On morphisms of lattice-valued formal contexts

Sergejs Solovjovs

Department of Mathematics and Statistics, Faculty of Science, Masaryk University
Kotlarska 2, 611 37 Brno, Czech Republic
e-mail: solovjovs@math.muni.cz
web page: http://www.math.muni.cz/~solovjovs

The 4th Novi Sad Algebraic Conference
in conjunction with the workshop
Semigroups and Applications 2013
Novi Sad, Serbia
June 5 - 9, 2013
The author gratefully acknowledges the support of the ESF project CZ.1.07/2.3.00/20.0051 “Algebraic methods in Quantum Logic” of the Masaryk University in Brno, Czech Republic.
Outline

1. Introduction
2. Preliminaries on powerset operators
3. Categories of lattice-valued formal contexts
4. Properties of the categories of lattice-valued formal contexts
5. Conclusion
Formal Concept Analysis (FCA) has taken its origin as an attempt to restructure mathematics, e.g., lattice theory.

Since then, FCA has been developed as a subfield of applied mathematics, based in mathematization of concept hierarchies.

The aim of FCA is to support the rational communication of humans by mathematically developing appropriate conceptual structures, which can be logically activated.
Formal Concept Analysis (FCA) has taken its origin as an attempt to restructure mathematics, e.g., lattice theory.

Since then, FCA has been developed as a subfield of applied mathematics, based in mathematization of concept hierarchies.

The aim of FCA is to support the rational communication of humans by mathematically developing appropriate conceptual structures, which can be logically activated.
Formal Concept Analysis (FCA) has taken its origin as an attempt to restructure mathematics, e.g., lattice theory.

Since then, FCA has been developed as a subfield of applied mathematics, based in mathematization of concept hierarchies.

The aim of FCA is to support the rational communication of humans by mathematically developing appropriate conceptual structures, which can be logically activated.
One of the main building blocks of FCA provide *formal contexts*.

Definition 1

A *formal context* is a triple \((G, M, I)\), which comprises a set of objects \(G\), a set of attributes \(M\), and a binary incidence relation \(I\) between \(G\) and \(M\), where \(g I m\) means “object \(g\) has attribute \(m\)”.
One of the main building blocks of FCA provide formal contexts.

Definition 1

A *formal context* is a triple \((G, M, I)\), which comprises a set of objects \(G\), a set of attributes \(M\), and a binary incidence relation \(I\) between \(G\) and \(M\), where \(g \mid m\) means “object \(g\) has attribute \(m\)”.
There exist at least three (different) ways of defining a morphism between two formal contexts \((G_1, M_1, I_1)\) and \((G_2, M_2, I_2)\).

1. The theory of FCA employs pairs of maps \(G_1 \xrightarrow{\alpha} G_2, M_1 \xrightarrow{\beta} M_2\) such that \(g I_1 m \iff \alpha(g) I_2 \beta(m)\) for every \(g \in G_1, m \in M_1\).

2. The theory of *Chu spaces* uses pairs of maps \(G_1 \xrightarrow{\alpha} G_2, M_2 \xrightarrow{\beta} M_1\) such that \(g I_1 \beta(m) \iff \alpha(g) I_2 m\) for every \(g \in G_1, m \in M_2\).
There exist at least three (different) ways of defining a morphism between two formal contexts \((G_1, M_1, I_1)\) and \((G_2, M_2, I_2)\).

1. The theory of FCA employs pairs of maps \(G_1 \overset{\alpha}{\rightarrow} G_2, M_1 \overset{\beta}{\rightarrow} M_2\) such that \(g \ I \ m \text{ iff } \alpha(g) \ I \beta(m)\) for every \(g \in G_1, m \in M_1\).

2. The theory of \textit{Chu spaces} uses pairs of maps \(G_1 \overset{\alpha}{\rightarrow} G_2, M_2 \overset{\beta}{\rightarrow} M_1\) such that \(g \ I \beta(m) \text{ iff } \alpha(g) \ I m\) for every \(g \in G_1, m \in M_2\).
There exist at least three (different) ways of defining a morphism between two formal contexts (G_1, M_1, I_1) and (G_2, M_2, I_2).

1. The theory of FCA employs pairs of maps $G_1 \xrightarrow{\alpha} G_2$, $M_1 \xrightarrow{\beta} M_2$ such that $g I_1 m$ iff $\alpha(g) I_2 \beta(m)$ for every $g \in G_1$, $m \in M_1$.

2. The theory of *Chu spaces* uses pairs of maps $G_1 \xrightarrow{\alpha} G_2$, $M_2 \xrightarrow{\beta} M_1$ such that $g I_1 \beta(m)$ iff $\alpha(g) I_2 m$ for every $g \in G_1$, $m \in M_2$.
The theory of *Galois connections* relies on the pairs of maps $\mathcal{P}(G_1) \xrightarrow{\alpha} \mathcal{P}(G_2)$, $\mathcal{P}(M_2) \xrightarrow{\beta} \mathcal{P}(M_1)$, where $\mathcal{P}(X)$ stands for the powerset of X, such that the diagrams

\[
\begin{array}{ccc}
\mathcal{P}(G_1) & \xrightarrow{\alpha} & \mathcal{P}(G_2) \\
H_1 \downarrow & & \downarrow H_2 \\
\mathcal{P}(M_1) & \xleftarrow{\beta} & \mathcal{P}(M_2)
\end{array}
\quad \text{and} \quad
\begin{array}{ccc}
\mathcal{P}(M_1) & \xleftarrow{\beta} & \mathcal{P}(M_2) \\
K_1 \downarrow & & \downarrow K_2 \\
\mathcal{P}(G_1) & \xrightarrow{\alpha} & \mathcal{P}(G_2)
\end{array}
\]

