ε,j(x) =
{

1/Fφ,ε(x), d(x, V ) > εq/mj , x ∈ Kj ,
0, otherwise,

(17)

Gφ,ε,j(x) = ψj(x)(G1,φ,ε,j ? φεqmj )(x), Gφ,ε(x) =
∑

j∈N

Gφ,ε,j(x), x ∈ Rn.

We shall use

Fφ,ε(x− εqmj y) = Fφ,ε(x) +
∑

|α|=1

∫ 1

0

∂αFφ,ε(x− tεqmj y)(−εqmj y)αdt,

which implies that there exists ND ∈ N0 and γD > 0, independent on q because
|tεqmj y| ≤ 1, such that for every φ ∈ AND

there exist CD > 0 and ηD > 0 such
that

|Fφ,ε(x)− Fφ,ε(x− εqmj y)| ≤ CD(1 + |x|)γDεqmj−ND ,(18)

for 0 < ε < ηD, x ∈ Rn, x− εqmj y ∈ Kj , |y| < 1.
First, we will prove that Gφ,ε ∈ Et. Suppose q ≥ max{N, NΨ} and qm0 −

q −N −ND −NΨ > 0. Then, by the Leibnitz formula

|∂αGφ,ε(x)| ≤ 2|α| max
γ+β=α

Aγ,β , x ∈ Rn,

where

Aγ,β = |
∑

j∈kx

∂γψj(x)∂β

∫

d(y,V )>εq/mj

G1,φ,ε,j(y)ε−nqmj φ((x− y)/εqmj )dy|

≤
∑

j∈kx

ε−q|β|mj |∂γψj(x)
∫

d(εqmjy,V )>εq/mj

G1,φ,ε,j(εqmj y)∂βφ(x/εqmj − y)dy|

≤ Dγ

∑

j∈kx

ε−q|β|mj ( sup
y∈Aj

|G1,φ,ε,j(εqmj y)|)( sup
y∈Aj

|∂βφ(x/εqmj − y)|) · mes Aj ,

where Dγ is from (11) and

Aj = {y| εqmj y ∈ Kj , d(εqmj y, V ) > εq/mj , |y − x/εqmj | < 1}.
From (I) and (II) we have

|G1,φ,ε,j(εqmj y)| = |1/Fφ,ε)(εqmj y)| ≤ 1/(Cj(εq/mj )mj−N )

= 1/(Cjε
q−N ), y ∈ Aj , ε < η.

If |y − x/εqmj | ≤ 1 then |y| ≤ |x|/εqmj + 1 and the ball with the radius
R = |x|/εqmj + 1 at the center 0 has the volume

V =
∫

dV =
∫

Sn−1
(
∫ R

0

rn−1dr)dω = max
x∈Kj

(2πn/2/Γ(n/2))(|x|/εqmj + 1)n/n.
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This implies

mes(Aj) ≤ max
x∈Kj

(2πn/2/Γ(n/2)) · (|x|/εqmj + 1)n/n.

Since supt∈Rn |∂βφ(t)| = D̃β < ∞, we have

|∂αGφ,ε(x)| ≤ 2|α| sup
γ+β=α

Dγ

∑

j∈kx

(1/Cj)ε−q|β|mj+q)

·D̃β(2πn/2/Γ(n/2))(|x|+ εqmj )n/(nεnqmj ), x ∈ Rn, ε < η.

This proves that Gφ,ε ∈ Et.
Let us prove that for every Ψφ,ε ∈ SG, < Fφ,εGφ,ε − 1, Ψφ,ε >→ 0, when

ε → 0.
Put

Λj
+(x) = {y ∈ Rn| |y| ≤ 1, d(x− εqmj y, V ) > εq/mj , x ∈ Kj , x− εqmj y ∈ Kj},

Λj
−(x) = {y ∈ Rn| |y| ≤ 1} \ Λj

+(x).

Since ∫

Λj
−(x)

φ(y)dy = 0 for d(x, V ) > 2εq/mj , x ∈ Kj ,

we have
∫

(Fφ,ε(x)
∑

j∈N

ψj(x)
∫

G1,φ,ε,j(x− y)φεqmj (y)dy − 1)Ψφ,ε(x)dx

=
∫ ∑

j∈kx

|
∫

Λj
+(x)

Fφ,ε(x)− Fφ,ε(x− εqmj y)
Fφ,ε(x− εqmj y)

ψj(x)φ(y)dyΨφ,ε(x)dx

+
∫ ∑

j∈kx

∫

Λj
−(x)

dyΨφ,ε(x)dx = I1 + I2.

