Invariance groups of finite functions and orbit equivalence of permutation groups

Tamás Waldhauser

University of Szeged

NSAC 2013
Novi Sad, 7th June 2013
Joint work with

- Eszter Horváth,
- Reinhard Pöschel,
- Géza Makay.
Joint work with

- Eszter Horváth,
- Reinhard Pöschel,
- Géza Makay.

We acknowledge helpful discussions with

- Erik Friese,
- Keith Kearnes,
- Erkko Lehtonen,
- P^3 (Péter Pál Pálfy),
- Sándor Radeleczki.
Invariance groups

Definition
The invariance group of a function $f : \mathbb{k}^n \to \mathbb{m}$ is

$$S(f) = \{ \sigma \in S_n \mid f(x_1, \ldots, x_n) \equiv f(x_{1\sigma}, \ldots, x_{n\sigma}) \}.$$
Invariance groups

Definition
The invariance group of a function $f : \mathbb{k}^n \rightarrow \mathbb{m}$ is

$$S(f) = \{ \sigma \in S_n \mid f(x_1, \ldots, x_n) \equiv f(x_{1\sigma}, \ldots, x_{n\sigma}) \}.$$

Definition

- A group G is (k, m)-representable if there is a function $f : \mathbb{k}^n \rightarrow \mathbb{m}$ such that $S(f) = G$.
Invariance groups

Definition
The invariance group of a function $f : k^n \rightarrow m$ is

$$S(f) = \{ \sigma \in S_n \mid f(x_1, \ldots, x_n) \equiv f(x_{1\sigma}, \ldots, x_{n\sigma}) \}.$$

Definition

- A group G is (k, m)-representable if there is a function $f : k^n \rightarrow m$ such that $S(f) = G$.

- A group G is (k, ∞)-representable if G is (k, m)-representable for some m.

Special cases:

- G is $(2, 2)$-representable iff G is the invariance group of a Boolean function $f : 2^n \rightarrow 2$.

- G is $(2, \infty)$-representable iff G is the invariance group of a pseudo-Boolean function $f : 2^n \rightarrow m$.

Invariance groups

Definition
The invariance group of a function \(f : k^n \rightarrow m \) is

\[
S(f) = \{ \sigma \in S_n \mid f(x_1, \ldots, x_n) \equiv f(x_{1\sigma}, \ldots, x_{n\sigma}) \}.
\]

Definition

- A group \(G \) is \((k, m)\)-representable if there is a function \(f : k^n \rightarrow m \) such that \(S(f) = G \).
- A group \(G \) is \((k, \infty)\)-representable if \(G \) is \((k, m)\)-representable for some \(m \).

Special cases:
- \(G \) is \((2, 2)\)-representable iff \(G \) is the invariance group of a Boolean function \(f : 2^n \rightarrow 2 \).
Invariance groups

Definition
The invariance group of a function $f : \mathbf{k}^n \rightarrow \mathbf{m}$ is

$$S(f) = \{ \sigma \in S_n \mid f(x_1, \ldots, x_n) \equiv f(x_{1\sigma}, \ldots, x_{n\sigma}) \}.$$

Definition

- A group G is (k, m)-representable if there is a function $f : \mathbf{k}^n \rightarrow \mathbf{m}$ such that $S(f) = G$.
- A group G is (k, ∞)-representable if G is (k, m)-representable for some m.

Special cases:

- G is $(2, 2)$-representable iff G is the invariance group of a Boolean function $f : \mathbf{2}^n \rightarrow \mathbf{2}$.
- G is $(2, \infty)$-representable iff G is the invariance group of a pseudo-Boolean function $f : \mathbf{2}^n \rightarrow \mathbf{m}$.
Abstract representation

Frucht 1939:
Every group is isomorphic to the automorphism group of a graph.
Abstract representation

Frucht 1939:
Every group is isomorphic to the automorphism group of a graph.

Corollary
Every group is isomorphic to the invariance group of some Boolean function (i.e., (2, 2)-representable).
Abstract representation

Frucht 1939:
Every group is isomorphic to the automorphism group of a graph.

Corollary

Every group is isomorphic to the invariance group of some Boolean function (i.e., $(2, 2)$-representable).

Proof.

\[f : 2^n \rightarrow 2 \iff \mathcal{H} = (n, \{ E \subseteq n \mid f (\chi_E) = 1\}) \]
Abstract representation

Frucht 1939:
Every group is isomorphic to the automorphism group of a graph.

Corollary
Every group is isomorphic to the invariance group of some Boolean function (i.e., \((2, 2)\)-representable).