commute, where $H_j(S) = \{ m \in M_j \mid s \ I_j m \text{ for every } s \in S \}$ and $K_j(T) = \{ g \in G_j \mid g \ I_j t \text{ for every } t \in T \}$ (*Birkhoff operators*).
J. T. Denniston, A. Melton, and S. E. Rodabaugh compared the approaches of items (2) and (3) by considering their respective categories of *lattice-valued formal contexts* (in the sense of R. Bělohlávek) over a fixed commutative quantale Q, and constructing an embedding of each category into its counterparts.

They finally arrived at the conclusion that the two viewpoints on formal context morphisms were not categorically isomorphic.
J. T. Denniston, A. Melton, and S. E. Rodabaugh compared the approaches of items (2) and (3) by considering their respective categories of *lattice-valued formal contexts* (in the sense of R. Bělohlávek) over a fixed commutative quantale Q, and constructing an embedding of each category into its counterparts. They finally arrived at the conclusion that the two viewpoints on formal context morphisms were not categorically isomorphic.
This talk compares all three of the above-mentioned approaches to morphisms in the framework of lattice-valued formal contexts over a category of not necessarily commutative quantales.

We construct a number of embeddings between their respective categories of formal contexts, showing that the approach of item (3) falls out of the FCA setting in the lattice-valued case.
This talk compares all three of the above-mentioned approaches to morphisms in the framework of lattice-valued formal contexts over a category of not necessarily commutative quantales.

We construct a number of embeddings between their respective categories of formal contexts, showing that the approach of item (3) falls out of the FCA setting in the lattice-valued case.
Definition 2

\textbf{CSLat}(\bigvee)\textit{ is the variety of V-semilattices, i.e., partially ordered sets (posets), which have arbitrary joins.}

Every \(\bigvee \)-semilattice homomorphism \(A_1 \xrightarrow{\varphi} A_2 \) has the upper adjoint map \(A_2 \xleftarrow{\varphi^+} A_1 \) given by \(\varphi^+(a_2) = \bigvee\{a_1 \in A_1 \mid \varphi(a_1) \leq a_2\} \).
Quantales

\(\mathbf{\lor}\)-semilattices

Definition 2

\(\text{CSLat}(\mathbf{\lor}) \) is the variety of \(\mathbf{\lor}\)-semilattices, i.e., partially ordered sets (posets), which have arbitrary joins.

Every \(\mathbf{\lor}\)-semilattice homomorphism \(A_1 \xrightarrow{\varphi} A_2 \) has the upper adjoint map \(A_2 \xrightarrow{\varphi^\perp} A_1 \) given by \(\varphi^\perp(a_2) = \bigvee \{ a_1 \in A_1 \mid \varphi(a_1) \leq a_2 \} \).
Quantales

Definition 3

1. **Quant** is the variety of *quantales*, i.e., triples \((Q, \lor, \otimes)\), where
 - \((Q, \lor)\) is a \(\lor\)-semilattice;
 - \((Q, \otimes)\) is a semigroup;
 - \(\otimes\) distributes across \(\lor\) from both sides.

2. **UQuant** is the variety of *unital quantales*, i.e., quantales \(Q\), which have an element \(1_Q\) such that \((Q, \otimes, 1_Q)\) is a monoid.

A quantale \(Q\) has two residuations, which are given by \(q_1 \rightarrow_l q_2 = \lor\{q \in Q \mid q \otimes q_1 \leq q_2\}\) and \(q_1 \rightarrow_r q_2 = \lor\{q \in Q \mid q_1 \otimes q \leq q_2\}\).
Quantales

Definition 3

1. **Quant** is the variety of *quantales*, i.e., triples \((Q, \lor, \otimes)\), where
 - \((Q, \lor)\) is a \(\lor\)-semilattice;
 - \((Q, \otimes)\) is a semigroup;
 - \(\otimes\) distributes across \(\lor\) from both sides.

2. **UQuant** is the variety of *unital quantales*, i.e., quantales \(Q\), which have an element \(1_Q\) such that \((Q, \otimes, 1_Q)\) is a monoid.

A quantale \(Q\) has two residuations, which are given by \(q_1 \rightarrow_l q_2 = \lor\{q \in Q \mid q \otimes q_1 \leq q_2\}\) and \(q_1 \rightarrow_r q_2 = \lor\{q \in Q \mid q_1 \otimes q \leq q_2\}\).
Crisp forward powerset operator

Definition 4

Given a map $X_1 \xrightarrow{f} X_2$, the forward powerset operator w.r.t. f is the map $\mathcal{P}(X_1) \xrightarrow{f^{-\rightarrow}} \mathcal{P}(X_2)$, which is defined by $f^{-\rightarrow}(S) = \{f(s) \mid s \in S\}$.
Theorem 5

1. Given a variety \(L \), which extends \(\text{CSLat}(\lor) \), every subcategory \(S \) of \(L \) provides a functor \(\text{Set} \times S \xrightarrow{(-)\rightarrow} \text{CSLat}(\lor) \), which is defined by \(((X_1, L_1) \xrightarrow{(f,\varphi)} (X_2, L_2))\rightarrow = L_{X_1}^X \xrightarrow{(f,\varphi)\rightarrow} L_{X_2}^X \), where \(((f,\varphi)\rightarrow(\alpha))(x_2) = \varphi(\lor f(x_1) = x_2 \alpha(x_1)) \).

