Lattices of regular closed sets in closure spaces: semidistributivity and Dedekind-MacNeille completions

Friedrich Wehrung

LMNO (Caen, France)
E-mail: friedrich.wehrung01@unicaen.fr
URL: http://www.math.unicaen.fr/~wehrung

NSAC 2013, Novi Sad, June 2013
Joint work with Luigi Santocanale
What is the permutohedron?

- The **permutohedron on n letters**, denoted by $P(n)$, can be defined as the set of all permutations of n letters, with the ordering

What is the permutohedron?

The permutohedron on \(n \) letters, denoted by \(P(n) \), can be defined as the set of all permutations of \(n \) letters, with the ordering

\[
\alpha \leq \beta \iff \text{Inv}(\alpha) \subseteq \text{Inv}(\beta),
\]

where we set \([n] = \{1, 2, \ldots, n\}\) and \(I_n = \{(i, j) \in [n] \times [n] | i < j\}\). Alternate definition: \(P(n) = \{\text{Inv}(\sigma) | \sigma \in S_n\}\), ordered by \(\subseteq\).
What is the permutohedron?

The permutohedron on \(n \) letters, denoted by \(P(n) \), can be defined as the set of all permutations of \(n \) letters, with the ordering

\[
\alpha \leq \beta \iff \text{Inv}(\alpha) \subseteq \text{Inv}(\beta),
\]

where we set

\[
[n] = \{1, 2, \ldots, n\},
\]

\[
\mathcal{J}_n = \{(i, j) \in [n] \times [n] \mid i < j\},
\]

\[
\text{Inv}(\alpha) = \{(i, j) \in \mathcal{J}_n \mid \alpha^{-1}(i) > \alpha^{-1}(j)\}.
\]
What is the permutohedron?

- The permutohedron on n letters, denoted by $P(n)$, can be defined as the set of all permutations of n letters, with the ordering

$$\alpha \leq \beta \iff \text{Inv}(\alpha) \subseteq \text{Inv}(\beta),$$

where we set

$$[n] = \{1, 2, \ldots, n\},$$

$$J_n = \{(i, j) \in [n] \times [n] \mid i < j\},$$

$$\text{Inv}(\alpha) = \{(i, j) \in J_n \mid \alpha^{-1}(i) > \alpha^{-1}(j)\}.$$

- Alternate definition: $P(n) = \{\text{Inv}(\sigma) \mid \sigma \in \mathfrak{S}_n\}$, ordered by \subseteq.
What are the $\text{Inv}(\sigma)$?

- Both $\text{Inv}(\sigma)$ and $J_n \setminus \text{Inv}(\sigma)$ are transitive relations on $[n]$.
What are the $\text{Inv}(\sigma)$?

- Both $\text{Inv}(\sigma)$ and $\mathcal{J}_n \setminus \text{Inv}(\sigma)$ are transitive relations on $[n]$.
 \textbf{(Proof:} let $(i, j) \in \mathcal{J}_n$. Then $(i, j) \in \text{Inv}(\sigma)$ iff $\sigma^{-1}(i) > \sigma^{-1}(j)$; $(i, j) \notin \text{Inv}(\sigma)$ iff $\sigma^{-1}(i) < \sigma^{-1}(j)$.)
What are the $\text{Inv}(\sigma)$?

- Both $\text{Inv}(\sigma)$ and $\mathcal{J}_n \setminus \text{Inv}(\sigma)$ are transitive relations on $[n]$.
 \text{(Proof: let } (i, j) \in \mathcal{J}_n. \text{ Then } (i, j) \in \text{Inv}(\sigma) \text{ iff } \sigma^{-1}(i) > \sigma^{-1}(j); (i, j) \notin \text{Inv}(\sigma) \text{ iff } \sigma^{-1}(i) < \sigma^{-1}(j).)\)

- Conversely, every subset $x \subseteq \mathcal{J}_n$, such that both x and $\mathcal{J}_n \setminus x$ are transitive, is $\text{Inv}(\sigma)$ for a unique $\sigma \in \mathcal{S}_n$
 \text{(Dushnik and Miller 1941, Guilbaud and Rosenstiehl 1963).}
What are the Inv(σ)?

- Both Inv(σ) and $J_n \setminus \text{Inv}(\sigma)$ are transitive relations on $[n]$.
 \textit{(Proof:} Let $(i, j) \in J_n$. Then $(i, j) \in \text{Inv}(\sigma)$ iff $\sigma^{-1}(i) > \sigma^{-1}(j)$; $(i, j) \notin \text{Inv}(\sigma)$ iff $\sigma^{-1}(i) < \sigma^{-1}(j)$.\textit{)}
- Conversely, every subset $x \subseteq J_n$, such that both x and $J_n \setminus x$ are transitive, is Inv(σ) for a unique $\sigma \in S_n$ (Dushnik and Miller 1941, Guilbaud and Rosenstiehl 1963).
- Say that $x \subseteq J_n$ is \textbf{closed} if it is transitive, \textbf{open} if $J_n \setminus x$ is closed, and \textbf{clopen} if it is both closed and open.
What are the $\text{Inv}(\sigma)$?