Proof.
\[f : 2^n \rightarrow 2 \iff \mathcal{H} = (n, \{ E \subseteq n \mid f(\chi_E) = 1\}) \]

Example
\[S\left(\begin{array}{ccc}
\text{\includegraphics[width=0.2\textwidth]{graph.png}}
\end{array}\right) \cong A_3 \]
Concrete representation

Example
Suppose that $S(f) = A_3$ for some $f : 2^3 \rightarrow m$.
Concrete representation

Example

Suppose that $S(f) = A_3$ for some $f: 2^3 \rightarrow m$. Then f must be constant on the orbits of A_3 acting on 2^3:

$$
\begin{align*}
000 & \mapsto a \\
100, 010, 001 & \mapsto b \\
011, 101, 110 & \mapsto c \\
111 & \mapsto d
\end{align*}
$$

However, such a function is totally symmetric, i.e., $S(f) = S_3$. Thus A_3 is not $(2, \infty)$-representable.

Let $g: 3^3 \rightarrow 2^3$ such that $g(0, 1, 2) = g(1, 2, 0) = g(2, 1, 0) = 1$ and $g = 0$ everywhere else. Then $S(g) = A_3$, thus A_3 is $(3, 2)$-representable.
Concrete representation

Example
Suppose that $S(f) = A_3$ for some $f : 2^3 \to m$. Then f must be constant on the orbits of A_3 acting on 2^3:

$$
\begin{align*}
000 & \mapsto a \\
100, 010, 001 & \mapsto b \\
011, 101, 110 & \mapsto c \\
111 & \mapsto d
\end{align*}
$$

However, such a function is totally symmetric, i.e., $S(f) = S_3$.
Concrete representation

Example

Suppose that \(S(f) = A_3 \) for some \(f : 2^3 \rightarrow m \). Then \(f \) must be constant on the orbits of \(A_3 \) acting on \(2^3 \):

<table>
<thead>
<tr>
<th>Orbit</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>(a)</td>
</tr>
<tr>
<td>100, 010, 001</td>
<td>(b)</td>
</tr>
<tr>
<td>011, 101, 110</td>
<td>(c)</td>
</tr>
<tr>
<td>111</td>
<td>(d)</td>
</tr>
</tbody>
</table>

However, such a function is totally symmetric, i.e., \(S(f) = S_3 \). Thus \(A_3 \) is not \((2, \infty)\)-representable.
Concrete representation

Example

Suppose that $S(f) = A_3$ for some $f : 2^3 \rightarrow m$. Then f must be constant on the orbits of A_3 acting on 2^3:

\[
\begin{align*}
000 & \mapsto a \\
100, 010, 001 & \mapsto b \\
011, 101, 110 & \mapsto c \\
111 & \mapsto d
\end{align*}
\]

However, such a function is totally symmetric, i.e., $S(f) = S_3$. Thus A_3 is not $(2, \infty)$-representable.

Let $g : 3^3 \rightarrow 2$ such that $g(0, 1, 2) = g(1, 2, 0) = g(2, 1, 0) = 1$ and $g = 0$ everywhere else. Then $S(g) = A_3$, thus A_3 is $(3, 2)$-representable.
Ein Kleines Problem

Clote, Kranakis 1991:
If G is $(2, \infty)$-representable, then G is $(2, 2)$-representable.

Kisielewicz 1998:
False!

The Klein four-group $V = \{ \text{id}, (12)(34), (13)(24), (14)(23) \} \leq S_4$ is a counterexample; moreover, it is the only counterexample that one could "easily" find.

$V = S_4(2) \cap S_4(3) \Rightarrow V$ is $(2, 3)$-representable but not $(2, 2)$-representable.

Dalla Volta, Siemons 2012:
There are infinitely many groups that are $(2, \infty)$-representable but not $(2, 2)$-representable. (?)
Ein Kleines Problem

Clote, Kranakis 1991:
If G is $(2, \infty)$-representable, then G is $(2, 2)$-representable.

Kisielewicz 1998:
False!
Ein Kleines Problem

Clote, Kranakis 1991:
If G is $(2, \infty)$-representable, then G is $(2, 2)$-representable.

Kisielewicz 1998:
False! The Klein four-group

$$V = \{ \text{id}, (12)(34), (13)(24), (14)(23) \} \leq S_4$$

is a counterexample;
Ein Kleines Problem

Clote, Kranakis 1991:
If G is $(2, \infty)$-representable, then G is $(2, 2)$-representable.

Kisielewicz 1998:
False! The Klein four-group

$$V = \{ \text{id}, (12)\ (34), (13)\ (24), (14)\ (23) \} \leq S_4$$

is a counterexample; moreover, it is the only counterexample that one could “easily” find.
Ein Kleines Problem

Clote, Kranakis 1991:
If G is $(2, \infty)$-representable, then G is $(2, 2)$-representable.

Kisielewicz 1998:
False! The Klein four-group

$$V = \{\text{id}, (12)(34), (13)(24), (14)(23)\} \leq S_4$$

is a counterexample; moreover, it is the only counterexample that one could “easily” find.

