Möbius number systems

Alexandr Kazda
Faculty of Mathematics and Physics
Charles University, PRAGUE
alexak@atrey.karlin.mff.cuni.cz

Introduction. A Möbius number system (MNS) assigns real numbers to sequences of Möbius transformations. The result is a continuous projection $\Phi: \Sigma \rightarrow \overline{\mathbb{R}}$ where $\overline{\mathbb{R}}=\mathbb{R} \cup\{\infty\}$ is the extended real line and the set $\Sigma \subset A^{\omega}$ is a subshift. (Compare this situation to the standard binary representation of numbers which yields continuous projection $\{0,1\}^{\omega} \rightarrow[0,1]$.)

Möbius number systems are quite flexible, for example we can implement continued fractions as a Möbius number system.

A fundamental complication of Möbius number systems is that, unlike in ordinary numeration systems, we must always forbid some words from the set Σ, therefore $\Sigma \subsetneq A^{\omega}$.

The purpose of this presentation is to provide the definitions and examples of Möbius number systems and partially answer the question which subshifts can accommodate such a system.

MAIN POINTS. In the following, we cover the most important points of information on MNS to be used as a quick reference during the talk.

Definition. A Möbius transformation (MT) is any nonconstant function $M: \mathbb{C} \cup\{\infty\} \rightarrow \mathbb{C} \cup\{\infty\}$ of the form

$$
M(z)=\frac{a z+b}{c z+d}
$$

where $a, b, c, d \in \mathbb{C}$.
Definition. A sequence M_{1}, M_{2}, \ldots of (complex) upper half-plane preserving MTs represents the number $x \in \overline{\mathbb{R}}$ if $M_{n}(i) \rightarrow x$ for $n \rightarrow \infty$ (here i is the complex unit).

Let A be a finite alphabet. A finite or infinite sequence of symbols from A is called a word. By w_{i} we mean the i-th letter of the word w. For
u, v finite words (or letters), denote by $u v$ the concatenation of u and v. Denote by A^{ω} the set of all one-sided infinite words over A.

The set $\Sigma \subset A^{\omega}$ is a subshift if there exists a set S of finite words such that $w \in \Sigma$ iff w does not contain any $s \in S$ as a factor (i.e. there are no indices i, j such that $\left.w_{i} w_{i+1} \ldots w_{j}=s\right)$.

Assume that we have assigned to every letter $a \in A$ a corresponding MT F_{a}. We then define F_{v} for any finite word v by $F_{v}=F_{v_{1}} \circ F_{v_{2}} \circ \cdots \circ F_{v_{n}}$ (we compose mappings as $(F \circ G)(z)=F(G(z))$).

Definition. Assume we are given a system of MTs $\left\{F_{a}: a \in A\right\}$. A subshift $\Sigma \subset A^{\omega}$ is a Möbius number system if:
(1) For every $w \in \Sigma$, the sequence $\left\{F_{w_{1} \ldots w_{n}}\right\}_{n=1}^{\infty}$ represents some point $\Phi(w) \in \overline{\mathbb{R}}$.
(2) The function $\Phi: \Sigma \rightarrow \overline{\mathbb{R}}$ is continuous and surjective.

A substitution is a monoid homomorphism $\rho: A^{*} \rightarrow B^{*}$. We consider only non-erasing substitutions. Every such substitution can be extended in a natural way to a map $\rho: A^{\omega} \rightarrow B^{\omega}$.

Theorem. If Σ is a MNS then $\Sigma \neq \rho\left(A^{\omega}\right)$ for all alphabets A and all substitutions ρ.

References

[1] Alexandr Kazda. Convergence in Möbius number systems. Integers, submitted.
[2] Petr Kůrka. A symbolic representation of the real Möbius group. Nonlinearity, 21:613-623, 2008.
[3] Petr Kůrka. Möbius number systems with sofic subshifts. Nonlinearity, 22(2):437-456, 2009.

