An infinite combinatorial statement with a poset parameter

PIERRE GILLIBERT

LMNO Laboratory, University of CAEN pierre.gillibert@math.unicaen.fr

We introduce an extension, indexed by a partially ordered set *P* and cardinal numbers κ , λ , denoted by $(\kappa, <\lambda) \rightsquigarrow P$, of the classical relation $(\kappa, n, \lambda) \rightarrow \rho$ in infinite combinatorics. By definition, $(\kappa, n, \lambda) \rightarrow \rho$ holds if every map $F : [\kappa]^n \rightarrow [\kappa]^{<\lambda}$ has a ρ -element free set. For example, Kuratowski's Free Set Theorem states that $(\kappa, n, \lambda) \rightarrow n + 1$ holds iff $\kappa \ge \lambda^{+n}$, where λ^{+n} denotes the *n*-th cardinal successor of an infinite cardinal λ . By using the $(\kappa, <\lambda) \rightsquigarrow P$ framework, we present a selfcontained proof of the result that $(\lambda^{+n}, n, \lambda) \rightarrow n + 2$, for each infinite cardinal λ and each positive integer *n*, which solves a problem stated in the 1985 monograph of Erdős, Hajnal, Máté, and Rado. Furthermore, by using an order-dimension estimate established in 1971 by Hajnal and Spencer, we prove the relation:

$$(\lambda^{+(n-1)}, r, \lambda) \rightarrow 2^{\lfloor \frac{1}{2}(1-2^{-r})^{-n/r} \rfloor},$$

for every infinite cardinal λ and all positive integers n and r with $2 \le r < n$. For example, $(\aleph_{210}, 4, \aleph_0) \rightarrow 32,768$. Other order-dimension estimates yield relations such as $(\aleph_{109}, 4, \aleph_0) \rightarrow 257$ (using an estimate by Füredi and Kahn) and $(\aleph_7, 4, \aleph_0) \rightarrow 10$ (using an exact estimate by Dushnik).

This is a joint work with F. WEHRUNG (University of Caen).