$V = S(\begin{array}{c}
 [1]
\end{array})$
Ein Kleines Problem

Clote, Kranakis 1991:
If G is $(2, \infty)$-representable, then G is $(2, 2)$-representable.

Kisielewicz 1998:
False! The Klein four-group
$$V = \{\text{id}, (12)(34), (13)(24), (14)(23)\} \leq S_4$$
is a counterexample; moreover, it is the only counterexample that one could “easily” find.

$$V = S\left(\begin{array}{cc}
\text{ } & \text{ }\\
\text{ } & \text{ }\\
\text{ } & \text{ }\\
\text{ } & \text{ }
\end{array}\right)$$

$\implies V$ is $(2, 3)$-representable but not $(2, 2)$-representable.
Ein Kleines Problem

Clote, Kranakis 1991:
If G is $(2, \infty)$-representable, then G is $(2, 2)$-representable.

Kisielewicz 1998:
False! The Klein four-group

$$V = \{ \text{id}, (12)(34), (13)(24), (14)(23) \} \leq S_4$$

is a counterexample; moreover, it is the only counterexample that one could “easily” find.

$$V = S\begin{pmatrix} & & \\ & & \\ & & \\ & & \end{pmatrix}$$

$\implies V$ is $(2, 3)$-representable but not $(2, 2)$-representable.

Dalla Volta, Siemons 2012:
There are infinitely many groups that are $(2, \infty)$-representable but not $(2, 2)$-representable. (?)
Ein Kleines Problem

Clote, Kranakis 1991:
If \(G \) is \((2, \infty)\)-representable, then \(G \) is \((2, 2)\)-representable.

Kisielewicz 1998:
False! The Klein four-group

\[V = \{ \text{id}, (12) (34), (13) (24), (14) (23) \} \leq S_4 \]

is a counterexample; moreover, it is the only counterexample that one could “easily” find.

\[V = S\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4 \\
\end{array}\right) = S\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4 \\
\end{array}\right) \cap S\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4 \\
1 & 2 & 3 & 4 \\
\end{array}\right) \]

\[\implies V \text{ is } (2, 3)\text{-representable but not } (2, 2)\text{-representable.} \]

Dalla Volta, Siemons 2012:
There are infinitely many groups that are \((2, \infty)\)-representable but not \((2, 2)\)-representable. (?)
Clote, Kranakis 1991:
The following are equivalent for any group $G \leq S_n$:

(i) G is the invariance group of a pseudo-Boolean function (i.e., G is $(2, \infty)$-representable).

(ii) G is the intersection of invariance groups of Boolean functions (i.e., $(2, 2)$-representable groups).
Orbit closure

Clote, Kranakis 1991:
The following are equivalent for any group $G \leq S_n$:

(i) G is the invariance group of a pseudo-Boolean function (i.e., G is $(2, \infty)$-representable).

(ii) G is the intersection of invariance groups of Boolean functions (i.e., $(2, 2)$-representable groups).

(iii) G is orbit closed.
Orbit closure

Clote, Kranakis 1991:
The following are equivalent for any group $G \leq S_n$:

(i) G is the invariance group of a pseudo-Boolean function (i.e., G is $(2, \infty)$-representable).

(ii) G is the intersection of invariance groups of Boolean functions (i.e., $(2, 2)$-representable groups).

(iii) G is orbit closed.

Two subgroups of S_n are orbit equivalent if they have the same orbits on $\mathcal{P}(n)$.
Orbit closure

Clote, Kranakis 1991:
The following are equivalent for any group $G \leq S_n$:

(i) G is the invariance group of a pseudo-Boolean function (i.e., G is $(2, \infty)$-representable).

(ii) G is the intersection of invariance groups of Boolean functions (i.e., $(2, 2)$-representable groups).

(iii) G is orbit closed.

Two subgroups of S_n are orbit equivalent if they have the same orbits on $\mathcal{P}(n) \leftrightarrow 2^n$.
Orbit closure

Clote, Kranakis 1991:
The following are equivalent for any group $G \leq S_n$:

(i) G is the invariance group of a pseudo-Boolean function (i.e., G is $(2, \infty)$-representable).

(ii) G is the intersection of invariance groups of Boolean functions (i.e., $(2, 2)$-representable groups).

(iii) G is orbit closed.

Two subgroups of S_n are orbit equivalent if they have the same orbits on $P(n) \leftrightarrow 2^n$.

The orbit closure of G is the greatest element of its orbit equivalence class.
Inglis; Cameron, Neumann, Saxl; Siemons, Wagner 1984–85: Almost all primitive groups are orbit closed.
Inglis; Cameron, Neumann, Saxl; Siemons, Wagner 1984–85:
Almost all primitive groups are orbit closed.