2. Let \(L \) be a variety, which extends \(\text{CSLat}(\lor) \), and let \(S \) be a subcategory of \(L^{\text{op}} \) such that for every \(S \)-morphism \(L_1 \xrightarrow{\varphi} L_2 \), the map \(L_1 \xrightarrow{\varphi^{\text{op}\leftarrow}} L_2 \) is \(\lor \)-preserving. Then there exists a functor \(\text{Set} \times S \xrightarrow{(\rightarrow)\leftarrow} \text{CSLat}(\lor) \) defined by \(((X_1, L_1) \xrightarrow{(f,\varphi)} (X_2, L_2))\leftarrow = L_{X_1}^X \xrightarrow{(f,\varphi)\leftarrow} L_{X_2}^X \), where \(((f,\varphi)\leftarrow(\alpha))(x_2) = \varphi^{\text{op}\leftarrow}(\lor f(x_1) = x_2 \alpha(x_1)) \).
Given a variety \mathbf{L}, which extends $\text{CSLat}(\vee)$, every subcategory \mathbf{S} of \mathbf{L}^{op} provides a functor $\text{Set}^{\text{op}} \times \mathbf{S} \xrightarrow{(_\to^o)} (\text{CSLat}(\vee))^{\text{op}}$

with $((X_1, L_1) \xrightarrow{(f, \varphi)} (X_2, L_2)) \to^o = L_1^{X_1} \xrightarrow{((f, \varphi) \to^o)^{\text{op}}} L_2^{X_2}$, where $((f, \varphi) \to^o(\alpha))(x_1) = \varphi^{\text{op}}(\vee_{f^{\text{op}}(x_2)=x_1} \alpha(x_2))$.

Let \mathbf{L} be a variety, which extends $\text{CSLat}(\vee)$, and let \mathbf{S} be a subcategory of \mathbf{L} such that for every \mathbf{S}-morphism $L_1 \xrightarrow{\varphi} L_2$, the map $L_2 \xrightarrow{\varphi^\to} L_1$ is \vee-preserving. Then there exists a functor $\text{Set}^{\text{op}} \times \mathbf{S} \xrightarrow{(-) \to^\to^o} (\text{CSLat}(\vee))^{\text{op}}$ defined by

$((X_1, L_1) \xrightarrow{(f, \varphi)} (X_2, L_2)) \to^\to^o = L_1^{X_1} \xrightarrow{((f, \varphi) \to^\to^o)^{\text{op}}} L_2^{X_2}$, where $((f, \varphi) \to^\to^o(\alpha))(x_1) = \varphi^{\to^o}(\vee_{f^{\text{op}}(x_2)=x_1} \alpha(x_2))$.
Galois connections

Definition 7

A tuple \(((X_1, \leq), f, g, (X_2, \leq))\) is an order-reversing Galois connection provided that \((X_1, \leq), (X_2, \leq)\) are posets, and \(X_1 \xleftarrow{f} X_2 \xrightarrow{g}\) are maps with \(x_1 \leq g(x_2)\) iff \(x_2 \leq f(x_1)\) for every \(x_1 \in X_1, x_2 \in X_2\).
Definition 8

Let L be a variety, which extends Quant, and let S be a subcategory of L^{op}. S-FC^{C} is the category, which comprises the following data.

Objects: tuples $\mathcal{K} = (G, M, L, I)$ ((lattice-valued) formal contexts), where G is the set of context *objects*, M is the set of context *attributes*, L is an S-object, and $G \times M \xrightarrow{I} L$ is a map, which is called the context *incidence relation*.

Morphisms: $\mathcal{K}_1 \xrightarrow{f} \mathcal{K}_2$ ((lattice-valued) formal context morphisms) are triples $(G_1, M_1, L_1) \xrightarrow{f=(\alpha, \beta, \varphi)} (G_2, M_2, L_2)$ in $\text{Set} \times \text{Set}^{op} \times S$ with $l_1(g, \beta^{op}(m)) = \varphi^{op} \circ l_2(\alpha(g), m)$ for every $g \in G_1$, $m \in M_2$.
Definition 9

Let L be a variety, which extends \textbf{Quant}, and let S be a subcategory of L. $S\text{-FC}_m^C$ is the category, which comprises the following data.

Objects: (lattice-valued) formal contexts.

Morphisms: $\mathcal{K}_1 \xrightarrow{f} \mathcal{K}_2$ are triples $(G_1, M_1, L_1) \xrightarrow{f=(\alpha, \beta, \varphi)} (G_2, M_2, L_2)$ in $\textbf{Set} \times \textbf{Set}^{\text{op}} \times S$ with $\varphi \circ l_1(g, \beta^{\text{op}}(m)) = l_2(\alpha(g), m)$ for every $g \in G_1$, $m \in M_2$.
Definition 10

Let \(L \) be a variety, which extends \(\text{Quant} \), and let \(S \) be a subcategory of \(L^{\text{op}} \). \(S\text{-FC}^{GW} \) is the category, which comprises the following data.

Objects: (lattice-valued) formal contexts.