- Both $\text{Inv}(\sigma)$ and $\mathcal{J}_n \setminus \text{Inv}(\sigma)$ are transitive relations on $[n]$.
 \textit{(Proof: let $(i, j) \in \mathcal{J}_n$. Then $(i, j) \in \text{Inv}(\sigma)$ iff $\sigma^{-1}(i) > \sigma^{-1}(j)$; $(i, j) \notin \text{Inv}(\sigma)$ iff $\sigma^{-1}(i) < \sigma^{-1}(j)$.)}

- Conversely, every subset $x \subseteq \mathcal{J}_n$, such that both x and $\mathcal{J}_n \setminus x$ are transitive, is $\text{Inv}(\sigma)$ for a unique $\sigma \in \mathcal{S}_n$ (Dushnik and Miller 1941, Guilbaud and Rosenstiehl 1963).

- Say that $x \subseteq \mathcal{J}_n$ is \textbf{closed} if it is transitive, \textbf{open} if $\mathcal{J}_n \setminus x$ is closed, and \textbf{clopen} if it is both closed and open.

- Hence $P(n) = \{x \subseteq \mathcal{J}_n \mid x \text{ is clopen}\}$, ordered by \subseteq.
What are the $\text{Inv}(\sigma)$?

Both $\text{Inv}(\sigma)$ and $\mathcal{J}_n \setminus \text{Inv}(\sigma)$ are transitive relations on $[n]$.
*(Proof: let $(i, j) \in \mathcal{J}_n$. Then $(i, j) \in \text{Inv}(\sigma)$ iff $\sigma^{-1}(i) > \sigma^{-1}(j)$; $(i, j) \notin \text{Inv}(\sigma)$ iff $\sigma^{-1}(i) < \sigma^{-1}(j)$.)

Conversely, every subset $x \subseteq \mathcal{J}_n$, such that both x and $\mathcal{J}_n \setminus x$ are transitive, is $\text{Inv}(\sigma)$ for a unique $\sigma \in S_n$ (Dushnik and Miller 1941, Guilbaud and Rosenstiehl 1963).

Say that $x \subseteq \mathcal{J}_n$ is closed if it is transitive, open if $\mathcal{J}_n \setminus x$ is closed, and clopen if it is both closed and open.

Hence $\mathcal{P}(n) = \{x \subseteq \mathcal{J}_n \mid x \text{ is clopen}\}$, ordered by \subseteq.

Observe that each $x \in \mathcal{P}(n)$ is a strict ordering. It can be proved (Dushnik and Miller 1941) that those are exactly the finite strict orderings of order-dimension 2.
The permutohedra $P(2)$, $P(3)$, and $P(4)$.

Lattices of regular closed sets

The precursor

Regular closed sets

Transitive binary relations

Convexity and hyperplane arrangements

Graphs

Join-semilattices
The permutohedra $P(5)$ and $P(6)$
The permutohedron $P(7)$
Permutohedra are ortholattices

Theorem (Guilbaud and Rosenstiehl 1963)

The permutohedron $P(n)$ is a lattice, for every positive integer n.

The assignment $x \mapsto x^c = I_n \setminus x$ defines an orthocomplementation on $P(n)$:

$x \leq y \implies y^c \leq x^c$;

$(x^c)^c = x$;

$x \wedge x^c = 0$ (equivalently, $x \vee x^c = 1$).

Hence $P(n)$ is an ortholattice.
Permutohedra are ortholattices

Theorem (Guilbaud and Rosenstiehl 1963)

The permutohedron $P(n)$ is a lattice, for every positive integer n.
Permutohedra are ortholattices

Theorem (Guilbaud and Rosenstiehl 1963)

The permutohedron $P(n)$ is a lattice, for every positive integer n.

The assignment $x \mapsto x^c = J_n \setminus x$ defines an orthocomplementation on $P(n)$:
Permutohedra are ortholattices

Theorem (Guilbaud and Rosenstiehl 1963)

The permutohedron $P(n)$ is a lattice, for every positive integer n.

The assignment $x \mapsto x^c = J_n \setminus x$ defines an orthocomplementation on $P(n)$:

\[
x \leq y \Rightarrow y^c \leq x^c ; \\
(x^c)^c = x ; \\
x \wedge x^c = 0 \quad (\text{equivalently, } x \vee x^c = 1).
\]
Permutohedra are ortholattices

Theorem (Guilbaud and Rosenstiehl 1963)

The permutohedron $P(n)$ is a lattice, for every positive integer n.