Seress 1997:
All primitive subgroups of S_n are orbit closed except for A_n and C_5, $AGL(1,5)$, $PGL(2,5)$, $AGL(1,8)$, $AGL(1,9)$, $ASL(2,3)$, $PSL(2,8)$, $PΓL(2,8)$ and $PGL(2,9)$.
Primitive groups

Inglis; Cameron, Neumann, Saxl; Siemons, Wagner 1984–85:
Almost all primitive groups are orbit closed.

Seress 1997:
All primitive subgroups of S_n are orbit closed except for A_n and C_5, $AGL(1, 5)$, $PGL(2, 5)$, $AGL(1, 8)$, $AGL(1, 9)$, $ASL(2, 3)$, $PSL(2, 8)$, $PΓL(2, 8)$ and $PGL(2, 9)$.

Theorem
All primitive groups are $(3, \infty)$-representable except for the alternating groups.
For $a = (a_1, \ldots, a_n) \in k^n$ and $\sigma \in S_n$, let $a^\sigma = (a_{1\sigma}, \ldots, a_{n\sigma})$.
A Galois connection

For $a = (a_1, \ldots, a_n) \in k^n$ and $\sigma \in S_n$, let $a^\sigma = (a_{1\sigma}, \ldots, a_{n\sigma})$.

If $f : k^n \rightarrow k$ and $\sigma \in S_n$, then we write

$$\sigma \vdash f : \iff f (a^\sigma) = f (a) \text{ for all } a \in k^n.$$

n: number of variables, k: size of domain
A Galois connection

For \(a = (a_1, \ldots, a_n) \in k^n \) and \(\sigma \in S_n \), let \(a^\sigma = (a_{1\sigma}, \ldots, a_{n\sigma}) \).

If \(f : k^n \rightarrow k \) and \(\sigma \in S_n \), then we write

\[
\sigma \vdash f : \iff f(a^\sigma) = f(a) \quad \text{for all } a \in k^n.
\]

Let \(O_k^{(n)} = \{ f \mid f : k^n \rightarrow k \} \), and for \(F \subseteq O_k^{(n)} \) and \(G \subseteq S_n \) define

\[
F^\vdash := \{ \sigma \in S_n \mid \forall f \in F : \sigma \vdash f \}, \quad \overline{F}^{(k)} := (F^\vdash)^\vdash,
\]

\[
G^\vdash := \{ f \in O_k^{(n)} \mid \forall \sigma \in G : \sigma \vdash f \}, \quad \overline{G}^{(k)} := (G^\vdash)^\vdash.
\]

\[n: \text{number of variables, } \quad k: \text{size of domain}\]
A Galois connection

For \(a = (a_1, \ldots, a_n) \in k^n \) and \(\sigma \in S_n \), let \(a^\sigma = (a_{1\sigma}, \ldots, a_{n\sigma}) \).

If \(f : k^n \to k \) and \(\sigma \in S_n \), then we write

\[
\sigma \vdash f : \iff f(a^\sigma) = f(a) \quad \text{for all } a \in k^n.
\]

Let \(O_k^{(n)} = \{ f \mid f : k^n \to k \} \), and for \(F \subseteq O_k^{(n)} \) and \(G \subseteq S_n \) define

\[
F^\vdash := \{ \sigma \in S_n \mid \forall f \in F : \sigma \vdash f \}, \quad F^{(k)} := (F^\vdash)^\vdash, \\
G^\vdash := \{ f \in O_k^{(n)} \mid \forall \sigma \in G : \sigma \vdash f \}, \quad G^{(k)} := (G^\vdash)^\vdash.
\]

For \(G \leq S_n \), we call \(G^{(k)} \) the Galois closure of \(G \) over \(k \).

\(n \): number of variables, \(k \): size of domain
Galois closed groups as invariance groups

Fact
The following are equivalent for any group $G \leq S_n$:

(i) G is Galois closed over k.

(ii) G is (k, ∞)-representable.

(iii) G is the invariance group of a function $f : k^n \to \infty$.

(iv) G is the intersection of invariance groups of functions $k^n \to 2$.

(v) G is the intersection of invariance groups of functions $k^n \to k$.

(vi) G is orbit closed with respect to the action of S_n on k^n.

n: number of variables, k: size of domain
Fact

The following are equivalent for any group $G \leq S_n$:

(i) G is Galois closed over k.

(ii) G is (k, ∞)-representable.
Galois closed groups as invariance groups

Fact

The following are equivalent for any group $G \leq S_n$:

(i) G is Galois closed over k.

(ii) G is (k, ∞)-representable.

(iii) G is the invariance group of a function $f : k^n \to \infty$.

n: number of variables, k: size of domain
Galois closed groups as invariance groups

Fact
The following are equivalent for any group $G \leq S_n$:

(i) G is Galois closed over \mathbb{k}.

