Strongly regular types

PREDRAG TANOVIĆ Mathematical Institute of the Serbian Academy of Sciences and Arts, BELGRADE

tane@turing.mi.sanu.ac.rs

Definition. (*M*, cl) is a pregeometry if $cl : \mathcal{P}(M) \to \mathcal{P}(M)$ satisfies the following axioms:

- $X \subseteq Y$ implies $cl(X) \subseteq cl(Y)$;
- $X \subseteq \operatorname{cl}(X) = \operatorname{cl}(\operatorname{cl}(X));$
- $\operatorname{cl}(X) = \bigcup \{ \operatorname{cl}(X_0) \mid X_0 \subseteq X \text{ finite} \};$
- $a \in cl(X \cup \{b\}) \setminus cl(X)$ implies $b \in cl(X \cup \{a\})$.

In model theory a pregeometry usually appears in the case of regular types in stable theories. I will discuss the general case when (M, ...) is a (infinite) first-order structure and the pregeometry derives from the structure: examples are vector spaces, fields and differential fields. The basic idea is that $a \in cl(B)$ should be witnessed by a first-order formula whose solution set is considered as 'small' in M. Then the set of 'big' formulas generates a filter or, equivalently, a type over M. The type particularly well behaves when M is saturated and it is complete (i.e. ultrafilter) and the closure is described in terms of semi-isolation.

Now we wonder whether a type over \emptyset determines a pregeometry via semi-isolation. The following definition covers both the stable and the saturated case:

Definition. Let *T* be a countable, complete first-order theory. A nonisolated type $p \in S_1(\emptyset)$ is strongly regular via $\phi(x) \in p$ if and only if for all $M \models T$ and $a_1a_2...a_n \in \phi(M) \setminus p(M)$, $p(x) \cup \text{tp}(a_1a_2...a_n)$ determines a complete (n + 1)-type.

The main result is that if $p \in S_1(\emptyset)$ is strongly regular via x = x and M is saturated then (p(M), Sem) is a pregeometry unless there is a very specific partial order definable (with parameters) in the structure.