Morphisms: \(\mathcal{K}_1 \overset{f}{\rightarrow} \mathcal{K}_2 \) are triples \((G_1, M_1, L_1) \overset{f=(\alpha, \beta, \varphi)}{\rightarrow} (G_2, M_2, L_2) \) in \(\text{Set} \times \text{Set} \times S \) with \(l_1(g, m) = \varphi^{\text{op}} \circ l_2(\alpha(g), \beta(m)) \) for every \(g \in G_1, m \in M_1 \).
Definition 11

Let L be a variety, which extends Quant, and let S be a subcategory of L. $S\text{-FC}_{GW}^m$ is the category, which comprises the following data.

Objects: (lattice-valued) formal contexts.

Morphisms: $\mathcal{K}_1 \xrightarrow{f} \mathcal{K}_2$ are triples $(G_1, M_1, L_1) \xrightarrow{f=(\alpha, \beta, \varphi)} (G_2, M_2, L_2)$ in $\text{Set} \times \text{Set} \times S$ with $\varphi \circ l_1(g, m) = l_2(\alpha(g), \beta(m))$ for every $g \in G_1$, $m \in M_1$.
Lattice-valued Birkhoff operators

Definition 12

Every lattice-valued formal context \mathcal{K} provides the following (lattice-valued) Birkhoff operators:

1. $L^G \xrightarrow{H} L^M$ given by $(H(s))(m) = \bigwedge_{g \in G} (s(g) \rightarrow_l l(g, m))$;

2. $L^M \xrightarrow{K} L^G$ given by $(K(t))(g) = \bigwedge_{m \in M} (t(m) \rightarrow_r l(g, m))$.

Theorem 13

For every lattice-valued context \mathcal{K}, (L^G, H, K, L^M) is an order-reversing Galois connection.
Lattice-valued formal contexts

Lattice-valued Birkhoff operators

Definition 12

Every lattice-valued formal context \mathcal{K} provides the following *(lattice-valued)* Birkhoff operators:

1. $L^G \xrightarrow{H} L^M$ given by $(H(s))(m) = \bigwedge_{g \in G} (s(g) \to_l l(g, m))$;
2. $L^M \xrightarrow{K} L^G$ given by $(K(t))(g) = \bigwedge_{m \in M} (t(m) \to_r l(g, m))$.

Theorem 13

For every lattice-valued context \mathcal{K}, (L^G, H, K, L^M) is an order-reversing Galois connection.
Crisp Birkhoff operators

Example 14

Every crisp context \mathcal{K} provides the maps

1. $\mathcal{P}(G) \xrightarrow{H} \mathcal{P}(M)$, $H(S) = \{ m \in M \mid s \vdash m \text{ for every } s \in S \}$;

2. $\mathcal{P}(M) \xrightarrow{K} \mathcal{P}(G)$, $K(T) = \{ g \in G \mid g \vdash t \text{ for every } t \in T \}$;

which are the classical Birkhoff operators of a binary relation.
Definition 15

Given a variety \(L \), which extends \(\text{Quant} \), and a subcategory \(S \) of \(L \), \(S\text{-FC}^{DMR} \) is the category, concrete over the product category \(\text{Set} \times \text{Set}^{op} \), which comprises the following data.

Objects: lattice-valued formal contexts \(K \) with \(L \) an object of \(S \).

Morphisms: \(K_1 \xrightarrow{f=(\alpha,\beta)} K_2 \) are \(\text{Set} \times \text{Set}^{op} \)-morphisms \((L^G_1, L^M_1) \xrightarrow{(\alpha,\beta)} (L^G_2, L^M_2)\), making the next diagrams commute.
Relations versus Birkhoff operators

- There is a one-to-one correspondence between relations $I \subseteq G \times M$ and order-reversing Galois connections on $(\mathcal{P}(G), \mathcal{P}(M))$.

- What about the lattice-valued case?

Definition 16

Given a \bigvee-semilattice L and a set X, every $S \subseteq X$ and every $a \in L$ provide the map $X \xrightarrow{\chi^a_S} L$, which is defined by

$$\chi^a_S(x) = \begin{cases} a, & x \in S \\ \bot_L, & \text{otherwise.} \end{cases}$$
Relations versus Birkhoff operators

- There is a one-to-one correspondence between relations $I \subseteq G \times M$ and order-reversing Galois connections on $(\mathcal{P}(G), \mathcal{P}(M))$.
- What about the lattice-valued case?

Definition 16

Given a \vee-semilattice L and a set X, every $S \subseteq X$ and every $a \in L$ provide the map $X \xrightarrow{\chi_S^a} L$, which is defined by

$$\chi_S^a(x) = \begin{cases} a, & x \in S \\ \bot_L, & \text{otherwise.} \end{cases}$$
There is a one-to-one correspondence between relations $I \subseteq G \times M$ and order-reversing Galois connections on $(\mathcal{P}(G), \mathcal{P}(M))$.

What about the lattice-valued case?

Definition 16

Given a \vee-semilattice L and a set X, every $S \subseteq X$ and every $a \in L$ provide the map $X \xrightarrow{\chi_S^a} L$, which is defined by

$$\chi_S^a(x) = \begin{cases} a, & x \in S \\ \perp_L, & \text{otherwise.} \end{cases}$$
Theorem 17

Let G, M be sets and let L be a unital quantale. For every order-reversing Galois connection $(L^G, \alpha, \beta, L^M)$, equivalent are:

1. **There exists a map** $G \times M \xrightarrow{I} L$ **such that** $\alpha = H$ **and** $\beta = K$.