(ii) G is (\mathbb{k}, ∞)-representable.

(iii) G is the invariance group of a function $f : \mathbb{k}^n \to \infty$.

(iv) G is the intersection of invariance groups of functions $\mathbb{k}^n \to 2$.

(v) G is the intersection of invariance groups of functions $\mathbb{k}^n \to \mathbb{k}$.

n: number of variables, k: size of domain
Galois closed groups as invariance groups

Fact
The following are equivalent for any group $G \leq S_n$:

(i) G is Galois closed over k.

(ii) G is (k, ∞)-representable.

(iii) G is the invariance group of a function $f : k^n \to \infty$.

(iv) G is the intersection of invariance groups of functions $k^n \to 2$.

(v) G is the intersection of invariance groups of functions $k^n \to k$.

(vi) G is orbit closed with respect to the action of S_n on k^n.

n: number of variables, k: size of domain
Orbits and closures

For \(a = (a_1, \ldots, a_n) \in \mathbb{k}^n \) and \(G \leq S_n \), define

\[
a^G = \{ a^\sigma \mid \sigma \in G \}, \quad \text{Orb}^{(k)} (G) = \{ a^G \mid a \in \mathbb{k}^n \}.
\]

The case \(k = 2 \) corresponds to orbit equivalence and orbit closure.

Proposition

For all \(G \leq S_n \) we have

\[
G^{(2)} \geq G^{(3)} \geq \cdots \geq G^{(n)} = \cdots = G.
\]

\(n \): number of variables, \(k \): size of domain
Orbits and closures

For \(a = (a_1, \ldots, a_n) \in k^n \) and \(G \leq S_n \), define

\[a^G = \{ a^\sigma \mid \sigma \in G \}, \quad \text{Orb}^{(k)}(G) = \{ a^G \mid a \in k^n \}. \]

For all \(G, H \leq S_n \) we have

\[\overline{G}^{(k)} = \overline{H}^{(k)} \iff G^\perp = H^\perp \]

\(n \): number of variables, \(k \): size of domain
Orbits and closures

For $a = (a_1, \ldots, a_n) \in \mathbb{k}^n$ and $G \leq S_n$, define

$$a^G = \{a^\sigma \mid \sigma \in G\}, \quad \text{Orb}^{(k)}(G) = \{a^G \mid a \in \mathbb{k}^n\}.$$

For all $G, H \leq S_n$ we have

$$\overline{G}^{(k)} = \overline{H}^{(k)} \iff G^\perp = H^\perp \iff \text{Orb}^{(k)}(G) = \text{Orb}^{(k)}(H);$$

n: number of variables, k: size of domain
Orbits and closures

For \(a = (a_1, \ldots, a_n) \in \mathbb{k}^n \) and \(G \leq S_n \), define

\[
a^G = \{ a^\sigma \mid \sigma \in G \}, \quad \text{Orb}^{(k)}(G) = \{ a^G \mid a \in \mathbb{k}^n \}.
\]

For all \(G, H \leq S_n \) we have

\[
\overline{G}^{(k)} = \overline{H}^{(k)} \iff G^\perp = H^\perp \iff \text{Orb}^{(k)}(G) = \text{Orb}^{(k)}(H);
\]

\[
\overline{G}^{(k)} = \left\{ \sigma \in S_n \mid \forall a \in \mathbb{k}^n : a^\sigma \in a^G \right\}.
\]

\(n \): number of variables, \(k \): size of domain
Orbits and closures

For \(a = (a_1, \ldots, a_n) \in k^n \) and \(G \leq S_n \), define

\[
a^G = \{ a^\sigma \mid \sigma \in G \}, \quad \text{Orb}^{(k)}(G) = \{ a^G \mid a \in k^n \}.
\]

For all \(G, H \leq S_n \) we have

\[
\overline{G}^{(k)} = \overline{H}^{(k)} \iff G^\perp = H^\perp \iff \text{Orb}^{(k)}(G) = \text{Orb}^{(k)}(H);
\]

\[
\overline{G}^{(k)} = \left\{ \sigma \in S_n \mid \forall a \in k^n : a^\sigma \in a^G \right\}.
\]

The case \(k = 2 \) corresponds to orbit equivalence and orbit closure.

\(n \): number of variables, \(k \): size of domain
Orbits and closures

For \(a = (a_1, \ldots, a_n) \in k^n \) and \(G \leq S_n \), define

\[
a^G = \{ a^\sigma | \sigma \in G \}, \quad \text{Orb}^{(k)} (G) = \{ a^G | a \in k^n \}.
\]

For all \(G, H \leq S_n \) we have

\[
\overline{G}^{(k)} = \overline{H}^{(k)} \iff G^\perp = H^\perp \iff \text{Orb}^{(k)} (G) = \text{Orb}^{(k)} (H);
\]

\[
\overline{G}^{(k)} = \left\{ \sigma \in S_n \mid \forall a \in k^n : a^\sigma \in a^G \right\}.
\]

The case \(k = 2 \) corresponds to orbit equivalence and orbit closure.

