Property (ħ) and cellularity of complete Boolean algebras

MILOŠ KURILIĆ

Deaprtment of Mathematics and Informatics Faculty of Science, University of NOVI SAD milos@dmi.uns.ac.rs

A complete Boolean algebra B satisfies property (\hbar) if and only if each sequence x in B has a subsequence y such that the equality lim sup $z_n =$ lim sup y_n holds for each subsequence z of y. This property, providing an explicit definition of the a posteriori convergence in complete Boolean algebras with the sequential topology and a characterization of sequential compactness of such spaces, is closely related to the cellularity of Boolean algebras. Here we determine the position of property (\hbar) with respect to the hierarchy of conditions of the form κ -cc. So, answering a question from [M. S. Kurilić, A. Pavlović, A posteriori convergence in complete Boolean algebras with the sequential topology, *Ann. Pure Appl. Logic* **148** (2007), 49-62] we show that " \mathfrak{h} -cc \Rightarrow (\hbar)" is not a theorem of ZFC and that there is no cardinal \mathfrak{k} , definable in ZFC, such that " \mathfrak{k} -cc \Leftrightarrow (\hbar)" is a theorem of ZFC. Also, we show that the set

{ κ : each κ -cc c.B.a. has (\hbar)}

is equal either to $[0, \mathfrak{h})$ or to $[0, \mathfrak{h}]$ and that both values are consistent, which, with the known equality

{ κ : each c. B. a. having (\hbar) has the κ -cc} = [\mathfrak{s}, ∞)

completes the picture.

The talk reports a joint work with S. TODORČEVIĆ (University Paris VII & University of Toronto).