2. **For every** $g \in G$, $m \in M$, $a \in L$, it follows that
 - (a) $(\alpha(\chi^{1L}_{\{g\}}))(m) = (\beta(\chi^{1L}_{\{m\}}))(g)$;
 - (b) $(\alpha(a \otimes \chi^{1L}_{\{g\}}))(m) = a \rightarrow_l (\alpha(\chi^{1L}_{\{g\}}))(m)$;
 - (c) $(\beta(\chi^{1L}_{\{m\}} \otimes a))(g) = a \rightarrow_r (\beta(\chi^{1L}_{\{m\}}))(g)$.

3. **For every** $g \in G$, $m \in M$, $a \in L$, it follows that
 - (a) $(\alpha(a \otimes \chi^{1L}_{\{g\}}))(m) = a \rightarrow_l (\beta(\chi^{1L}_{\{m\}}))(g)$;
 - (b) $(\beta(\chi^{1L}_{\{m\}} \otimes a))(g) = a \rightarrow_r (\alpha(\chi^{1L}_{\{g\}}))(m)$.
Consequences

Every map $G \times M \rightarrow L$ gives rise to an order-reversing Galois connection, but the converse way needs additional requirements.

Counterexample

Let L be the unit interval $\mathbb{I} = ([0, 1], \lor, \land, 1)$, and let both G and M be singletons. One can assume that both \mathbb{I}^G and \mathbb{I}^M is \mathbb{I}. The order-reversing involution map $\mathbb{I} \xrightarrow{\alpha} \mathbb{I}$, $\alpha(a) = 1 - a$ is a part of the order-reversing Galois connection $(\mathbb{I}, \alpha, \alpha, \mathbb{I})$. The condition of, e.g., Theorem 17(3)(a) gives $\alpha(a) = a \rightarrow \alpha(1)$ for every $a \in \mathbb{I}$. However, for $a = \frac{1}{2}$, one obtains that $\alpha(\frac{1}{2}) = \frac{1}{2} \neq 0 = \frac{1}{2} \rightarrow 0 = \frac{1}{2} \rightarrow \alpha(1)$.
Every map $G \times M \rightarrow L$ gives rise to an order-reversing Galois connection, but the converse way needs additional requirements.

Counterexample

Let L be the unit interval $\mathbb{I} = ([0, 1], \lor, \land, 1)$, and let both G and M be singletons. One can assume that both \mathbb{I}^G and \mathbb{I}^M is \mathbb{I}. The order-reversing involution map $\mathbb{I} \xrightarrow{\alpha} \mathbb{I}$, $\alpha(a) = 1 - a$ is a part of the order-reversing Galois connection $(\mathbb{I}, \alpha, \alpha, \mathbb{I})$. The condition of, e.g., Theorem 17(3)(a) gives $\alpha(a) = a \rightarrow \alpha(1)$ for every $a \in \mathbb{I}$. However, for $a = \frac{1}{2}$, one obtains that $\alpha(\frac{1}{2}) = \frac{1}{2} \neq 0 = \frac{1}{2} \rightarrow 0 = \frac{1}{2} \rightarrow \alpha(1)$.
From \mathbf{S}-\mathbf{FC}^C to \mathbf{S}-\mathbf{FC}^{DMR}

Definition 18

- \mathbf{S}-\mathbf{FC}_*^C is a subcategory of \mathbf{S}-\mathbf{FC}^C, with the same objects, and whose morphisms $\mathcal{K}_1 \xrightarrow{f} \mathcal{K}_2$ have surjective maps $G_1 \xrightarrow{\alpha} G_2$, $M_2 \xrightarrow{\beta^{op}} M_1$, and an \mathbf{S}-isomorphism $L_1 \xrightarrow{\varphi} L_2$.

- Let \mathbf{L} extend \mathbf{UQuant}. \mathbf{S}-\mathbf{FC}_{**}^C (resp. \mathbf{S}-\mathbf{FC}_{**}^C) is a full subcategory of \mathbf{S}-\mathbf{FC}_*^C, whose objects $\mathcal{K} = (G, M, L, I)$ have non-empty G (resp. M) and, moreover, $1_L \neq \bot_L$.

Theorem 19

There exists a functor \mathbf{S}-$\mathbf{FC}_*^C \xrightarrow{H_{CD}} \mathbf{S}$-$\mathbf{FC}^{DMR}$, which is given by $H_{CD}(\mathcal{K}_1 \xrightarrow{f} \mathcal{K}_2) = \mathcal{K}_1 \xrightarrow{((\alpha, \varphi)^{op}, ((\beta, \varphi) \xrightarrow{o}^{op})} \mathcal{K}_2$. Its restriction to \mathbf{S}-\mathbf{FC}_{**}^C (resp. \mathbf{S}-\mathbf{FC}_{**}^C) is a (non-full) embedding.
From $S-\text{FC}^C$ to $S-\text{FC}^{DMR}$

Definition 18

- $S-\text{FC}^*_C$ is a subcategory of $S-\text{FC}^C$, with the same objects, and whose morphisms $\mathcal{K}_1 \xrightarrow{f} \mathcal{K}_2$ have surjective maps $G_1 \xrightarrow{\alpha} G_2$, $M_2 \xrightarrow{\beta^{op}} M_1$, and an S-isomorphism $L_1 \xrightarrow{\varphi} L_2$.