Proposition

For all \(G \leq S_n \) we have \(\overline{G}^{(2)} \geq \overline{G}^{(3)} \geq \cdots \geq \overline{G}^{(n)} = \cdots = G \).

\(n \): number of variables, \(k \): size of domain
A formula for the closure

Proposition

For every \(G \leq S_n \) and \(k \geq 2 \), we have

\[
\overline{G^{(k)}} = \bigcap_{a \in k^n} \text{Stab}(a) \cdot G.
\]

\(n \): number of variables, \(k \): size of domain
A formula for the closure

Proposition
For every $G \leq S_n$ and $k \geq 2$, we have

$$
\overline{G}^{(k)} = \bigcap_{a \in k^n} \text{Stab}(a) \cdot G.
$$

Proof.

$$
\overline{G}^{(k)} = \{ \sigma \in S_n \mid \forall a \in k^n : a^\sigma \in a^G \}
$$

n: number of variables, k: size of domain
A formula for the closure

Proposition
For every $G \leq S_n$ and $k \geq 2$, we have

$$\overline{G^{(k)}} = \bigcap_{a \in k^n} \text{Stab}(a) \cdot G.$$

Proof.

$$\overline{G^{(k)}} = \{ \sigma \in S_n \mid \forall a \in k^n : a^\sigma \in a^G \}$$

$$= \{ \sigma \in S_n \mid \forall a \in k^n \exists \pi \in G : a^\sigma = a^\pi \}$$

n: number of variables, k: size of domain
A formula for the closure

Proposition

For every $G \leq S_n$ and $k \geq 2$, we have

$$
\overline{G}^{(k)} = \bigcap_{a \in k^n} Stab(a) \cdot G.
$$

Proof.

$$
\overline{G}^{(k)} = \{ \sigma \in S_n | \forall a \in k^n : a^\sigma \in a^G \}
= \{ \sigma \in S_n | \forall a \in k^n \exists \pi \in G : a^\sigma = a^\pi \}
= \{ \sigma \in S_n | \forall a \in k^n \exists \pi \in G : \sigma \pi^{-1} \in Stab(a) \}
$$

n: number of variables, k: size of domain
A formula for the closure

Proposition

For every $G \leq S_n$ and $k \geq 2$, we have

$$G^{(k)} = \bigcap_{a \in k^n} \text{Stab}(a) \cdot G.$$

Proof.

\[
G^{(k)} = \{ \sigma \in S_n \mid \forall a \in k^n : a^\sigma \in a^G \} \\
= \{ \sigma \in S_n \mid \forall a \in k^n \exists \pi \in G : a^\sigma = a^\pi \} \\
= \{ \sigma \in S_n \mid \forall a \in k^n \exists \pi \in G : \sigma \pi^{-1} \in \text{Stab}(a) \} \\
= \{ \sigma \in S_n \mid \forall a \in k^n : \sigma \in \text{Stab}(a) \cdot G \}
\]

n: number of variables, k: size of domain
A formula for the closure

Proposition

For every $G \leq S_n$ and $k \geq 2$, we have

$$\overline{G}^{(k)} = \bigcap_{a \in k^n} \text{Stab}(a) \cdot G.$$

Proof.

$$\overline{G}^{(k)} = \{ \sigma \in S_n \mid \forall a \in k^n : a^\sigma \in a^G \}$$

$$= \{ \sigma \in S_n \mid \forall a \in k^n \exists \pi \in G : a^\sigma = a^\pi \}$$

$$= \{ \sigma \in S_n \mid \forall a \in k^n \exists \pi \in G : \sigma \pi^{-1} \in \text{Stab}(a) \}$$

$$= \{ \sigma \in S_n \mid \forall a \in k^n : \sigma \in \text{Stab}(a) \cdot G \}$$

$$= \bigcap_{a \in k^n} \text{Stab}(a) \cdot G. \quad \square$$

n: number of variables, k: size of domain
The case $k = n - 1$

Theorem

If $k = n - 1 \geq 2$, then all subgroups of S_n except A_n are Galois closed over k.

Definition (Clote, Kranakis 1991)

A group $G \leq S_n$ is weakly representable, if G is (k, ∞)-representable for some $k < n$.

Corollary

All subgroups of $G \leq S_n$ except for A_n are weakly representable.

Proof.