The assignment $x \mapsto x^c = J_n \setminus x$ defines an orthocomplementation on $P(n)$:

\[
\begin{align*}
x \leq y & \Rightarrow y^c \leq x^c ; \\
(x^c)^c & = x ; \\
x \land x^c & = 0 \quad \text{(equivalently, } x \lor x^c = 1) .
\end{align*}
\]

Hence $P(n)$ is an ortholattice.
Permutohedra are even more peculiar lattices

Theorem (Duquenne and Cherfouh 1994, Le Conte de Poly-Barbut 1994)

Permutohedra are even more peculiar lattices

Theorem (Duquenne and Cherfouh 1994, Le Conte de Poly-Barbut 1994)
Permutohedra are even more peculiar lattices

Theorem (Duquenne and Cherfouh 1994, Le Conte de Poly-Barbut 1994)

The permutohedron $P(n)$ is **semidistributive**, for every positive integer n. Thus it is also **pseudocomplemented**.
Theorem (Duquenne and Cherfouh 1994, Le Conte de Poly-Barbut 1994)

The permutohedron $P(n)$ is \textbf{semidistributive}, for every positive integer n. Thus it is also \textbf{pseudocomplemented}.

\textbf{Semidistributivity} means that
\[
x \lor z = y \lor z \Rightarrow x \lor z = (x \land y) \lor z, \text{ and, dually,}
\]
x \land z = y \land z \Rightarrow x \land z = (x \lor y) \land z.

Permutohedra are even more peculiar lattices

Theorem (Duquenne and Cherfouh 1994, Le Conte de Poly-Barbut 1994)

The permutohedron $P(n)$ is semidistributive, for every positive integer n. Thus it is also pseudocomplemented.

Semidistributivity means that

$x \lor z = y \lor z \Rightarrow x \lor z = (x \land y) \lor z$, and, dually,

$x \land z = y \land z \Rightarrow x \land z = (x \lor y) \land z$.

Theorem (Caspard 2000)
Permutohedra are even more peculiar lattices

Theorem (Duquenne and Cherfouh 1994, Le Conte de Poly-Barbut 1994)

The permutohedron $P(n)$ is **semidistributive**, for every positive integer n. Thus it is also **pseudocomplemented**.

Semidistributivity means that

\[
x \lor z = y \lor z \Rightarrow x \lor z = (x \land y) \lor z, \text{ and, dually, } \\
x \land z = y \land z \Rightarrow x \land z = (x \lor y) \land z.
\]

Theorem (Caspard 2000)

The permutohedron $P(n)$ is a **bounded homomorphic image of a free lattice**, for every positive integer n.
Permutohedra are even more peculiar lattices

Theorem (Duquenne and Cherfouh 1994, Le Conte de Poly-Barbut 1994)

The permutohedron $P(n)$ is semidistributive, for every positive integer n. Thus it is also pseudocomplemented.

Semidistributivity means that

\[x \lor z = y \lor z \Rightarrow x \lor z = (x \land y) \lor z, \text{ and, dually,} \]
\[x \land z = y \land z \Rightarrow x \land z = (x \lor y) \land z. \]

Theorem (Caspard 2000)

The permutohedron $P(n)$ is a bounded homomorphic image of a free lattice, for every positive integer n.

This means that there are a finitely generated free lattice F and a surjective lattice homomorphism $f : F \to P(n)$ such that each $f^{-1}\{x\}$ has both a least and a largest element.
Regular closed sets

- **Closure space**: pair \((\Omega, \varphi)\), where \(\varphi : \mathcal{P}(\Omega) \to \mathcal{P}(\Omega)\), with
 \[\varphi(\emptyset) = \emptyset, \; X \subseteq Y \Rightarrow \varphi(X) \subseteq \varphi(Y), \; X \subseteq \varphi(X), \]
 \[\varphi \circ \varphi = \varphi. \]
Regular closed sets

- **Closure space**: pair \((\Omega, \varphi)\), where \(\varphi: \mathcal{P}(\Omega) \rightarrow \mathcal{P}(\Omega)\), with \(\varphi(\emptyset) = \emptyset\), \(X \subseteq Y \Rightarrow \varphi(X) \subseteq \varphi(Y)\), \(X \subseteq \varphi(X)\), \(\varphi \circ \varphi = \varphi\).

