A generalization of the Kaloujnine-Krasner Theorem

Tamás Dékány

Bolyai Institute, University of Szeged

June 08, 2013
Motivating theorem from group theory:

Kaloujnine–Krasner Theorem

For any groups N and H every extension of N by H is embeddable in the wreath product of N by H.
Motivating theorem from group theory:

Kaloujnine–Krasner Theorem

For any groups N and H every extension of N by H is embeddable in the wreath product of N by H.

Is there any direct generalization for semigroups? If not, whether we can find „similar” theorem, which is still a generalization?
completely simple semigroups \equiv

Rees-matrix semigroups with normalized sandwich matrices

$S = M(G; I, \Lambda; P)$, P normalized

$\rho \subseteq S \times S$ congruence

ρ is a group congruence of S iff $\exists N \triangleleft G$ s.t. every entry of P are from N
completely simple semigroups \equiv

Rees-matrix semigroups with normalized sandwich matrices

\[S = \mathcal{M}(G; I, \Lambda; P), \ P \text{ normalized} \]
\[\rho \subseteq S \times S \text{ congruence} \]
\[\rho \text{ is a group congruence of } S \iff \exists N \triangleleft G \text{ s.t. every entry of } P \text{ are from } N \]

moreover \(S/\rho \cong G/N \) and \(\text{Ker } \rho = \mathcal{M}(N; I, \Lambda; P) \)
completely simple semigroups \equiv

Rees-matrix semigroups with normalized sandwich matrices

$S = \mathcal{M}(G; I, \Lambda; P)$, P normalized
$\rho \subseteq S \times S$ congruence
ρ is a group congruence of S iff $\exists N \triangleleft G$ s.t. every entry of P are from N

moreover $S/\rho \cong G/N$ and $\text{Ker } \rho = \mathcal{M}(N; I, \Lambda; P)$

We say that $S = \mathcal{M}(G; I, \Lambda; P)$ is an extension of $K = \mathcal{M}(N; I, \Lambda; P)$ by G/N.
S semigroup, H group, H acts on S

multiplication on $S \times H$:

$$(s, A)(t, B) = (s \cdot A^t, AB)$$

this is $S \rtimes H$ — *semidirect product* of S by H, with respect to the given action of H on S
S semigroup, H group, H acts on S

multiplication on $S \times H$:

$$(s, A)(t, B) = (s \cdot A^t, AB)$$

this is $S \rtimes H$ — *semidirect product* of S by H, with respect to the given action of H on S

Special construction: semidirect product $S^H \rtimes H$ with respect to the action H on S^H defined by, for $f \in S^H$, $A \in H$:

$^Af : H \to S, \quad B(^Af) = (BA)f$

this is the *wreath product* of S by H, denoted by $S \wr H$
S semigroup, H group, H acts on S

multiplication on $S \times H$:

$$(s, A)(t, B) = (s \cdot A^t, AB)$$

this is $S \rtimes H$ — semidirect product of S by H, with respect to the given action of H on S.

Special construction: semidirect product $S^H \rtimes H$ with respect to the action H on S^H defined by, for $f \in S^H$, $A \in H$:

$A f : H \rightarrow S$, $B(A f) = (BA)f$

this is the wreath product of S by H, denoted by $S \wr H$

Important: S and H completely determines $S \wr H$.
Kaloujnine–Krasner Theorem

For any groups N and H every extension of N by H is embeddable in the wreath product of N by H.
Kaloujnine–Krasner Theorem

For any groups N and H every extension of N by H is embeddable in the wreath product of N by H.

Let G be an extension of N by H.

$r_A \ (A \in H)$ — transversal of the cosets modulo N in G

$f_g \in N^H \ (g \in G)$:

An embedding:

$$\varphi : G \rightarrow N \wr H, \ g \mapsto (f_g, gN)$$

$$f_g : H \rightarrow N, \ A \mapsto r_A g r_A^{-1} gN$$
Let $S = \mathcal{M}(G; I, \Lambda; P)$ be an extension of the semigroup $K = \mathcal{M}(N; I, \Lambda; P)$ by the group H.

Does there exist an embedding $S \to K \wr H$?

If G is Abelian, mimic the proof of the Kaloujnine–Krasner Theorem:

$\phi : S \to K \wr H, (i, g, \lambda) \mapsto (f_i \lambda g, gN)$,

where $f_i \lambda g : H \to K, A \mapsto (i, r_Agr^{-1}A \cdot gN, \lambda)$.

If $G = \mathbb{Z}_3 \rtimes \mathbb{Z}_2$ then an embedding exists, but it is not “natural.”
Let $S = \mathcal{M}(G; I, \Lambda; P)$ be an extension of the semigroup $K = \mathcal{M}(N; I, \Lambda; P)$ by the group H. Does there exist an embedding $S \rightarrow K \wr H$?