$G \leq S_n$ is weakly representable $\iff \exists k < n: G(k) = G \iff G(n - 1) = G \iff G \neq A_n$.
The case $k = n - 1$

Theorem

*If $k = n - 1 \geq 2$, then all subgroups of S_n except A_n are Galois closed over k.***

Definition (Clote, Kranakis 1991)

A group $G \leq S_n$ is *weakly representable*, if G is (k, ∞)-representable for some $k < n$.

n: number of variables,
k: size of domain
The case $k = n - 1$

Theorem
If $k = n - 1 \geq 2$, then all subgroups of S_n except A_n are Galois closed over k.

Definition (Clote, Kranakis 1991)
A group $G \leq S_n$ is weakly representable, if G is (k, ∞)-representable for some $k < n$.

Corollary
All subgroups of $G \leq S_n$ except for A_n are weakly representable.
The case \(k = n - 1 \)

Theorem

If \(k = n - 1 \geq 2 \), then all subgroups of \(S_n \) except \(A_n \) are Galois closed over \(k \).

Definition (Clote, Kranakis 1991)

A group \(G \leq S_n \) is weakly representable, if \(G \) is \((k, \infty)\)-representable for some \(k < n \).

Corollary

All subgroups of \(G \leq S_n \) except for \(A_n \) are weakly representable.

Proof.

\[
G \leq S_n \text{ is weakly representable} \iff \exists k < n : \overline{G}^{(k)} = G
\]
The case $k = n - 1$

Theorem

If $k = n - 1 \geq 2$, then all subgroups of S_n except A_n are Galois closed over k.

Definition (Clote, Kranakis 1991)

A group $G \leq S_n$ is weakly representable, if G is (k, ∞)-representable for some $k < n$.

Corollary

All subgroups of $G \leq S_n$ except for A_n are weakly representable.

Proof.

\[
G \leq S_n \text{ is weakly representable} \iff \exists k < n : \overline{G}^{(k)} = G \\
\iff \overline{G}^{(n-1)} = G
\]

n: number of variables, k: size of domain
The case $k = n - 1$

Theorem

If $k = n - 1 \geq 2$, *then all subgroups of* S_n *except* A_n *are Galois closed over* k.

Definition (Clote, Kranakis 1991)

A group $G \leq S_n$ is **weakly representable**, if G is (k, ∞)-representable for some $k < n$.

Corollary

All subgroups of $G \leq S_n$ *except for* A_n *are weakly representable.*

Proof.

$$G \leq S_n \text{ is weakly representable} \iff \exists k < n : \overline{G}^{(k)} = G$$

$$\iff \overline{G}^{(n-1)} = G$$

$$\iff G \neq A_n \qed$$

n: number of variables, k: size of domain
The case $k = n - 2$

Theorem

If $k = n - 2 \geq 2$, then the Galois closures of subgroups of S_n are:

- $\overline{A_n^{(k)}} = S_n$;
The case $k = n - 2$

Theorem

If $k = n - 2 \geq 2$, then the Galois closures of subgroups of S_n are:

- $\overline{A_n(k)} = S_n$;
- $\overline{A_{n-1}(k)} = S_{n-1}$;

n: number of variables, k: size of domain
The case $k = n - 2$

Theorem

If $k = n - 2 \geq 2$, then the Galois closures of subgroups of S_n are:

- $\overline{A_n}^{(k)} = S_n$;
- $\overline{A_{n-1}}^{(k)} = S_{n-1}$;
- $\overline{C_4}^{(k)} = D_4$ (for $n = 4$);
The case $k = n - 2$

Theorem

If $k = n - 2 \geq 2$, then the Galois closures of subgroups of S_n are:

- $\overline{A_n}(k) = S_n$;
- $\overline{A_{n-1}}(k) = S_{n-1}$;
- $\overline{C_4}(k) = D_4$ (for $n = 4$);
- all other subgroups of S_n are closed.

n: number of variables, k: size of domain
The case $k = n - d$

Theorem

Let $n > \max(2^d, d^2 + d)$ and $G \leq S_n$. Then G is not Galois closed over k if and only if

1. $G \leq_{sd} A_L \times \Delta$ or
2. $G <_{sd} S_L \times \Delta$,

where $n = L \cup D$ with $|L| > d$, $|D| < d$ and $\Delta \leq S_D$.

The closure of these groups is $\overline{G}^{(k)} = S_L \times \Delta$.

n: number of variables, k: size of domain
The case $k = n - d$

Theorem
Let $n > \max(2^d, d^2 + d)$ and $G \leq S_n$. Then G is not Galois closed over k if and only if

1. $G \leq_{sd} A_L \times \Delta$ or
2. $G <_{sd} S_L \times \Delta$,

where $n = L \cup D$ with $|L| > d$, $|D| < d$ and $\Delta \leq S_D$.

The closure of these groups is $\overline{G^{(k)}} = S_L \times \Delta$.