- **Associated interior operator**: \(\check{\varphi}(X) = \Omega \setminus \varphi(\Omega \setminus X)\).
Regular closed sets

- **Closure space**: pair (Ω, φ), where $\varphi: \mathcal{P}(\Omega) \rightarrow \mathcal{P}(\Omega)$, with $\varphi(\emptyset) = \emptyset$, $X \subseteq Y \Rightarrow \varphi(X) \subseteq \varphi(Y)$, $X \subseteq \varphi(X)$, $\varphi \circ \varphi = \varphi$.

- **Associated interior operator**: $\tilde{\varphi}(X) = \Omega \setminus \varphi(\Omega \setminus X)$.

- **Closed sets**: $\varphi(X) = X$. **Open sets**: $\tilde{\varphi}(X) = X$. **Clopen sets**: $\varphi(X) = \tilde{\varphi}(X) = X$. **Regular closed sets**: $X = \varphi \tilde{\varphi}(X)$.

Closure space: pair (Ω, φ), where $\varphi: \mathcal{P}(\Omega) \rightarrow \mathcal{P}(\Omega)$, with $\varphi(\emptyset) = \emptyset$, $X \subseteq Y \Rightarrow \varphi(X) \subseteq \varphi(Y)$, $X \subseteq \varphi(X)$, $\varphi \circ \varphi = \varphi$.

Associated interior operator: $\tilde{\varphi}(X) = \Omega \setminus \varphi(\Omega \setminus X)$.

Closed sets: $\varphi(X) = X$. **Open sets**: $\tilde{\varphi}(X) = X$. **Clopen sets**: $\varphi(X) = \tilde{\varphi}(X) = X$. **Regular closed sets**: $X = \varphi \tilde{\varphi}(X)$.
Closure space: pair \((\Omega, \varphi)\), where \(\varphi: \mathcal{P}(\Omega) \to \mathcal{P}(\Omega)\), with \(\varphi(\emptyset) = \emptyset\), \(X \subseteq Y \Rightarrow \varphi(X) \subseteq \varphi(Y)\), \(X \subseteq \varphi(X)\), \(\varphi \circ \varphi = \varphi\).

Associated interior operator: \(\check{\varphi}(X) = \Omega \setminus \varphi(\Omega \setminus X)\).

Closed sets: \(\varphi(X) = X\). Open sets: \(\check{\varphi}(X) = X\). Clopen sets: \(\varphi(X) = \check{\varphi}(X) = X\). Regular closed sets: \(X = \varphi \check{\varphi}(X)\).

\(\text{Clop}(\Omega, \varphi)\) (the clopen sets) is contained in \(\text{Reg}(\Omega, \varphi)\) (the regular closed sets).
Regular closed sets

- **Closure space**: pair \((\Omega, \varphi)\), where \(\varphi: \mathcal{P}(\Omega) \rightarrow \mathcal{P}(\Omega)\), with \(\varphi(\emptyset) = \emptyset\), \(X \subseteq Y \Rightarrow \varphi(X) \subseteq \varphi(Y)\), \(X \subseteq \varphi(X)\), \(\varphi \circ \varphi = \varphi\).

- **Associated interior operator**: \(\check{\varphi}(X) = \Omega \setminus \varphi(\Omega \setminus X)\).

- **Closed sets**: \(\varphi(X) = X\). **Open sets**: \(\check{\varphi}(X) = X\). **Clopen sets**: \(\varphi(X) = \check{\varphi}(X) = X\). **Regular closed sets**: \(X = \varphi \check{\varphi}(X)\).

- \(\text{Clop}(\Omega, \varphi)\) (the **clopen** sets) is contained in \(\text{Reg}(\Omega, \varphi)\) (the **regular closed** sets).

- \(\text{Reg}(\Omega, \varphi)\) is always an ortholattice (with \(x^\perp = \varphi(x^c)\)), but \(\text{Clop}(\Omega, \varphi)\) may not be a lattice.
Regular closed sets

- **Closure space**: pair (Ω, φ), where $\varphi : \mathcal{P}(\Omega) \to \mathcal{P}(\Omega)$, with $\varphi(\emptyset) = \emptyset$, $X \subseteq Y \Rightarrow \varphi(X) \subseteq \varphi(Y)$, $X \subseteq \varphi(X)$, $\varphi \circ \varphi = \varphi$.

- **Associated interior operator**: $\check{\varphi}(X) = \Omega \setminus \varphi(\Omega \setminus X)$.

- **Closed sets**: $\varphi(X) = X$. **Open sets**: $\check{\varphi}(X) = X$. **Clopen sets**: $\varphi(X) = \check{\varphi}(X) = X$. **Regular closed sets**: $X = \varphi \check{\varphi}(X)$.

- $	ext{Clop}(\Omega, \varphi)$ (the clopen sets) is contained in $\text{Reg}(\Omega, \varphi)$ (the regular closed sets).

