Modular fractal lattices and von Neumann frames

GÁBor CzÉdLI

Bolyai Institute, University of SZEGED
czedli@math.u-szeged.hu
Let L be a bounded lattice. If for each $a_{1}<b_{1} \in L$ and $a_{2}<b_{2} \in L$ there is a lattice embedding $\psi:\left[a_{1}, b_{1}\right] \rightarrow\left[a_{2}, b_{2}\right]$ with $\psi\left(a_{1}\right)=a_{2}$ and $\psi\left(b_{1}\right)=b_{2}$, then we say that L is a quasifractal; see [1]. If ψ can always be chosen an isomorphism or, equivalently, if L is isomorphic to each of its nontrivial intervals, then L will be called a fractal lattice; see [1] again. Jakubík and J. Lihová [7] proved that there is a proper class of quasifractals (in fact, chains) that are not fractals. Some open problems on (quasi)fractals will be mentioned in the talk.

For a ring R with 1 let $\mathcal{V}(R)$ denote the lattice variety generated by the submodule lattices of R-modules. The prime field of characteristic p will be denoted by F_{p}. Let \mathcal{U} be a lattice variety generated by a nondistributive modular quasifractal.

The first target, see [2], is to prove that \mathcal{U} is neither too small nor too large in the following sense: there is a unique $p=p(\mathcal{U})$, a prime number of zero, such that

- $\mathcal{V}\left(F_{p}\right) \subseteq \mathcal{U}$ ("neither too small");
- \mathcal{U} is Arguesian and, for any ring $R, \mathcal{V}(R) \subseteq \mathcal{U}$ implies $\mathcal{V}(R)=$ $\mathcal{V}\left(F_{p}\right)$. ("nor too large").
Von Neumann n-frames have been used in the heart of modular lattice theory for long, see Herrmann [4], Giudici [5] and Wehrung [8] for recent developments.

The second target is to construct a new frame, called product frame, from an "outer" frame and an "inner frame", and to give a motivation for the next talk by SkUbLics, based on [3].

References

[1] G. Czédli: Some varieties and convexities generated by fractal lattices, Algebra Universalis, Algebra Universalis, 60 (2009), 107-124.
[2] G. Czédli: The product of von Neumann n-frames, its characteristic, and modular fractal lattices, Algebra Universalis 60 (2009), 217-230.
[3] G. Czédli and B. Skublics: The ring of an outer von Neumann frame in modular lattices, Algebra Universalis, submitted.
[4] C. Herrmann: Generators for complemented modular lattices and the von Neu-mann-Jónsson coordinatization theorems, Algebra Universalis, to appear.
[5] Luca Giudici: Bisimple rings and fractal lattices, version of June 22-30, 2007, http://nohay.net/mat/still_in_development/bisimple_fractal/
[6] J. Jakubík: On lattice embeddings of a lattice into its intervals, Math. Slovaca, to appear.
[7] J. Jakubík and J. Lihová: On fractal and quasifractal lattices, Acta Sci. Math., to appear.
[8] F. Wehrung: Coordinatization of lattices by regular rings without unit and Banaschewski functions, Algebra Universalis, to appear.