- Let L extend $U\text{Quant}$. $S-\text{FC}^*_C^{**}$ (resp. $S-\text{FC}^{C_\bullet}_*$) is a full subcategory of $S-\text{FC}^*_C$, whose objects $\mathcal{K} = (G, M, L, I)$ have non-empty G (resp. M) and, moreover, $1_L \neq \bot_L$.

Theorem 19

There exists a functor $S-\text{FC}^*_C \xrightarrow{\text{H}_{CD}} S-\text{FC}^{DMR}^*$, which is given by $\text{H}_{CD}(\mathcal{K}_1 \xrightarrow{f} \mathcal{K}_2) = \mathcal{K}_1^{((\alpha, \varphi)^{op}),((\beta, \varphi)\rightarrow\circ)^{op}} \rightarrow \mathcal{K}_2$. Its restriction to $S-\text{FC}^*_C^{**}$ (resp. $S-\text{FC}^{C_\bullet}_*$) is a (non-full) embedding.
Relationships between the categories of lattice-valued formal contexts

From S-FC_m^C to S-FC_{DMR}^C

Definition 20

- S-FC_m^C is a subcategory of S-FC_m^C, with the same objects, and whose morphisms $\mathcal{K}_1 \xrightarrow{f} \mathcal{K}_2$ have surjective maps $G_1 \xrightarrow{\alpha} G_2$, $M_2 \xrightarrow{\beta^{op}} M_1$, and an S-isomorphism $L_1 \xrightarrow{\varphi} L_2$.

- Let L extend UQuant. $\text{S-FC}_{m^{**}}^C$ (resp. $\text{S-FC}_{m^{*\bullet}}^C$) is a full subcategory of $\text{S-FC}_{m^*}^C$, whose objects $\mathcal{K} = (G, M, L, I)$ have non-empty G (resp. M) and, moreover, $1_L \neq \perp_L$.

Theorem 21

There exists a functor $\text{S-FC}_m^{C} \xrightarrow{H_{\text{CM}_D}} \text{S-FC}_{DMR}^C$, which is given by $H_{\text{CM}_D}(\mathcal{K}_1 \xrightarrow{f} \mathcal{K}_2) = \mathcal{K}_1 \xrightarrow{((\alpha, \varphi) \rightarrow, ((\beta, \varphi)^{\text{op}} \rightarrow)^{\text{op}})} \mathcal{K}_2$. Its restriction to $\text{S-FC}_{m^{**}}^C$ (resp. $\text{S-FC}_{m^{*\bullet}}^C$) is a (non-full) embedding.
From $S\text{-FC}^C_m$ to $S\text{-FC}^{DMR}$

Definition 20

- $S\text{-FC}^C_{m^*}$ is a subcategory of $S\text{-FC}^C_m$, with the same objects, and whose morphisms $\mathcal{K}_1 \xrightarrow{f} \mathcal{K}_2$ have surjective maps $G_1 \xrightarrow{\alpha} G_2$, $M_2 \xrightarrow{\beta^{op}} M_1$, and an S-isomorphism $L_1 \xrightarrow{\varphi} L_2$.

- Let L extend $U\text{Quant}$. $S\text{-FC}^C_{m^{**}}$ (resp. $S\text{-FC}^C_{m^{*\cdot}}$) is a full subcategory of $S\text{-FC}^C_{m^*}$, whose objects $\mathcal{K} = (G, M, L, I)$ have non-empty G (resp. M) and, moreover, $1_L \neq \bot_L$.

Theorem 21

There exists a functor $S\text{-FC}^C_{m^*} \xrightarrow{H_{CmD}} S\text{-FC}^{DMR}$, which is given by $H_{CmD}(\mathcal{K}_1 \xrightarrow{f} \mathcal{K}_2) = \mathcal{K}_1 \xrightarrow{((\alpha,\varphi) \rightarrow ((\beta,\varphi)^{\leftarrow \cdot \cdot \cdot} \circ \cdot)^{op})} \mathcal{K}_2$. Its restriction to $S\text{-FC}^C_{m^{**}}$ (resp. $S\text{-FC}^C_{m^{*\cdot}}$) is a (non-full) embedding.
Formal concepts, protoconcepts, and preconcepts

Definition 22

Let \mathcal{K} be a lattice-valued formal context, and let $s \in L^G$, $t \in L^M$. The pair (s, t) is called a

- (lattice-valued) formal concept of \mathcal{K} provided that $H(s) = t$ and $K(t) = s$;
- (lattice-valued) formal protoconcept of \mathcal{K} provided that $K \circ H(s) = K(t)$ (equivalently, $H \circ K(t) = H(s)$);
- (lattice-valued) formal preconcept of \mathcal{K} provided that $s \leq K(t)$ (equivalently, $t \leq H(s)$).
From $\textbf{S-FC}^{DMR}$ to $\textbf{S-FC}^C$

Definition 23

- Given an \textbf{L}-algebra L, $\textbf{L-FC}_i^{DMR}$ is a subcategory of $\textbf{L-FC}^{DMR}$, with the same objects, and whose morphisms $\mathcal{K}_1 \xrightarrow{f} \mathcal{K}_2$ have injective maps $L^G_1 \xrightarrow{\alpha} L^G_2$, $L^M_2 \xrightarrow{\beta^{op}} L^M_1$.

- An \textbf{L}-algebra L is called **quasi-strictly right-sided (qsrs-algebra)** provided that $a \leq (\top_L \rightarrow_1 a) \otimes \top_L$ for every $a \in L$.