- $\text{Reg}(\Omega, \varphi)$ is always an ortholattice (with $x^\perp = \varphi(x^c)$), but $	ext{Clop}(\Omega, \varphi)$ may not be a lattice.

- Every orthoposet appears as some $	ext{Clop}(\Omega, \varphi)$ (Mayet 1982, Katrnoška 1982).
What happens for convex geometries?

Convex geometry: closure space \((\Omega, \varphi)\) such that (\(x\) closed, \(p, q \in \Omega \setminus x\), and \(\varphi(x \cup \{p\}) = \varphi(x \cup \{q\})\) \(\Rightarrow p = q\).
What happens for convex geometries?

Convex geometry: closure space \((\Omega, \varphi)\) such that \((x \text{ closed}, p, q \in \Omega \setminus x, \text{ and } \varphi(x \cup \{p\}) = \varphi(x \cup \{q\})) \Rightarrow p = q\).

Theorem (Santocanale and W. 2012)

For (more general spaces than) finite convex geometries, the lattice \(\text{Reg}(\Omega, \varphi)\) is always **pseudocomplemented**.
For a transitive binary relation $e \subseteq P \times P$, set $\Omega = e$, $\varphi(a) = \text{cl}(a) =$ transitive closure of a ($\forall a \subseteq e$).
Transitive binary relations

- For a transitive binary relation $e \subseteq P \times P$, set $\Omega = e$, $\varphi(a) = \text{cl}(a)$ = transitive closure of a ($\forall a \subseteq e$).
- For $e = J_n = \text{natural strict ordering on } [n]$, $\text{Reg}(e, \text{cl}) = \text{Clop}(e, \text{cl}) = P(n)$, the permutohedron.
Transitive binary relations

- For a transitive binary relation $e \subseteq P \times P$, set $\Omega = e$, $\varphi(a) = \text{cl}(a) = \text{transitive closure of } a$ ($\forall a \subseteq e$).
- For $e = J_n = \text{natural strict ordering on } [n]$, $\text{Reg}(e, \text{cl}) = \text{Clop}(e, \text{cl}) = P(n)$, the permutohedron.
- For $e = [n] \times [n]$, $\text{Reg}(e, \text{cl}) = \text{Clop}(e, \text{cl}) = \text{Bip}(n)$, the bipartition lattice on $[n]$ (Foata and Zeilberger 1996, Han 1996, Hetyei and Krattenthaler 2011).
Transitive binary relations

- For a transitive binary relation \(e \subseteq P \times P \), set \(\Omega = e \), \(\varphi(a) = \text{cl}(a) = \text{transitive closure of } a \) (\(\forall a \subseteq e \)).

- For \(e = J_n = \text{natural strict ordering on } [n] \), \(\text{Reg}(e, \text{cl}) = \text{Clop}(e, \text{cl}) = P(n) \), the permutohedron.

- For \(e = [n] \times [n] \), \(\text{Reg}(e, \text{cl}) = \text{Clop}(e, \text{cl}) = \text{Bip}(n) \), the bipartition lattice on \([n] \) (Foata and Zeilberger 1996, Han 1996, Hetyei and Krattenthaler 2011).

- \(\text{Bip}(n) \) contains an \(M_3 \) whenever \(n \geq 3 \).
A few things about $\text{Reg}(e, \text{cl})$

Theorem (Santocanale and W. 2012)

1. $\text{Reg}(e, \text{cl})$ is always the Dedekind-MacNeille completion of $\text{Clop}(e, \text{cl})$. Both are equal iff e is square-free.

2. The lattice $\text{Reg}(e, \text{cl})$ is spatial (i.e., every element is a join of completely join-irreducible elements).

3. For e finite, $\text{Reg}(e, \text{cl})$ is semidistributive iff it is a bounded homomorphic image of a free lattice, iff every connected component of e is either antisymmetric or $E \times E$ with $|E| = 2$.
A few things about Reg(e, cl)

Theorem (Santocanale and W. 2012)

1. Reg(e, cl) is always the Dedekind-MacNeille completion of Clop(e, cl). Both are equal iff e is square-free.
A few things about $\text{Reg}(e, \text{cl})$

Theorem (Santocanale and W. 2012)

1. $\text{Reg}(e, \text{cl})$ is always the Dedekind-MacNeille completion of $\text{Clop}(e, \text{cl})$. Both are equal iff e is square-free.
2. The lattice $\text{Reg}(e, \text{cl})$ is spatial (i.e., every element is a join of completely join-irreducible elements).
A few things about \(\text{Reg}(e, \text{cl}) \)

Theorem (Santocanale and W. 2012)

1. \(\text{Reg}(e, \text{cl}) \) is always the Dedekind-MacNeille completion of \(\text{Clop}(e, \text{cl}) \). Both are equal iff \(e \) is square-free.

