Möbius number systems

ALEXANDR KAZDA Faculty of Mathematics and Physics Charles University, PRAGUE alexak@atrey.karlin.mff.cuni.cz

INTRODUCTION. A Möbius number system (MNS) assigns real numbers to sequences of Möbius transformations. The result is a continuous projection $\Phi : \Sigma \to \overline{\mathbb{R}}$ where $\overline{\mathbb{R}} = \mathbb{R} \cup \{\infty\}$ is the extended real line and the set $\Sigma \subset A^{\omega}$ is a subshift. (Compare this situation to the standard binary representation of numbers which yields continuous projection $\{0,1\}^{\omega} \to [0,1]$.)

Möbius number systems are quite flexible, for example we can implement continued fractions as a Möbius number system.

A fundamental complication of Möbius number systems is that, unlike in ordinary numeration systems, we must always forbid some words from the set Σ , therefore $\Sigma \subsetneq A^{\omega}$.

The purpose of this presentation is to provide the definitions and examples of Möbius number systems and partially answer the question which subshifts can accommodate such a system.

MAIN POINTS. In the following, we cover the most important points of information on MNS to be used as a quick reference during the talk.

Definition. A Möbius transformation (MT) is any nonconstant function $M : \mathbb{C} \cup \{\infty\} \rightarrow \mathbb{C} \cup \{\infty\}$ of the form

$$M(z) = \frac{az+b}{cz+d}$$

where $a, b, c, d \in \mathbb{C}$.

Definition. A sequence M_1, M_2, \ldots of (complex) upper half-plane preserving MTs *represents the number* $x \in \overline{\mathbb{R}}$ if $M_n(i) \to x$ for $n \to \infty$ (here *i* is the complex unit).

Let *A* be a finite alphabet. A finite or infinite sequence of symbols from *A* is called a *word*. By w_i we mean the *i*-th letter of the word w. For

u, v finite words (or letters), denote by uv the concatenation of u and v. Denote by A^{ω} the set of all one-sided infinite words over A.

The set $\Sigma \subset A^{\omega}$ is a *subshift* if there exists a set *S* of finite words such that $w \in \Sigma$ iff *w* does not contain any $s \in S$ as a factor (i.e. there are no indices *i*, *j* such that $w_i w_{i+1} \dots w_j = s$).

Assume that we have assigned to every letter $a \in A$ a corresponding MT F_a . We then define F_v for any finite word v by $F_v = F_{v_1} \circ F_{v_2} \circ \cdots \circ F_{v_n}$ (we compose mappings as $(F \circ G)(z) = F(G(z))$).

Definition. Assume we are given a system of MTs { $F_a : a \in A$ }. A subshift $\Sigma \subset A^{\omega}$ is a *Möbius number system* if:

- (1) For every $w \in \Sigma$, the sequence $\{F_{w_1...w_n}\}_{n=1}^{\infty}$ represents some point $\Phi(w) \in \overline{\mathbb{R}}$.
- (2) The function $\Phi: \Sigma \to \overline{\mathbb{R}}$ is continuous and surjective.

A substitution is a monoid homomorphism $\rho : A^* \to B^*$. We consider only non-erasing substitutions. Every such substitution can be extended in a natural way to a map $\rho : A^{\omega} \to B^{\omega}$.

Theorem. If Σ is a MNS then $\Sigma \neq \rho(A^{\omega})$ for all alphabets A and all substitutions ρ .

REFERENCES

- [1] Alexandr Kazda. Convergence in Möbius number systems. Integers, submitted.
- [2] Petr Kůrka. A symbolic representation of the real Möbius group. Nonlinearity, 21:613–623, 2008.
- [3] Petr Kůrka. Möbius number systems with sofic subshifts. *Nonlinearity*, 22(2):437–456, 2009.