Matrices in modular lattices

BENEDEK SKUBLICS Bolyai Institute, University of SZEGED bskublics@math.u-szeged.hu

Let $(a_1, \ldots, a_m, c_{12}, \ldots, c_{1m})$ be a spanning von Neumann *m*-frame of a modular lattice *L*, and let $(u_1, \ldots, u_n, v_{12}, \ldots, v_{1n})$ be a spanning von Neumann *n*-frame of the interval $[0, a_1]$. Assume that either $m \ge 4$, or *L* is Arguesian and $m \ge 3$. Let R^* denote the coordinate ring of $(a_1, \ldots, a_m, c_{12}, \ldots, c_{1m})$. If $n \ge 2$, then there is a ring S^* such that R^* is isomorphic to the ring of all $n \times n$ matrices over S^* . If $n \ge 4$ or *L* is Arguesian and $n \ge 3$, then we can choose S^* as the coordinate ring of $(u_1, \ldots, u_n, v_{12}, \ldots, v_{1n})$.

The proof uses product frames which were defined by Czedli [1]. The talk is based on [2].

REFERENCES

- [1] G. Czédli: The product of von Neumann *n*-frames, its characteristic, and modular fractal lattices, Algebra Universalis 60 (2009), 217-230.
- [2] G. Czédli and B. Skublics: The ring of an outer von Neumann frame in modular lattices, Algebra Universalis, submitted.