We have

|I1| ≤
∫ ∑

j∈kx

|
∫

Λj
+(x)

CDεqmj−ND (1 + |x|)γD

Cj(εqmj )1/mj

˜̃Djψj(x)φ(y)||Ψφ,ε(x)|dydx

≤
∫ ∑

j∈kx

C−1
j

˜̃DjD̃0ε
qmj−q−N−ND (1 + |x|)γj+γD |Ψφ,ε(x)|dx

< CΨ

∫
(1 + |x|)γF +γD−sdx · εqm−q−N−NH−NΨ .
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On the other hand,

|I2| ≤ (2πn/2/Γ(n/2))
∫

(
∫

Λj
−(x)

ψ(y)dy)|Ψφ,ε(x)|dx

= (2πn/2/Γ(n/2))(
∫

|xi|≤1/ε,d(x,V )>2εq/mj

|Ψφ,ε(x)|dx

+
∫

|xi|>1/ε,d(x,V )>2εq/mj

|Ψφ,ε(x)| = J1 + J2.

By standard arguments one can prove that
∫

|xi|>1/ε,d(x,V )>2εq/mj

|Ψφ,ε(x)|dx ∈ C0,

which implies that J2 ∈ C0. Let us prove that J1 → 0 as ε → 0. From
assumption (III) it follows that the measure of Vi in Rni is bounded by CVi

ε−Ni

for some CVi > 0 and Ni > 0 if |xl| ≤ ε−1, 1 ≤ l ≤ ni because

mes(Vi) =
∫

|xl|≤1/ε,1≤l≤ni

(det(aij))1/2dx1...dxni ,

aij = (
∂κ1

∂xi
, ...,

∂κn

∂xi
) · (∂κ1

∂xj
, ...,

∂κn

∂xj
).

Let Ñ = max1≤i≤rV Ni. we can suppose that q > (Ñ + NΨ)/m. Let φ ∈ Aq.
Then

Mi = mes{x ∈ Rn| |xl| ≤ 1/ε, 1 ≤ l ≤ ni, d(x, Vi) ≤ 2εq/m}

≤ (CViε
−Ni + 2εq/m) ·mes{x ∈ Rn| |x| ≤ 2εq/m}

which implies

mes{x ∈ Rn| |xl| ≤ 1/ε, 1 ≤ l ≤ n, d(x, V ) ≤ 2εq/m}

≤
rV∑

i=1

Mi ≤ (2πn/2/Γ(n/2))( max
1≤i≤rV

CViε
Ñ + 1) · 2εq/m.

Since

( max
1≤i≤rV

CViε
−Ñ + 1) · 2εq/m−NΨCψ(1 + |x|)−s → 0 as ε → 0,

it follows that J1 → 0 as ε → 0. This proves the theorem.
Now we shall give the main result of the paper.
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Corollary 1. Let F ∈ Gt. If F(F ) satisfies the conditions of Theorem 1. Then
for every H ∈ Gt there exists G ∈ Gt such that

F ? G ≈T H.(19)

Proof. Since HΨ ∈ SG for H ∈ Gt and Ψ ∈ SG, we have that
∫

GΨdx ≈ ∫
FΨdx

implies
∫

GHΨdx ≈ ∫
FHΨdx, i.e. that G ≈T F implies GH ≈T FH for every

F, G, H ∈ Gt.
The bijectivity of the t-Fourier and inverse t-Fourier transformation from SG

onto SG implies that from F ≈T G we obtain F(F ) ≈T F(G) and F−1(F ) ≈T

F−1(G) because
∫
F(F )Ψdx ≈T

∫
FF(Ψ)dx ≈T

∫
GF(Ψ)dx ≈T

∫
F(G)Ψdx.

These statements enable us to prove that F ≈T G implies F ? H ≈T G ? H,
for every F, G,H ∈ Gt:

F(F ? H) ≈T F(F )F(H) ≈T F(G)F(H) ≈T F(G ? H).

Because of that, the equation F ? G ≈T δ by t-Fourier transformation be-
comes F(F )F(G) ≈T 1, and by Theorem 1 this equation has the solution F(G).
Then G = F−1(F(G)) is a solution to F ?G ≈T δ, and G1 = G?H is a solution
to F ? G1 ≈T H, for every H ∈ Gt. This proves the corollary.

Remark Theorem 2 in [6] is special case of this corrolary.
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