Compatible functions on semilattices

VLADIMIR KUCHMEI Institute of Pure Mathematics University of TARTU kucmei@math.ut.ee

Let *f* be a *n*-ary function on a set *A*. Let ρ be a *k*-ary relation on a set *A*. We say that *f* preserves ρ if $(f(a_{11}, \ldots, a_{1n}), \ldots, f(a_{k1}, \ldots, a_{kn})) \in \rho$ whenever $(a_{11}, \ldots, a_{k1}) \in \rho, \ldots, (a_{1n}, \ldots, a_{kn}) \in \rho$.

An *n*-ary function *f* on an algebra **A** is called *compatible* if it preserves all congruences of **A**. It is clear that compatible functions form a clone. So, it is natural to consider the following problem:

Problem 1. *Given an algebra* **A***, find a nice generating set for the clone of all compatible functions.*

We consider this problem for semilattices.

In what follows meet semilattices are considered. An *ideal of a semilattice* **S** is a nonempty subset $I \subseteq S$ such that for all $x \in I$ and $y \in S$, $y \leq x$ implies $y \in I$. An ideal I of a semilattice **S** is said to be *almost principal* if its intersection with every principal ideal of **S** is a principal ideal of **S**.

Any almost principal ideal *I* of a semilattice **S** defines a compatible function $f_I : S \to S$ such that $\downarrow f(x) = \downarrow x \cap I$ for every $x \in S$.

The following result was proved in [1].

Proposition 2. A unary function f on a semilattice **S** is compatible iff it has one of the following forms:

- (1) $f = f_I$ for some almost principal ideal I of **S**;
- (2) there exists an element $0 \neq a \in S$ and an almost principal ideal I of the subsemilattice $\uparrow a$ of **S** such that the restriction of f to $\uparrow a$ is f_I and f(x) = a for $x \not\geq a$; moreover, the ideal I has the property: if $u \in I$ and u > a then $\downarrow u = \downarrow a \cup [a, u]$.
- (3) there are elements $a, b \in S$ such that a covers $b, c \land a \leq b$ for all $c \geq a$, and f(x) = b for $x \geq a$ and f(x) = a otherwise.

Clearly, Proposition 2 completely describes the clone of all unary compatible functions. Our goal is to solve Problem 1 in general. In this talk we present some recent results in this direction.

References

 Kaarli, K. and Márki, L. and Schmidt, E. T., Affine complete semilattices, Monatsh. Math. 99 (1985), 297-309