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Kauffman monoids Kn, n ≥ 2, are monoids whose linear spans are the
famous Temperley–Lieb algebras [6], which first arose in statistical me-
chanics but then turned out to play a prominent role in several ‘fash-
ionable’ parts of mathematics such as knot theory and low-dimensional
topology (see [3]), topological quantum field theory, quantum groups
etc. In the talk we shall recall the original ‘pictorial’ definition of Kauff-
man monoids but for this abstract one can defineKn as the monoid with
n generators c, h1, . . . , hn−1 subject to the relations

hihj = hjhi if |i− j| ≥ 2,

hihjhi = hi if |i− j| = 1,

hihi = chi,

chi = hic.

The name “Kauffman monoids” has been suggested in [2]; another name
in use is “Temperley–Lieb–Kauffman monoids”, see [1]. The semigroup
structure of the Kauffman monoids has been deeply studied in [4]. Using
structural results of [4] and the techniques from [5], we prove here

Theorem. The identities of the Kauffman monoid Kn, n ≥ 4, are not finitely
based.

The monoidK2 is commutative, and thus, its identities are finitely based.
The question of whether or not the identities of the monoidK3 are finite-
ly based still remains open. Yet another open question is whether or
not the monoids Kn have finitely based unary semigroup identities (the
monoids are endowed with a fairly natural unary operation making
them *-regular semigroups).
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