The finite basis problem for Kauffman monoids

Mikhail V. Volkov
Department of Mathematics and Mechanics
Ural State University, EKATERINBURG
Mikhail.Volkov@usu.ru

Kauffman monoids $\mathcal{K}_{n}, n \geq 2$, are monoids whose linear spans are the famous Temperley-Lieb algebras [6], which first arose in statistical mechanics but then turned out to play a prominent role in several 'fashionable' parts of mathematics such as knot theory and low-dimensional topology (see [3]), topological quantum field theory, quantum groups etc. In the talk we shall recall the original 'pictorial' definition of Kauffman monoids but for this abstract one can define \mathcal{K}_{n} as the monoid with n generators $c, h_{1}, \ldots, h_{n-1}$ subject to the relations

$$
\begin{aligned}
& h_{i} h_{j}=h_{j} h_{i} \quad \text { if }|i-j| \geq 2, \\
& h_{i} h_{j} h_{i}=h_{i} \quad \text { if }|i-j|=1, \\
& h_{i} h_{i}=c h_{i}, \\
& c h_{i}=h_{i} c .
\end{aligned}
$$

The name "Kauffman monoids" has been suggested in [2]; another name in use is "Temperley-Lieb-Kauffman monoids", see [1]. The semigroup structure of the Kauffman monoids has been deeply studied in [4]. Using structural results of [4] and the techniques from [5], we prove here

Theorem. The identities of the Kauffman monoid $\mathcal{K}_{n}, n \geq 4$, are not finitely based.

The monoid \mathcal{K}_{2} is commutative, and thus, its identities are finitely based. The question of whether or not the identities of the monoid \mathcal{K}_{3} are finitely based still remains open. Yet another open question is whether or not the monoids \mathcal{K}_{n} have finitely based unary semigroup identities (the monoids are endowed with a fairly natural unary operation making them *-regular semigroups).

References

[1] L. A. Bokut', D. V. Lee, Gröbner-Shirshov basis for the Temperley-Lieb-Kauffman monoid, Proc. Ural State University (2005), no. 36 (Mathematics and mechanics, no.7), 49-66 [Russian].
[2] M. Borisavljević, K. Došen, and Z. Petrić, Kauffman monoids, J. Knot Theory Ramifications 11 (2002), 127-143.
[3] L. H. Kauffman, An invariant of regular isotopy, Trans. Amer. Math. Soc. 318 (1990), 417-471.
[4] K. W. Lau and D. G. FitzGerald, Ideal structure of the Kauffman and related monoids, Comm. Algebra 34 (2006), 2617-2629.
[5] M. V. Sapir and M. V. Volkov, On the join of semigroup varieties with the variety of commutative semigroups, Proc. Amer. Math. Soc. 120 (1994), 345-348.
[6] H. N. V. Temperley and E. H. Lieb, Relations between the percolation and colouring problem and other graph-theoretical problems associated with regular planar lattices: Some exact results for the percolation problem, Proc. Roy. Soc. London Ser. A 322 (1971), 251-280.

