Clones of Boolean clique functions and hypergraph homomorphisms

Faculty of Science, Technology and Communication University of LUXEMBOURG erkko.lehtonen@uni.lu

Every clone C on a set A determines a quasiorder on the set \mathcal{O}_A of all operations on A by the following rule: f is a C-minor of g, denoted $f \leq_C g$, if $f = g(h_1, \ldots, h_m)$ where $h_1, \ldots, h_m \in C$. As for quasiorders, the C-minor relation induces an equivalence relation \equiv_C on \mathcal{O}_A , called C-equivalence, and a partial order on the quotient \mathcal{O}_A/\equiv_C . In this work, we focus on the C-minor relations of Boolean functions.

For $a \in \{0,1\}$, a set $S \subseteq \{0,1\}^n$ is called *a-separating* if there is an i $(1 \le i \le n)$ such that for every $(a_1, \ldots, a_n) \in S$ we have $a_i = a$. A Boolean function $f: \{0,1\}^n \to \{0,1\}$ is said to be *a-separating* if $f^{-1}(a)$ is *a*-separating, and f is said to be *a-separating of rank* k ($k \ge 2$) if every subset of $f^{-1}(a)$ of size at most k is *a*-separating. Such functions are also referred to as *clique functions*. The set of all 1-separating (0-separating) functions of rank k is a clone, and we denote it by U_k (W_k , respectively). We also denote $U_{\infty} := \bigcup_{k>2} U_k$, $W_{\infty} := \bigcup_{k>2} W_k$.

For $k = 2, 3, ..., \infty$, we assign to each Boolean function $f: \{0, 1\}^n \rightarrow \{0, 1\}$ a hypergraph G(f, k) in such a way that $f \leq_{U_k} g$ if and only if there exists a homomorphism $h: G(f, k) \rightarrow G(g, k)$. This enables us to prove our main result: a clone C on $\{0, 1\}$ has the property that the C-minor partial order is universal if and only if C is one of the various clones of clique functions or the clone of self-dual monotone functions.

A sup-homomorphism of G := (V, E) to G' := (V', E') is a mapping $h: V \to V'$ such that for all $S \in E$ there exists a $T \in E'$ such that $f[S] \supseteq T$. Our study of sup-homomorphisms also shows that the U_k -and W_k -minor partial orders are dense.

This is a joint work with J. NEŠETŘIL (Charles University, Prague).