Luzin and Sierpiński sets

Marcin Michalski and Szymon Żeberski
Wrocław University of Technology

SetTop, Novi Sad, 18-21.08.2014
Let \mathcal{I} be a σ-ideal of subsets of \mathbb{R} (\mathbb{R}^2) and \mathcal{B} a family of Borel sets. We say that \mathcal{I}:

- is translation invariant, if for each $x \in \mathbb{R}$ and $I \in \mathcal{I}$ we have $x + I \in \mathcal{I}$,
- is scale invariant, if for each $x \in \mathbb{R}$ and $I \in \mathcal{I}$ we have $xI \in \mathcal{I}$,
- has Borel base if $(\forall I \in \mathcal{I})(\exists B \in \mathcal{B} \cap \mathcal{I})(I \subseteq B)$,
- has Steinhaus property if $Int(A - B) \neq \emptyset$ for each $A, B \in \mathcal{B} \setminus \mathcal{I}$.
Let \mathcal{I} be a σ-ideal of subsets of \mathbb{R} (\mathbb{R}^2) and \mathcal{B} a family of Borel sets. We say that \mathcal{I}:

- is translation invariant, if for each $x \in \mathbb{R}$ and $I \in \mathcal{I}$ we have $x + I \in \mathcal{I}$,
- is scale invariant, if for each $x \in \mathbb{R}$ and $I \in \mathcal{I}$ we have $xI \in \mathcal{I}$,
- has Borel base if $(\forall I \in \mathcal{I})(\exists B \in \mathcal{B} \cap \mathcal{I})(I \subseteq B)$,
- has Steinhaus property if $\text{Int}(A - B) \neq \emptyset$ for each $A, B \in \mathcal{B} \setminus \mathcal{I}$

Example

Meager sets \mathcal{M} and null sets \mathcal{N} have these properties.
Definition

A is

- \mathcal{I}-nonmeasurable if $A \notin \sigma(B \cup \mathcal{I})$,
- completely \mathcal{I}-nonmeasurable if $A \cap B$ is \mathcal{I}-nonmeasurable for every $B \in B \setminus \mathcal{I}$,
- \mathcal{I}-Luzin set if $|A| = \mathfrak{c}$ and for every $I \in \mathcal{I}$ a set $A \cap I$ is countable,
- strong \mathcal{I}-Luzin set if A is an \mathcal{I}-Luzin and its intersection with every Borel \mathcal{I}-positive set is uncountable.
Definition

A is:

- a Luzin set if $|L| = c$ and every intersection of L and a meager set is countable,
- a strong Luzin set if A is a Luzin set and every intersection of A and a \mathcal{M}-positive Borel set is uncountable,
- a Sierpiński set if $|S| = c$ and every intersection of S and a null set is countable,
- a strong Sierpiński set if A is a Sierpiński set and every intersection of A and a \mathcal{N}-positive Borel set is uncountable,
- a Bernstein set if for each perfect set P we have $A \cap P \neq \emptyset$ and $A^c \cap P \neq \emptyset$.
Fact
Let B be a Borel \mathcal{I}-positive set and let D be a countable dense set. Then $B + D$ is an \mathcal{I}-residual set.

Corollary
Let L be a \mathcal{I}-Luzin set. Then $L + \mathbb{Q}$ is a strong \mathcal{I}-Luzin set.

Fact (CH)
There exists a partition of \mathbb{R} into c many strong \mathcal{I}-Luzin sets.
Theorem (CH)

There exists a set $A \subseteq \mathbb{R}^2$ such that each horizontal slice A^y is a strong \mathcal{I}-Luzin set and each vertical slice A_x is a cocountable set. Such a set is \mathcal{M} and \mathcal{N}-nonmeasurable. Moreover, in the case $\mathcal{I} = \mathcal{M}$, A is completely \mathcal{M}-nonmeasurable, and in the case $\mathcal{I} = \mathcal{N}$, A is completely \mathcal{N}-nonmeasurable.
Theorem (CH)

There exists a set $A \subseteq \mathbb{R}^2$ such that each horizontal slice A^y is a strong \mathcal{I}-Luzin set and each vertical slice A_x is a cocountable set. Such a set is \mathcal{M} and \mathcal{N}-nonmeasurable. Moreover, in the case $\mathcal{I} = \mathcal{M}$, A is completely \mathcal{M}-nonmeasurable, and in the case $\mathcal{I} = \mathcal{N}$, A is completely \mathcal{N}-nonmeasurable.