Theorem 24

There exists a functor $\textbf{L-FC}_i^{DMR} \xrightarrow{H^i_{DC}} \textbf{S-FC}^C$, which is given by $H^i_{DC}(\mathcal{K}_1 \xrightarrow{f} \mathcal{K}_2) = (L^G_1, L^M_1, L, \hat{i}_1) \xrightarrow{(\alpha, \beta, 1_L)} (L^G_2, L^M_2, L, \hat{i}_2)$, where $\hat{i}_j(s, t) = \top_L$ if (s, t) is a formal concept of \mathcal{K}_j, and \perp_L otherwise. If L is a qsrs-algebra, then H^i_{DC} is a (non-full) embedding.
From $\mathbf{S-FC}^{DMR}$ to $\mathbf{S-FC}^C$

Definition 23

- Given an \mathbf{L}-algebra L, $\mathbf{L-FC}^{DMR}_i$ is a subcategory of $\mathbf{L-FC}^{DMR}$, with the same objects, and whose morphisms $\mathcal{K}_1 \xrightarrow{f} \mathcal{K}_2$ have injective maps $L^{G_1} \xrightarrow{\alpha} L^{G_2}$, $L^{M_2} \xrightarrow{\beta^{op}} L^{M_1}$.

- An \mathbf{L}-algebra L is called **quasi-strictly right-sided (qsrs-algebra)** provided that $a \leq (\top_L \rightarrow_1 a) \otimes \top_L$ for every $a \in L$.

Theorem 24

There exists a functor $\mathbf{L-FC}^{DMR}_i \xrightarrow{H^i_{DC}} \mathbf{S-FC}^C$, which is given by $H^i_{DC}(\mathcal{K}_1 \xrightarrow{f} \mathcal{K}_2) = (L^{G_1}, L^{M_1}, L, \hat{1}_1) \xrightarrow{(\alpha, \beta, 1_L)} (L^{G_2}, L^{M_2}, L, \hat{1}_2)$, where $\hat{1}_j(s, t) = \top_L$ if (s, t) is a formal concept of \mathcal{K}_j, and \bot_L otherwise. If L is a qsrs-algebra, then H^i_{DC} is a (non-full) embedding.
From S-FC^{DMR} to S-FC^C

Definition 25

Given an L-algebra L, L-FC_{rfp}^{DMR} is a subcategory of L-FC^{DMR}, with the same objects, and whose morphisms $\mathcal{K}_1 \xrightarrow{f} \mathcal{K}_2$ have maps $L^{G_1} \xrightarrow{\alpha} L^{G_2}$, $L^{M_2} \xrightarrow{\beta^{\text{op}}} L^{M_1}$ such that $K_2 \circ H_2 \circ \alpha(s) = \alpha(s)$ implies $K_1 \circ H_1(s) = s$, and $H_1 \circ K_1 \circ \beta^{\text{op}}(t) = \beta^{\text{op}}(t)$ implies $H_2 \circ K_2(t) = t$, for every $s \in L^{G_1}_1$, $t \in L^{M_2}_2$.

Theorem 26

There exists a functor L-$\text{FC}_{rfp}^{DMR} \xrightarrow{H^{rfp}_{DC}} S$-$\text{FC}^C$, which is given by $H^{rfp}_{DC}(\mathcal{K}_1 \xrightarrow{f} \mathcal{K}_2) = (L^{G_1}, L^{M_1}, L, \hat{I}_1) \xrightarrow{(\alpha, \beta, \mathbf{1}_L)} (L^{G_2}, L^{M_2}, L, \hat{I}_2)$, where $\hat{I}_j(s, t) = \top_L$ if (s, t) is a formal concept of \mathcal{K}_j, and \bot_L otherwise. If L is a qsrs-algebra, then the functor is a (non-full) embedding.
From $\textbf{S-FC}^{DMR}$ to $\textbf{S-FC}^C$

Definition 25

Given an L-algebra L, L-\textbf{FC}_{rfp} is a subcategory of L-\textbf{FC}^{DMR}, with the same objects, and whose morphisms $\mathcal{K}_1 \xrightarrow{f} \mathcal{K}_2$ have maps $L^G_1 \xrightarrow{\alpha} L^G_2$, $L^M_2 \xrightarrow{\beta^{op}} L^M_1$ such that $K_2 \circ H_2 \circ \alpha(s) = \alpha(s)$ implies $K_1 \circ H_1(s) = s$, and $H_1 \circ K_1 \circ \beta^{op}(t) = \beta^{op}(t)$ implies $H_2 \circ K_2(t) = t$, for every $s \in L^G_1, t \in L^M_2$.

Theorem 26

There exists a functor L-$\textbf{FC}_{rfp}^{DMR} \xrightarrow{H_{rfp}^{DC}} \textbf{S-FC}^C$, which is given by $H_{rfp}^{DC}(\mathcal{K}_1 \xrightarrow{f} \mathcal{K}_2) = (L^G_1, L^M_1, L, \hat{l}_1) \xrightarrow{(\alpha, \beta, 1_L)} (L^G_2, L^M_2, L, \hat{l}_2)$, where $\hat{l}_j(s, t) = \top_L$ if (s, t) is a formal concept of \mathcal{K}_j, and \bot_L otherwise. If L is a qsrs-algebra, then the functor is a (non-full) embedding.
Relationships between the categories of lattice-valued formal contexts

From \(S-\text{FC}^{DMR} \) to \(S-\text{FC}^C \)

Definition 27

Given an \(L \)-algebra \(L \), \(L-\text{FC}_{orp}^{DMR} \) is a subcategory of \(L-\text{FC}^{DMR} \), with the same objects, and whose morphisms \(\mathcal{K}_1 \xrightarrow{f} \mathcal{K}_2 \) have order-preserving maps \(LG_1 \xrightarrow{\alpha} LG_2 \), \(LM_2 \xrightarrow{\beta^{op}} LM_1 \).

