Matrices in modular lattices

Benedek Skublics

Bolyai Institute, University of SZEGED
bskublics@math.u-szeged.hu
Let $\left(a_{1}, \ldots, a_{m}, c_{12}, \ldots, c_{1 m}\right)$ be a spanning von Neumann m-frame of a modular lattice L, and let $\left(u_{1}, \ldots, u_{n}, v_{12}, \ldots, v_{1 n}\right)$ be a spanning von Neumann n-frame of the interval $\left[0, a_{1}\right]$. Assume that either $m \geq 4$, or L is Arguesian and $m \geq 3$. Let R^{*} denote the coordinate ring of $\left(a_{1}, \ldots, a_{m}, c_{12}, \ldots, c_{1 m}\right)$. If $n \geq 2$, then there is a ring S^{*} such that R^{*} is isomorphic to the ring of all $n \times n$ matrices over S^{*}. If $n \geq 4$ or L is Arguesian and $n \geq 3$, then we can choose S^{*} as the coordinate ring of $\left(u_{1}, \ldots, u_{n}, v_{12}, \ldots, v_{1 n}\right)$.

The proof uses product frames which were defined by Czedli [1]. The talk is based on [2].

References

[1] G. Czédli: The product of von Neumann n-frames, its characteristic, and modular fractal lattices, Algebra Universalis 60 (2009), 217-230.
[2] G. Czédli and B. Skublics: The ring of an outer von Neumann frame in modular lattices, Algebra Universalis, submitted.