Theorem (CH)

There exists a set $A \subseteq \mathbb{R}^2$ such that each vertical slice A_x is cocountable and A is completely \mathcal{M}, \mathcal{N}-nonmeasurable.
Theorem (CH)

There exists a set $A \subseteq \mathbb{R}^2$ such that each horizontal slice A^y is a strong Luzin set and each vertical slice A_x is strong Sierpiński set. Moreover, A is completely \mathcal{M}- and \mathcal{N}-nonmeasurable.
Theorem (CH)
There exists a set $A \subseteq \mathbb{R}^2$ such that each horizontal slice A^y is a strong Luzin set and each vertical slice A_x is strong Sierpiński set. Moreover, A is completely \mathcal{M}- and \mathcal{N}-nonmeasurable.

Proof
Let $\{L_\alpha : \alpha < c\}$ and $\{S_\alpha : \alpha < c\}$ be a partition of \mathbb{R} into strong Luzin sets and strong Sierpiński sets respectively. Let us set:

$$A = \bigcup_{\alpha < c} (L_\alpha \times S_\alpha).$$
Theorem

- Assume that a Luzin set exists. Then there exists a set $A \subseteq \mathbb{R}^2$ such that for each straight line l a set $A \cap l$ is a strong Luzin set.
Theorem

- Assume that a Luzin set exists. Then there exists a set $A \subseteq \mathbb{R}^2$ such that for each straight line l a set $A \cap l$ is a strong Luzin set.

- (CH) There exists a set $A \subseteq \mathbb{R}^2$ such that for each straight line l a set $A \cap l$ is a strong Luzin set and A is a Hamel basis.
Theorem

- Assume that a Luzin set exists. Then there exists a set $A \subseteq \mathbb{R}^2$ such that for each straight line l a set $A \cap l$ is a strong Luzin set.

- (CH) There exists a set $A \subseteq \mathbb{R}^2$ such that for each straight line l a set $A \cap l$ is a strong Luzin set and A is a Hamel basis.

- (CH) There exists a set $A \subseteq \mathbb{R}^2$ such that for each homeomorphism $h : \mathbb{R} \to \mathbb{R}^2$ on its image a set $h(\mathbb{R}) \cap A$ is a strong Luzin set and A is a Hamel basis.
Theorem (CH)

There exist a set $A \subseteq \mathbb{R}^2$ such that for every increasing continuous function f $A \cap f$ is a strong Luzin set and for each decreasing locally absolutely continuous function g $A \cap g$ is a strong Sierpiski set and A is a Hamel basis.
Theorem

- Assume that a Sierpiński set exists. Then there exists a set $A \subseteq \mathbb{R}^2$ such that for each straight line l a set $A \cap l$ is a strong Sierpiński set.
- (CH) There exists a set $A \subseteq \mathbb{R}^2$ such that for each straight line l on the plane a set $l \cap A$ is a strong Sierpiński set and A is a Hamel basis.
Fact

- Let L be an \mathcal{I}-Luzin set. Then there exists a linearly independent \mathcal{I}-Luzin set.
- Let L be an \mathcal{I}-Luzin set. Then there exists a linearly independent strong \mathcal{I}-Luzin set.

Problem
Does the existence of an \mathcal{I}-Luzin set imply the existence of an \mathcal{I}-Luzin set which is a Hamel base?
Fact (CH)
There is an \mathcal{I}-Luzin set L such that L is a linear subspace of \mathbb{R}.

Theorem
It is consistent that $2^\omega = \omega_2$ and there is a Luzin set which is a linear subspace of \mathbb{R}.
Fact (CH)
There is an \(\mathcal{I} \)-Luzin set \(L \) such that \(L \) is a linear subspace of \(\mathbb{R} \).

Theorem
It is consistent that \(2^\omega = \omega_2 \) and there is a Luzin set which is a linear subspace of \(\mathbb{R} \).

Proof.
Let us work in a model \(V' \) obtained from a model \(V \) of CH by adding \(\omega_2 \) Cohen reals \(\{ c_\alpha : \alpha < \omega_2 \} \). Set
\[
L = \text{span}_\mathbb{Q}(\{ c_\alpha : \alpha < \omega_2 \}).
\]
Fact (CH)

There is an \mathcal{I}-Luzin set L such that L is a linear subspace of \mathbb{R}.

Theorem

It is consistent that $2^\omega = \omega_2$ and there is a Luzin set which is a linear subspace of \mathbb{R}.

Proof.

Let us work in a model V' obtained from a model V of CH by adding ω_2 Cohen reals $\{c_\alpha : \alpha < \omega_2\}$. Set

$$L = \text{span}_\mathbb{Q}(\{c_\alpha : \alpha < \omega_2\}).$$

□

Problem

Does the existence of a Luzin set imply the existence of a Luzin set which is a linear subspace of \mathbb{R}?
Theorem (CH)
For each \(\mathcal{I} \)-Luzin set \(L \) there exists an \(\mathcal{I} \)-Luzin set \(X \) such that \(\{ x + L : x \in X \} \) is a partition of \(\mathbb{R} \).

Theorem (CH)
There exists an \(\mathcal{I} \)-Luzin set \(L \) such that \(L + L \) is an \(\mathcal{I} \)-Luzin set.

