## From lifting objects to lifting diagrams: <br> Recent progress on larders and CLL

## Friedrich Wehrung

Department of Mathematics $\mathcal{E}$ LMNO Laboratory Univeristy of CAEN
wehrung@math.unicaen.fr
We are addressing the following general problem. We are given categories $\mathcal{A}, \mathcal{B}, \mathcal{S}$ together with functors $\Phi: \mathcal{A} \rightarrow \mathcal{S}$ and $\Psi: \mathcal{B} \rightarrow \mathcal{S}$, as illustrated on the left hand side of the following figure.


Figure 1. A few categories and functors
We assume that for "many" objects $A$ of $\mathcal{A}$, there exists an object $B$ of $\mathcal{B}$ such that $\Phi(A) \cong \Psi(B)$. We ask in what extent the assignment $A \mapsto B$ can be made functorial. The ideal situation would be the existence of a functor $\Gamma: \mathcal{A} \rightarrow \mathcal{B}$ such that $\Gamma \circ \Phi$ is equivalent to $\Psi$, cf. the previous figure.

Condensate Lifting Lemma CLL [P. Gillibert and FW, 2008] If $\mathcal{A}, \mathcal{B}, \mathcal{S}, \Phi$, $\Psi$, together with full subcategories $\mathcal{A}^{+}$of $\mathcal{A}$ and $\mathcal{B}^{\dagger}$ of $\mathcal{B}$, and a subcategory $\varsigma \Rightarrow$ of S, form a so-called "larder", then "something like this can be done".

The objects in $\mathcal{A}^{\dagger}$, resp. $\mathcal{B}^{\dagger}$, can be thought of as "small objects" while the arrows in $\mathcal{S}^{\dagger}$ can be thought of as "quotient maps", for example from the congruence lattice of an algebra to the congruence lattice of a quotient. Nevertheless CLL is a result of category theory.

As consequences of either CLL or the methods leading to it, we shall discuss the following results.

Theorem 1. [P. Gillibert 2008] For varieties $\mathcal{A}$ and $\mathcal{B}$ of algebras with $\mathcal{A}$ locally finite and $\mathcal{B}$ finitely generated congruence-distributive, the "critical point"
$\operatorname{crit}(\mathcal{A} ; \mathcal{B})$, defined as the least cardinality of a semilattice in the compact congruence class of $\mathcal{A}$ but not of $\mathcal{B}$, is smaller than $\aleph_{\omega}$.

This result is proved in [2]. By using von Neumann regular rings and the dimension monoid construction, these results are extended to some explicit calculations of critical points in [3]. Theorem 1 is extended further to quasivarieties in [4].

Theorem 2. [P. Gillibert and FW, 2008] The Grätzer-Schmidt Theorem (i.e., every algebraic lattice is isomorphic to the congruence lattice of some algebra) can be extended to any diagram, indexed by any finite poset (or, in presence of a proper class of Erdős cardinals, any poset) of algebraic lattices and complete ( $\vee, 0$ )-homomorphisms.

Theorem 3. [FW 2008] There exists a non-coordinatizable sectionally complemented modular lattice, of cardinality $\aleph_{1}$, with a large von Neumann 4-frame.

Theorem 4. [P. Gillibert and FW 2009] Let $\mathcal{V}$ be a nondistributive variety of lattices. Then the free lattice (resp., free bounded lattice) in $\mathcal{\nu}$ on $\aleph_{1}$ generators has no congruence-permutable, congruence-preserving extension.

## References

[1] P. Gillibert, "Points critiques de couples de variétés d'algèbres" (French), Doctorat de l'Université de Caen, December 8, 2008, available online at http://tel.archives-ouvertes.fr/tel-00345793.
[2] P. Gillibert, Critical points of pairs of varieties of algebras, Internat. J. Algebra Comput. 19, no. 1 (2009), 1-40.
[3] P. Gillibert, Critical points between varieties generated by subspace lattices of vector spaces, preprint 2008, available online at http://hal.archives-ouvertes.fr/hal-00324397.
[4] P. Gillibert and F. Wehrung, A categorical approach of critical points between quasivarieties, manuscript.