2. The lattice \(\text{Reg}(e, \text{cl}) \) is spatial (i.e., every element is a join of completely join-irreducible elements).

3. For \(e \) finite, \(\text{Reg}(e, \text{cl}) \) is semidistributive iff it is a bounded homomorphic image of a free lattice, iff every connected component of \(e \) is either antisymmetric or \(E \times E \) with \(\text{card } E = 2 \).
The lattice Bip(3)
The lattice Bip(4)
We are given a real affine space Δ, and a subset $E \subseteq \Delta$.
We are given a real affine space Δ, and a subset $E \subseteq \Delta$.

Setting $\text{conv}_E(X) = \text{conv}(X) \cap E$, it is well-known that (E, conv_E) is a convex geometry.
We are given a real affine space Δ, and a subset $E \subseteq \Delta$.

Setting $\text{conv}_E(X) = \text{conv}(X) \cap E$, it is well-known that (E, conv_E) is a convex geometry.

A subset $X \subseteq E$ is relatively convex if $X = \text{conv}_E(X)$; bi-convex if X and $E \setminus X$ are both relatively convex; strongly bi-convex if $\text{conv}(X) \cap \text{conv}(E \setminus X) = \emptyset$.

Clop* $(E, \text{conv}_E) = \{X \subseteq E | X$ is strongly bi-convex $\}$.

The precursor
Regular closed sets
Transitive binary relations
Convexity and hyperplane arrangements
Graphs
Join-semilattices
We are given a real affine space Δ, and a subset $E \subseteq \Delta$.

Setting $\text{conv}_E(X) = \text{conv}(X) \cap E$, it is well-known that (E, conv_E) is a convex geometry.

A subset $X \subseteq E$ is relatively convex if $X = \text{conv}_E(X)$; bi-convex if X and $E \setminus X$ are both relatively convex; strongly bi-convex if $\text{conv}(X) \cap \text{conv}(E \setminus X) = \emptyset$.

Strongly bi-convex \Rightarrow bi-convex \Rightarrow relatively convex.
Relatively convex sets

- We are given a real affine space Δ, and a subset $E \subseteq \Delta$.
- Setting $\text{conv}_E(X) = \text{conv}(X) \cap E$, it is well-known that (E, conv_E) is a convex geometry.
- A subset $X \subseteq E$ is relatively convex if $X = \text{conv}_E(X)$; bi-convex if X and $E \setminus X$ are both relatively convex; strongly bi-convex if $\text{conv}(X) \cap \text{conv}(E \setminus X) = \emptyset$.
- Strongly bi-convex \Rightarrow bi-convex \Rightarrow relatively convex.
- $\text{Clo}^*(E, \text{conv}_E) = \{X \subseteq E \mid X$ is strongly bi-convex$\}$.
Theorem (Santocanale and W. 2013)

Let E be a subset in a real affine space Δ. Then $\text{Reg}(E, \text{conv}_E)$ is the Dedekind-MacNeille completion of $\text{Clop}^*(E, \text{conv}_E)$ (thus of $\text{Clop}(E, \text{conv}_E)$).
Poset of regions of a central hyperplane arrangement

- **Central hyperplane arrangement** in \mathbb{R}^d: finite set \mathcal{H} of hyperplanes through 0. **Regions** (set \mathcal{R}): connected components of $\mathbb{R}^d \setminus \bigcup \mathcal{H}$ (necessarily open). **Base region** $B \in \mathcal{R}$.

Poset of regions: $\text{Pos}(\mathcal{H}, B) = \{ (\mathcal{R}, \leq) \}$, where $X \leq Y$ if $\text{sep}(B, X) \subseteq \text{sep}(B, Y)$.

Theorem (Santocanale and W. 2013) $\text{Pos}(\mathcal{H}, B) \sim = \text{Clop}^\ast (E, \text{conv } E)$, for a suitably defined finite $E \subseteq \mathbb{R}^d$.

- Lattices of regular closed sets
- The precursor
- Regular closed sets
- Transitive binary relations
- Convexity and hyperplane arrangements
- Graphs
- Join-semilattices
Poset of regions of a central hyperplane arrangement

- Central hyperplane arrangement in \mathbb{R}^d: finite set \mathcal{H} of hyperplanes through 0. Regions (set \mathcal{R}): connected components of $\mathbb{R}^d \setminus \bigcup \mathcal{H}$ (necessarily open). Base region $B \in \mathcal{R}$.