Remark
Using the simplicity of alternating groups, one can show that these subdirect products are of the following form:

1. $G = A_L \times \Delta$;
The case \(k = n - d \)

Theorem

Let \(n > \max\left(2^d, d^2 + d\right) \) and \(G \leq S_n \). Then \(G \) is not Galois closed over \(k \) if and only if

1. \(G \leq_{sd} A_L \times \Delta \) or
2. \(G <_{sd} S_L \times \Delta \),

where \(n = L \cup D \) with \(|L| > d \), \(|D| < d \) and \(\Delta \leq S_D \).

The closure of these groups is \(\overline{G}^{(k)} = S_L \times \Delta \).

Remark

Using the simplicity of alternating groups, one can show that these subdirect products are of the following form:

1. \(G = A_L \times \Delta \);
2. \(G = (A_L \times \Delta_0) \cup ((S_L \setminus A_L) \times (\Delta \setminus \Delta_0)) \),
 where \(\Delta_0 \leq \Delta \) is a subgroup of index 2.

\(n \): number of variables, \(k \): size of domain
Interesting subgroups of S_4, S_5 and S_6
Interesting subgroups of S_4, S_5 and S_6

<table>
<thead>
<tr>
<th>$G \leq S_n$</th>
<th>$\overline{G}^{(2)}$</th>
<th>$\overline{G}^{(3)}$</th>
<th>$\overline{G}^{(4)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_4</td>
<td>D_4</td>
<td>C_4</td>
<td>C_4</td>
</tr>
</tbody>
</table>
Interesting subgroups of S_4, S_5 and S_6

<table>
<thead>
<tr>
<th>$G \leq S_n$</th>
<th>$\overline{G}^{(2)}$</th>
<th>$\overline{G}^{(3)}$</th>
<th>$\overline{G}^{(4)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_4</td>
<td>D_4</td>
<td>C_4</td>
<td>C_4</td>
</tr>
<tr>
<td>C_5</td>
<td>D_5</td>
<td>C_5</td>
<td>C_5</td>
</tr>
<tr>
<td>AGL $(1, 5)$</td>
<td>S_5</td>
<td>AGL $(1, 5)$</td>
<td>AGL $(1, 5)$</td>
</tr>
</tbody>
</table>

$G \leq S_n$ denotes the group G with n elements that is a subgroup of the symmetric group S_n. The notation $\overline{G}^{(k)}$ refers to the kth derived group of G. The table lists some of the interesting subgroups of S_4, S_5, and S_6 and their derived group structures.
Interesting subgroups of S_4, S_5 and S_6

<table>
<thead>
<tr>
<th>$G \leq S_n$</th>
<th>$\overline{G}^{(2)}$</th>
<th>$\overline{G}^{(3)}$</th>
<th>$\overline{G}^{(4)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_4</td>
<td>D_4</td>
<td>C_4</td>
<td>C_4</td>
</tr>
<tr>
<td>C_5</td>
<td>D_5</td>
<td>C_5</td>
<td>C_5</td>
</tr>
<tr>
<td>$AGL (1, 5)$</td>
<td>S_5</td>
<td>$AGL (1, 5)$</td>
<td>$AGL (1, 5)$</td>
</tr>
<tr>
<td>$C_4 \times S_2$</td>
<td>$D_4 \times S_2$</td>
<td>$C_4 \times S_2$</td>
<td>$C_4 \times S_2$</td>
</tr>
<tr>
<td>$D_4 \times_{sd} S_2$</td>
<td>$D_4 \times S_2$</td>
<td>$D_4 \times_{sd} S_2$</td>
<td>$D_4 \times_{sd} S_2$</td>
</tr>
<tr>
<td>$A_3 \wr A_2$</td>
<td>$S_3 \wr S_2$</td>
<td>$A_3 \wr A_2$</td>
<td>$A_3 \wr A_2$</td>
</tr>
<tr>
<td>$S_3 \wr_{sd} S_2$</td>
<td>$S_3 \wr S_2$</td>
<td>$S_3 \wr_{sd} S_2$</td>
<td>$S_3 \wr_{sd} S_2$</td>
</tr>
<tr>
<td>$(S_3 \wr S_2) \cap A_6$</td>
<td>$S_3 \wr S_2$</td>
<td>$S_3 \wr S_2$</td>
<td>$(S_3 \wr S_2) \cap A_6$</td>
</tr>
<tr>
<td>$PGL (2, 5)$</td>
<td>S_6</td>
<td>$PGL (2, 5)$</td>
<td>$PGL (2, 5)$</td>
</tr>
<tr>
<td>$Rot (\square)$</td>
<td>$Sym (\square)$</td>
<td>$Rot (\square)$</td>
<td>$Rot (\square)$</td>
</tr>
</tbody>
</table>
References

