Compatible functions on semilattices

VLADIMIR KUCHMEI
 Institute of Pure Mathematics University of TARTU kucmei@math.ut.ee

Let f be a n-ary function on a set A. Let ρ be a k-ary relation on a set A. We say that f preserves ρ if $\left(f\left(a_{11}, \ldots, a_{1 n}\right), \ldots, f\left(a_{k 1}, \ldots, a_{k n}\right)\right) \in \rho$ whenever $\left(a_{11}, \ldots, a_{k 1}\right) \in \rho, \ldots,\left(a_{1 n}, \ldots, a_{k n}\right) \in \rho$.

An n-ary function f on an algebra \mathbf{A} is called compatible if it preserves all congruences of \mathbf{A}. It is clear that compatible functions form a clone. So, it is natural to consider the following problem:

Problem 1. Given an algebra A, find a nice generating set for the clone of all compatible functions.

We consider this problem for semilattices.
In what follows meet semilattices are considered. An ideal of a semilattice \mathbf{S} is a nonempty subset $I \subseteq S$ such that for all $x \in I$ and $y \in S, y \leq x$ implies $y \in I$. An ideal I of a semilattice \mathbf{S} is said to be almost principal if its intersection with every principal ideal of \mathbf{S} is a principal ideal of \mathbf{S}.

Any almost principal ideal I of a semilattice \mathbf{S} defines a compatible function $f_{I}: S \rightarrow S$ such that $\downarrow f(x)=\downarrow x \cap I$ for every $x \in S$.

The following result was proved in [1].
Proposition 2. A unary function f on a semilattice \mathbf{S} is compatible iff it has one of the following forms:
(1) $f=f_{I}$ for some almost principal ideal I of \mathbf{S};
(2) there exists an element $0 \neq a \in S$ and an almost principal ideal I of the subsemilattice $\uparrow a$ of \mathbf{S} such that the restriction of f to $\uparrow a$ is f_{I} and $f(x)=a$ for $x \nsupseteq a$; moreover, the ideal I has the property: if $u \in I$ and $u>a$ then $\downarrow u=\downarrow a \cup[a, u]$.
(3) there are elements $a, b \in S$ such that a covers $b, c \wedge a \leq b$ for all $c \nsupseteq a$, and $f(x)=b$ for $x \geq a$ and $f(x)=a$ otherwise.

Clearly, Proposition 2 completely describes the clone of all unary compatible functions. Our goal is to solve Problem 1 in general. In this talk we present some recent results in this direction.

References

[1] Kaarli, K. and Márki, L. and Schmidt, E. T., Affine complete semilattices, Monatsh. Math. 99 (1985), 297-309

