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A NOTE ON NONLINEAR ORDINARY
DIFFERENTIAL EQUATIONS CONTAINING
DERIVATIVES OF THE DELTA FUNCTION

M. Nedeljkov!, D. Rajter!

Abstract. We consider a class of nonlinear ODEs perturbed by the delta
function or its derivatives. Actually, we consider equations in which we
approximate the delta function with Friedrich’s mollifiers, since there are
no classical solutions in general. We are interested in cases when families
of solutions converge to some classical function. The obtained limit is an
analogue to a certain delta wave, a notion used in PDE’s theory.
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1. Introduction

Ordinary differential equations with some terms belonging to the space of
Borel measures are considered in the series of Persson’s papers, see [3] or [4],
for example. He introduced a concept of solving such equations in some mea-
sure space by proving that a measure valued solution can be reconstructed from
a net of solutions obtained by approximating a measure with a net of smooth
functions. Persson’s work and related problems were the motivations for the pa-
pers [1], [2] and [5]. Papers [1] and [5] had also a strong motivation in physics,
a second-order system of equations arising in the general theory of relativity.
Paper [2] is devoted to the first order equations (and some systems) and deriva-
tives of the delta function. The idea was to obtain as large as possible class
of equations which has a limit of solutions obtained by approximating delta
distribution and its derivatives by nets of smooth functions.

The following equation

(1) Y (t) = F(t,y(t) +ad® (1), y(-1) = v

is considered in [2]. The authors supposed that f € C* ([—1,T] x R) and that
there was a classical solution to

¥ (t)=F(ty()
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for every initial data at the point ¢ = —1 (at least for —1 <t < 7T, T > 0) and
for every initial data at the point ¢ = 0 (at least for 0 <t < T, T > 0).

We shall briefly describe the results of [2].

The procedure of solving equation (1) begins with the substitution of the

delta function by a net of mollifiers ¢, (z) = éqﬁ (;) , >0, / ¢ = 1. Instead

of equation (1), the family of equations

(2) ve (1) = £ (6,9 (1) + @) (1), y(=1) = yo, € € (0, 1),

should be solved. Then, we are interested whether there exists a limit of the
solutions y,. (t) as ¢ = 07 And, if the limit exists, is it independent on a net of
mollifiers?

Suppose that ¢ € C§° (R), suppé = [—a,bd], a,b > 0. Then the support of
#. and @, is the interval [—ae, be], € € (0,1). Because of that, one has to take
care that the solution y. (t) does not blow up in this interval. Outside of this
interval there is a classical solution (by the assumption). One also needs the
existence of the lim,_, o y. (b<) which has to be the initial value of the classical
problem after zero. In [2], one can find the following theorem.

Theorem 1. Let f be a sublinear function of order r with respect to y uniformly
on compact intervals with respect to t.
a) If s < 1/r, or s is arbitrary if f is bounded, then the solution to

3) ye(t) = f(t, % () + ol (1), ye(=1) = o

converges to g(t) + ad=1)(t), where §(t), t € [-1,T) is a classical solution to

¥ () = f(t,¥(t)), ¥(-1) = %o
b) Let f be globally Lipschitz with respect to y uniformly on compact intervals
with respect to t and let

lim I—(Q =M;, lim f_(!_/l

yooo Y y—=- Y

=M_.

Then the solution to (3) for s = 1 converges to y(t) = y(t) + ad(t), where

o m@®), tel-1,0]
y(t)_{ 228, te[0,00) ’

Y1 s a classical solution lo
Y (t) = f(t, ¥(t)), y(=1) = o, t € [-1,0],
¢ - s a classical solution to

y'(t) = f(t,y(t), ¥(0) =F(0)+ 8, BER, t€[0,00).
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The constant 8 depends on f_ll ¢+ (t)dt and f_ll é_(t)dt, where ¢4 and ¢_
are functions given by

¢+ (t) = max{¢(t),0} and ¢_(t) = —min{¢(t),0}.

If (t) > 0,1 € R, then S does not depend on a mollifier ¢. In this paper ¢ will
be non-negative.

Let s = 1. The assumption that f is globally Lipschitz is not necessary for
the existence of the limit of generalized solutions. The aim of this paper is to
analyze functions which are not globally Lipschitz but the limit of the net of
solutions exists.

We will consider the cases

(a} f = —=Cyly|? where C =const >0, p> 1 and a > 0;
(b} f satisfies conditions (7) and (8) given below and f(t,0) = 0;

(c) f satisfies conditions of (b) and f depends only on y.
In cases (a} and (c) we will prove the existence of the limit of solutions, while
in case (b) we will only show that the net of solutions is bounded.

2. Results

Lemma 1. There exists a limit of the solutions to

(4) ¥e(t) = —Cuelyel’ + ad;(t), ¥(—1) = wo, p> 1, C = const > 0, o> 0
as € = 0.