Theorem 28

There exists a functor \(L-\text{FC}_{orp}^{DMR} \xrightarrow{H^{orp}_{DC}} S-\text{FC}^C \), which is given by \(H^{orp}_{DC}(\mathcal{K}_1 \xrightarrow{f} \mathcal{K}_2) = (LG_1, LM_1, L, \hat{I}_1) \xrightarrow{(\alpha, \beta, 1_L)} (LG_2, LM_2, L, \hat{I}_2) \), where \(\hat{I}_j(s, t) = \top_L \) if \((s, t)\) is a formal preconcept of \(\mathcal{K}_j \), and \(\bot_L \) otherwise. If \(L \) is a qsrs-algebra, then the functor is a (non-full) embedding.
Relationships between the categories of lattice-valued formal contexts

From $\textbf{S-FC}^{DMR}$ to $\textbf{S-FC}^C$

Definition 27

Given an \textbf{L}-algebra L, $L\textbf{-FC}_{orp}^{DMR}$ is a subcategory of $L\textbf{-FC}^{DMR}$, with the same objects, and whose morphisms $\mathcal{K}_1 \xrightarrow{f} \mathcal{K}_2$ have order-preserving maps $L G_1 \xrightarrow{\alpha} L G_2$, $L M_2 \xrightarrow{\beta^{op}} L M_1$.

Theorem 28

There exists a functor $L\textbf{-FC}_{orp}^{DMR} \xrightarrow{H_{DC}^{orp}} \textbf{S-FC}^C$, which is given by $H_{DC}^{orp}(\mathcal{K}_1 \xrightarrow{f} \mathcal{K}_2) = (L G_1, L M_1, L, \hat{I}_1) \xrightarrow{(\alpha, \beta, 1_L)} (L G_2, L M_2, L, \hat{I}_2)$, where $\hat{I}_j(s, t) = \top_L$ if (s, t) is a formal preconcept of \mathcal{K}_j, and \bot_L otherwise. If L is a qsrs-algebra, then the functor is a (non-full) embedding.
Theorem 29

There exists a functor \(L\text{-FC}^{DMR} \xrightarrow{H_{DC}} S\text{-FC}^C \), which is given by

\[
H_{DC}(\mathcal{K}_1 \xrightarrow{f} \mathcal{K}_2) = (L^{G_1}, L^{M_1}, L, \hat{I}_1) \xrightarrow{(\alpha, \beta, 1_L)} (L^{G_2}, L^{M_2}, L, \hat{I}_2),
\]

where \(\hat{I}_j(s, t) = \top_L \) if \((s, t)\) is a formal protoconcept of \(\mathcal{K}_j \), and \(\perp_L \) otherwise. If \(L \) is a qsrs-algebra, then \(H_{DC} \) is a (non-full) embedding.
This talk considered some approaches to morphisms of lattice-valued formal contexts of Formal Context Analysis (FCA).

We constructed several categories, whose objects are lattice-valued analogues of formal contexts of FCA, and whose morphisms reflect the crisp setting of Chu spaces, the lattice-valued setting of J. T. Denniston, A. Melton, and S. E. Rodabaugh, as well as the many-valued setting of B. Ganter and R. Wille.

We considered a number of functors between the categories of formal contexts, embedding each of them into its counterparts.
This talk considered some approaches to morphisms of lattice-valued formal contexts of Formal Context Analysis (FCA).

We constructed several categories, whose objects are lattice-valued analogues of formal contexts of FCA, and whose morphisms reflect the crisp setting of Chu spaces, the lattice-valued setting of J. T. Denniston, A. Melton, and S. E. Rodabaugh, as well as the many-valued setting of B. Ganter and R. Wille.

We considered a number of functors between the categories of formal contexts, embedding each of them into its counterparts.
This talk considered some approaches to morphisms of lattice-valued formal contexts of Formal Context Analysis (FCA).

We constructed several categories, whose objects are lattice-valued analogues of formal contexts of FCA, and whose morphisms reflect the crisp setting of Chu spaces, the lattice-valued setting of J. T. Denniston, A. Melton, and S. E. Rodabaugh, as well as the many-valued setting of B. Ganter and R. Wille.

We considered a number of functors between the categories of formal contexts, embedding each of them into its counterparts.
The difference between the settings of relations and Galois connections in the lattice-valued case, motivates the following problem.

Problem 30

Is it possible to build a lattice-valued approach to FCA, which is based in order-reversing Galois connections on lattice-valued powersets, which are not generated by lattice-valued relations on their respective sets of objects and their attributes?
The difference between the settings of relations and Galois connections in the lattice-valued case, motivates the following problem.

Problem 30

Is it possible to build a lattice-valued approach to FCA, which is based in order-reversing Galois connections on lattice-valued powersets, which are not generated by lattice-valued relations on their respective sets of objects and their attributes?
References I

Thank you for your attention!