If G is Abelian, mimic the proof of the Kaloujnine–Krasner Theorem:

$$\varphi: S \rightarrow K \wr H,$$

where $f_{i\lambda} g: H \rightarrow K$, $A \mapsto (i, r_A g r_{\lambda^{-1} A} \cdot g N, \lambda)$. If $G = \mathbb{Z}_3 \rtimes \mathbb{Z}_2$ then an embedding exists, but it is not "natural."
Let $S = \mathcal{M}(G; I, \Lambda; P)$ be an extension of the semigroup $K = \mathcal{M}(N; I, \Lambda; P)$ by the group H. Does there exist an embedding

$$S \rightarrow K \wr H?$$

If G is Abelian, mimic the proof of the Kaloujnine–Krasner Theorem:

$$\varphi: S \rightarrow K \wr H, \ (i, g, \lambda) \mapsto (f_{g}^{i\lambda}, gN),$$

where

$$f_{g}^{i\lambda}: H \rightarrow K, \ A \mapsto (i, r_{A}gr_{A}^{-1}gN, \lambda).$$
Let \(S = \mathcal{M}(G; I, \Lambda; P) \) be an extension of the semigroup \(K = \mathcal{M}(N; I, \Lambda; P) \) by the group \(H \). Does there exist an embedding

\[
S \to K \wr H
\]

If \(G \) is Abelian, mimic the proof of the Kaloujnine–Krasner Theorem:

\[
\varphi: S \to K \wr H, \ (i, g, \lambda) \mapsto (f^i_\lambda g, gN),
\]

where

\[
f^i_\lambda: H \to K, \ A \mapsto (i, r_Agr^{-1}_A gN, \lambda).
\]

If \(G = \mathbb{Z}_3 \rtimes \mathbb{Z}_2 \) then an embedding exists, but it is not „natural.”
conjecture: embedding does not exist in general
⇒ look for a counterexample
conjecture: embedding does not exist in general
⇒ look for a counterexample
first we would like to express the wreath product in a semidirect product form:

\[
K \wr H = K^H \rtimes H \cong \mathcal{M}(N^H; I^H, \Lambda^H; P^H) \rtimes H,
\]

where \(P^H = (p^H_{\xi \eta}) \) and for any \(\xi \in \Lambda^H, \eta \in I^H \):

\[
p^H_{\xi \eta} : H \to N, A p^H_{\xi \eta} = p_{A \xi, A \eta} \quad (A \in H)
\]

\(\mathbb{Z}_n \rtimes \mathbb{Z}_2 \) is not good because of \(\mathbb{Z}_2 \) is too „small”
the source of the problem is in the sandwich matrix of \(K \wr H \), where the entries are strongly related to each other
it suffices to work a 2×2 sandwich matrix if \mathbb{Z}_2 is replaced by \mathbb{Z}_3

the proof uses that one entry of G has order 3, and the image of this element can be expressed by means of the entries of P^H
so we do not have enough freedom to choose it appropriately
it suffices to work a 2×2 sandwich matrix if \mathbb{Z}_2 is replaced by \mathbb{Z}_3.

The proof uses that one entry of G has order 3, and the image of this element can be expressed by means of the entries of P^H so we do not have enough freedom to choose it appropriately.

$$h = p^H_{\xi_1 \eta_1} (p^H_{\xi_2 \eta_1})^{-1} p^H_{\xi_2 \eta_2} (p^H_{\xi_1 \eta_2})^{-1}$$
Theorem

Let $G = \mathbb{Z}_7 \rtimes \mathbb{Z}_3$, $I = \Lambda = \{1, 2\}$, P be the sandwich matrix for which $p_{11} = p_{12} = p_{21} = (0, 0)$ and $p_{22} = (1, 0)$, and $N = \{(a, 0) : a \in \mathbb{Z}_7\}$. Let $S = \mathcal{M}(G; I, \Lambda; P)$ and $K = \mathcal{M}(N; I, \Lambda; P)$. Then there exists no embedding

$$S \rightarrow K \wr H.$$
Theorem

Let $G = \mathbb{Z}_7 \rtimes \mathbb{Z}_3$, $I = \Lambda = \{1, 2\}$, P be the sandwich matrix for which

$p_{11} = p_{12} = p_{21} = (0, 0)$ and $p_{22} = (1, 0)$, and $N = \{(a, 0) : a \in \mathbb{Z}_7\}$. Let

$S = \mathcal{M}(G; I, \Lambda; P)$ and $K = \mathcal{M}(N; I, \Lambda; P)$. Then there exists no embedding

$$S \rightarrow K \wr H.$$

Important: there is no embedding at all, not just a „nice” embeddings like in the Kaloujnine–Krasner Theorem
How can we obtain a positive result with a similar construction?
How can we obtain a positive result with a similar construction?
Idea: wreath product \rightarrow semidirect product
How can we obtain a positive result with a similar construction?
Idea: wreath product \rightarrow semidirect product

We are looking for an embedding

$$ S = \mathcal{M}(G; I, \Lambda; P) \rightarrow \mathcal{M}(N'; I', \Lambda'; P') \rtimes H, $$

and we don’t want to go far from the Kaloujnine–Krasner Theorem
let $N' = N^H$, $I' = I$, $\Lambda' = H \times \Lambda$, and the entries of P' are „nice” maps
let $N' = N^H$, $I' = I$, $\Lambda' = H \times \Lambda$, and the entries of P' are „nice” maps

Theorem

For any extension $S = \mathcal{M}(G; I, \Lambda; P)$ of $K = \mathcal{M}(N; I, \Lambda; P)$ by a group H, there exists an embedding

$$S \to \mathcal{M}(N^H; I, H \times \Lambda; Q) \rtimes H,$$

where the restriction of this embedding to maximal subgroups of S coincides with that in the proof of the Kaloujnine–Krasner Theorem, and the entries of Q can be expressed by means of the ingredients there, too.