Proof. Obviously, a solution to y = —Cy|y|”, p > 1 decreases for positive y
and increases for negative y.
First, note that a solution to

Ye () = f (v (1) + ad, (t)
can be written in the following form
Ye (B) = 1 (8) + ade (1)
where y. is a solution to
Yie (8) = £ (Hy1c (8) + ade (1)

with the same initial data. Before the point ¢ = —ae, the solution to (4) is a
classical function 7 (t), independent on . Let us denote yo, = %; (—as).
Suppose that yg > 0.
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By using the comparison theorem one can see that the solution to (4) with
initial data yc (—a€g) = yoe is less or equal to a solution to

(3) v () = £ (0 (t) + 9 (2), v(—ae) = yoe,
where g, (t) < ad, (t) and
0, t<-a.
Ge (t) = { zsa t € [_—Etagt]
0, t>0b,

for some @, < ag, [ < be and for £ —oo,ase— 0.
This means that y. (f) < v (¢), where

—Cv |v|p,_ B v(—a€) = yo, t € [—ae, —a]
(6) ’U'(t): { _C(v+£:) |v+£:|p7 v(:at):_OU [ as, ]
—Cv |v|?, v (bE = Yoe, te [bs,bef]

Solution of the equation
v’ (t) -C (v + Es) |v +Es |P ) U (_EE) =TYoe tE [_Esv bs]

is given by

vit) = o+ -E.

{/(=17 + Cp (@0, +E) (¢ +)

Note that _
£ - a. < C¢ <1,

where C, is a constant which depends on ¢. Then

— — -1 -1
Z’:'at':é:'at'zf SC¢'Z€ s

and

£ —
——=x ~ ¢
const - &, °

v(t) <

for ¢ small enough. The term on the right-hand side tends to —oc as ¢ tends to
zero (since p > 1). One can easily see that v(b.) is not bounded as ¢ — 0.
Obviously, the first and the third equation in (6) do not change point v(be)
significantly (i.e. only finite shifts can occur).
We know that ¢, (t) = 0 for ¢ > be and

Yie (1) = —Cyic () ly1c Q)IF , y1e (be) =&,

where {: is some point which tends to —oc as € — 0. In other words

-1
3

o) = (&P +pt-b9) ",
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and ¥, (¢) = 7, (t) = — (pt)_i for t > 0, as € tends to zero.
So, the solution to

ylls (t) = _Cyls (t) |y1£ (t)lp + a¢s (t)

converges to 7, (t) + @d (1), where

_ —(pt)" %, t>0
7, (t) = » -1
v ()" +Cpt+1)p) *, t<0
One can similarly analyze the case yp. < 0. 0

Lemma 2. Let f be a monotone function such that f(t,0) = 0 for everyt and
let the following holds:
Ify>0

) ft,y) < =Cryly|f, t € [~to, to], for some C; >0, and p; > 1,
and if y < 0
(8) f(t,y) > —CaylylP?, t > 0, for some C2 > 0, and p2 > 1.
Then, the net of solutions to

Ye(t) = f(t,ye) + g, (t), € €(0,1)

is bounded by y = 0 and by solution to y = —Cayly|’? (see Lemma 1) fort > 0
and for every non-negative ¢ € C§°(R), a > 0. Additionally, y1.(0) — —oo as
e—=0.

Proof. Let us consider
YVie (&) = f(t91e () + ¢ (t)), Yo =T (—as) > 0.

By comparison theorem (f is monotone) its solution is less or equal to a
solution to

v (t) = f (G0 () +ge (1) v(-ae) = o,

g: (t) = {

for some @, < ac, b, < be and for zs — 0o, as € — 0.
This implies that y;. (t) < v (), where

where

1=

t<
3 tE—g,bE]
t> 0

[=3"a Y
[
—
o &

(=p

f(tav'f‘zs)a v(_ai).:;yOe) te [—-a-'s,-b-s]

f (t’ v) ) v (—ag) =Yoey tE [_aga —a_é]
9) v 1) = =
f¢t,v), v (bs)

Yoe s te [EE, bE]
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Note vp + &, is positive, for € small enough. This implies that v starts to
decrease. It will be a decreasing function until v = —¢,.

Suppose that tp is the first point when v (tp) = —£,. Then the unique
solution to

o (t) = f(t,v+&) = £(t,0) =0, v(to) = —E,

is v (t) = const = —Ee in some Interval around ¢y5. This is a contradiction with
the fact that v decreases for ¢t < tg. Specially, v + £, > 0. Now we obtain that

P1

f(t7v+ze)S_Cl(v-f'zs)lv-f-zs aP1>1-

This implies that a solution to
v (t) = f(t,v+E,)
is less or equal to a solution to
o (1) =~Ci{v+&) p+E[" ;> 1L

By using Lemma 1, we have

As in the proof of Lemma 1 one can see that the first and the third equations
in (9) do not change this point significantly (only for a finite value).
By comparison theorem, one can see that (8) implies the assertion. D

Theorem 2. Let f be a function depending only on y, f(y), and let it satisfy
(7), (8), f(0) =0, and the general assumption from the beginning of the paper.
Then, a net of solutions to

ve(t) = fy: (1) + g (t), y(=1) = o, € <1,
converges to G(t) + ad(t), where F(t) is a solution to
Y (t) = f(y(8), y(~1) = yo, t € [-1,0)
given implicitly by

/ /) =t t >0,

—0C

i.e. J is the unique solution to

y/(t) = f(y(t))a y(O) =—-o0,t € (OaT)'
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Proof. We have seen in Lemma 2 that both ¥ and y. are less than 0. Let us
notice that 1/f(y) > 0 for negative y and that § and y. are given by

Y«

| i@ =tana [ aysw) =1-be <1,

respectively (plain separation of the variables). Then

Ye

/_y dy/f(y) = » dy/ f(y) + be

for every ¢ > 0. This implies

(10) :

/ i av/1w) - [ yf ay/ £(9)

% /_ " dy/f(y)HbE +[ : dy/ F(y)

Since 7 is finite for every t > 0, f(y) > 0 and the right-hand side of (10) tends
to zero as € — 0, it follows that y.(t) — ¥(t) as € — 0 for every t. O
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