- $\text{sep}(X, Y) = \{ H \in \mathcal{H} \mid H \text{ separates } X \text{ and } Y \}$, for $X, Y \in \mathcal{R}$.
Poset of regions of a central hyperplane arrangement

- **Central hyperplane arrangement** in \mathbb{R}^d: finite set \mathcal{H} of hyperplanes through 0. Regions (set \mathcal{R}): connected components of $\mathbb{R}^d \setminus \bigcup \mathcal{H}$ (necessarily open). Base region $B \in \mathcal{R}$.

- $\text{sep}(X, Y) \triangleq \{ H \in \mathcal{H} \mid H \text{ separates } X \text{ and } Y \}$, for $X, Y \in \mathcal{R}$.

- **Poset of regions**: $\text{Pos}(\mathcal{H}, B) = (\mathcal{R}, \leq_B)$, where $X \leq_B Y$ if $\text{sep}(B, X) \subseteq \text{sep}(B, Y)$.

\[\text{Poset of regions of a central hyperplane arrangement} \]
Poset of regions of a central hyperplane arrangement

- **Central hyperplane arrangement** in \mathbb{R}^d: finite set \mathcal{H} of hyperplanes through 0. Regions (set \mathcal{R}): connected components of $\mathbb{R}^d \setminus \bigcup \mathcal{H}$ (necessarily open). Base region $B \in \mathcal{R}$.

- $\text{sep}(X, Y) = \{ H \in \mathcal{H} \mid H \text{ separates } X \text{ and } Y \}$, for $X, Y \in \mathcal{R}$.

- **Poset of regions**: $\text{Pos}(\mathcal{H}, B) = (\mathcal{R}, \leq_B)$, where $X \leq_Y Y$ if $\text{sep}(B, X) \subseteq \text{sep}(B, Y)$.

Theorem (Santocanale and W. 2013)

$\text{Pos}(\mathcal{H}, B) \cong \text{Clop}^*(E, \text{conv}_E)$, for a suitably defined finite $E \subseteq \mathbb{R}^d$.
Partitions in graphs

- **Graph**: \((G, \sim)\), where \(\sim\) is an irreflexive, symmetric binary relation on \(G\).
Partitions in graphs

- **Graph**: \((G, \sim)\), where \(\sim\) is an irreflexive, symmetric binary relation on \(G\).
- \(\delta_G = \{X \subseteq G \text{ nonempty} \mid X \text{ is connected}\}\).
Partitions in graphs

- **Graph**: \((G, \sim)\), where \(\sim\) is an irreflexive, symmetric binary relation on \(G\).
- \(\delta_G = \{ X \subseteq G \text{ nonempty} \mid X \text{ is connected} \}\).
- \(X = X_1 \sqcup \cdots \sqcup X_n\) if \(X = X_1 \cup \cdots \cup X_n\) (disjoint union) and \(X\) and all the \(X_i\) are connected.
Partitions in graphs

- **Graph**: \((G, \sim)\), where \(\sim\) is an irreflexive, symmetric binary relation on \(G\).
- \(\delta_G = \{X \subseteq G \text{ nonempty} \mid X \text{ is connected}\}\).
- \(X = X_1 \sqcup \cdots \sqcup X_n\) if \(X = X_1 \cup \cdots \cup X_n\) (disjoint union) and \(X\) and all the \(X_i\) are connected.
- \(\text{cl}(x) = \text{closure of } x \text{ under } \sqcup, \forall x \subseteq \delta_G\).
Partitions in graphs

- **Graph**: \((G, \sim)\), where \(\sim\) is an irreflexive, symmetric binary relation on \(G\).
- \(\delta_G = \{X \subseteq G \text{ nonempty} \mid X \text{ is connected}\}\).
- \(X = X_1 \sqcup \cdots \sqcup X_n\) if \(X = X_1 \cup \cdots \cup X_n\) (disjoint union) and \(X\) and all the \(X_i\) are connected.
- \(\text{cl}(x) =\text{closure of } x \text{ under } \sqcup, \forall x \subseteq \delta_G\).
- \((\delta_G, \text{cl})\) is a convex geometry.
Semidistributivity and Dedekind-MacNeille

Theorem (Santocanale and W. 2013)

If G is finite, then $\text{Reg}(\delta_G, \text{cl})$ is a bounded homomorphic image of a free lattice.
Semidistributivity and Dedekind-MacNeille

Theorem (Santocanale and W. 2013)

If G is finite, then $\text{Reg}(\delta_G, \text{cl})$ is a **bounded homomorphic image of a free lattice**.

Theorem (Santocanale and W. 2013)

If G is either a **finite block graph** or a **cycle**, then the “**extended permutohedron**” $\text{Reg}(\delta_G, \text{cl})$ on G is the **Dedekind-MacNeille completion** of $\text{Clop}(\delta_G, \text{cl})$.

Does not extend to all finite graphs (e.g., K_3, $3 - \text{edge}$).

For G the underlying graph of a Dynkin diagram G, $\text{Clop}(\delta_G, \text{cl}) = \text{Reg}(\delta_G, \text{cl})$ and this lattice bears **mysterious connections** with the Coxeter lattice of type G (thus with hyperplane arrangements).
Theorem (Santocanale and W. 2013)

If G is finite, then $\text{Reg}(\delta_G, \text{cl})$ is a bounded homomorphic image of a free lattice.

Theorem (Santocanale and W. 2013)

If G is either a finite block graph or a cycle, then the “extended permutohedron” $\text{Reg}(\delta_G, \text{cl})$ on G is the Dedekind-MacNeille completion of $\text{Clop}(\delta_G, \text{cl})$.

- Does not extend to all finite graphs (e.g., $\mathcal{K}_{3,3}$ — edge).
Semidistributivity and Dedekind-MacNeille

Theorem (Santocanale and W. 2013)

If G is finite, then $\text{Reg}(\delta_G, \text{cl})$ is a bounded homomorphic image of a free lattice.

Theorem (Santocanale and W. 2013)

If G is either a finite block graph or a cycle, then the “extended permutohedron” $\text{Reg}(\delta_G, \text{cl})$ on G is the Dedekind-MacNeille completion of $\text{Clop}(\delta_G, \text{cl})$.

- Does not extend to all finite graphs (e.g., $K_{3,3}$ – edge).
- For G the underlying graph of a Dynkin diagram \mathcal{G}, $\text{Clop}(\delta_G, \text{cl}) = \text{Reg}(\delta_G, \text{cl})$ and this lattice bears mysterious connections with the Coxeter lattice of type \mathcal{G} (thus with hyperplane arrangements).
The extended permutohedron on D_4, and the corresponding Coxeter lattice
The extended permutohedron on \mathcal{K}_3
The extended permutohedron on K_4
Join-semilattices

- For a join-semilattice S, set $\text{cl}(x) =$ join-closure of x.

Theorem (Santocanale and W. 2013)

The following hold, for any join-semilattice S.

1. $\text{Reg}(S, \text{cl})$ is always the Dedekind-MacNeille completion of $\text{Clop}(S, \text{cl})$.
2. If S is finite, then $\text{Reg}(S, \text{cl})$ is a bounded homomorphic image of a free lattice.
3. However, $\text{Reg}(S, \text{cl})$ may not be spatial.
Join-semilattices

- For a join-semilattice S, set $\text{cl}(x) =$join-closure of x.
- (S, cl) is a convex geometry.
Join-semilattices

- For a join-semilattice S, set $\text{cl}(x) =$ join-closure of x.
- (S, cl) is a convex geometry.

Theorem (Santocanale and W. 2013)

The following hold, for any join-semilattice S.

- $\text{Reg}(S, \text{cl})$ is always the Dedekind-MacNeille completion of $\text{Clop}(S, \text{cl})$.
- If S is finite, then $\text{Reg}(S, \text{cl})$ is a bounded homomorphic image of a free lattice.
- However, $\text{Reg}(S, \text{cl})$ may not be spatial.
Join-semilattices

- For a join-semilattice S, set $\text{cl}(x) =$ join-closure of x.
- (S, cl) is a convex geometry.

Theorem (Santocanale and W. 2013)

The following hold, for any join-semilattice S.
- $\text{Reg}(S, \text{cl})$ is always the *Dedekind-MacNeille completion* of $\text{Clop}(S, \text{cl})$.
Join-semilattices

- For a join-semilattice S, set $\text{cl}(x) =$ join-closure of x.
- (S, cl) is a convex geometry.

Theorem (Santocanale and W. 2013)

The following hold, for any join-semilattice S.

- $\text{Reg}(S, \text{cl})$ is always the Dedekind-MacNeille completion of $\text{Clop}(S, \text{cl})$.
- If S is finite, then $\text{Reg}(S, \text{cl})$ is a bounded homomorphic image of a free lattice.
For a join-semilattice S, set $\text{cl}(x) =$join-closure of x.

(S, cl) is a convex geometry.

Theorem (Santocanale and W. 2013)

The following hold, for any join-semilattice S.

- $\text{Reg}(S, \text{cl})$ is always the Dedekind-MacNeille completion of $\text{Clop}(S, \text{cl})$.
- If S is finite, then $\text{Reg}(S, \text{cl})$ is a bounded homomorphic image of a free lattice.

However, $\text{Reg}(S, \text{cl})$ may not be spatial.
Lattices of regular closed sets

The precursor

Regular closed sets

Transitive binary relations

Convexity and hyperplane arrangements

Graphs

Join-semilattices

The extended permutohedron on S_3