Theorem (CH)
There exists an \(\mathcal{I} \)-Luzin set \(L \) such that \(L + L = \mathbb{R} \).
Theorem (CH)
For each \(n \in \mathbb{N} \setminus \{0\} \) There exists an \(\mathcal{I} \)-Luzin set \(L \) such that \(\bigoplus^n L \) is an \(\mathcal{I} \)-Luzin set and \(\bigoplus^{n+1} L = \mathbb{R} \).

Theorem (CH)
There exists an \(\mathcal{I} \)-Luzin set \(L \) such that \(\text{span}(L) \) is an \(\mathcal{I} \)-Luzin set.
Corollary (CH)

1. There exists an \mathcal{I}-Luzin set L such that $\bigoplus^{n+1} L$ is an \mathcal{I}-Luzin for each $n \in \mathbb{N}$,

2. There exists an \mathcal{I}-Luzin set L such that $L + L = L$,

3. There exists an \mathcal{I}-Luzin set L such that $\langle \bigoplus^{n+1} L : n \in \mathbb{N} \rangle$ is a ascending sequence of \mathcal{I}-Luzin sets.
Theorem (CH)

- There exists a Luzin set L such that $L + L$ is a Bernstein set.
- There exists a Sierpiński set S such that $S + S$ is a Bernstein set.
Theorem (CH)

- There exists a Luzin set L such that $L + L$ is a Bernstein set.
- There exists a Sierpiński set S such that $S + S$ is a Bernstein set.

Proof.

$Perf = \{ P_\alpha : \alpha < c \}$, $\mathcal{M} \cap \mathcal{B} = \{ M_\alpha : \alpha < c \}$.

We choose sequences $\{ l_\alpha : \alpha < c \}$, $\{ l'_\alpha : \alpha < c \}$ and $\{ p_\alpha : \alpha < c \}$ such that for each $\xi < c$:

1. $l_\xi, l'_\xi \notin \bigcup_{\alpha < \xi} M_\alpha$,
2. $(\bigcup_{\alpha \leq \xi} \{ l_\alpha, l'_\alpha \} + \bigcup_{\alpha \leq \xi} \{ l_\alpha, l'_\alpha \}) \cap \{ p_\alpha : \alpha < \xi \} = \emptyset$,
3. $l_\xi + l'_\xi \in P_\xi$,
4. $p_\xi \in P_\xi$.
Proof...
Let us denote:

\[M_1 = \bigcup_{\alpha < \xi} M_{\alpha}, \]
\[M_2 = \bigcup_{\alpha < \xi} M_{\alpha} \cup \left(\{ p_{\alpha} \}_{\alpha < \xi} - \{ l_{\alpha}, l'_{\alpha} \}_{\alpha < \xi} \right) \cup \frac{1}{2} \{ p_{\alpha} \}_{\alpha < \xi}, \]
\[P = P_{\xi}, \]

Does there exist \(l' \in M_2^{\xi} \) such that a set \(M_1^{\xi} \cap (P - l') \) has cardinality \(\mathfrak{c} \)?
Proof...

We extend our universe V (via generic extension) to V' such that $V' \models \text{cov}(\mathcal{M}) \geq \omega_2$.

We will work in V'. Let us now fix a set $A \subseteq P$ of cardinality ω_1. Notice that for every $a \in A$ a set $\{l : a - l \in M_1^c\} = -M_1^c + a$ is comeager. Since $\text{cov}(\mathcal{M}) > \omega_1$

\[\bigcap_{a \in A} \{l : a - l \in M_1^c\} \cap M_2^c \neq \emptyset. \]
Proof...

We extend our universe \(V \) (via generic extension) to \(V' \) such that \(V' \models \text{cov}(\mathcal{M}) \geq \omega_2 \).

We will work in \(V' \). Let us now fix a set \(A \subseteq P \) of cardinality \(\omega_1 \).

Notice that for every \(a \in A \) a set \(\{l : a - l \in M_1^c\} = -M_1^c + a \) is comeager. Since \(\text{cov}(\mathcal{M}) > \omega_1 \)

\[\bigcap_{a \in A} \{l : a - l \in M_1^c\} \cap M_2^c \neq \emptyset. \]

It shows that \(V' \models \exists l' \in M_2^c \ | M_1^c \cap (P - l')| \geq \omega_1 \).

So, \(V' \) models the following sentence:

\[(\exists l')_R (\exists T)_{\text{Perf}} (\forall x)_{R} (l' \in M_2^c \land (x \in T \rightarrow x \in M_1^c \land x + l' \in P)) \]

By Shoenfield absoluteness theorem it is also true in \(V \). \(\Box \)
Theorem
There are no Luzin set L and Sierpiński set S such that $L + S$ is a Bernstein set.

Theorem
There are no Luzin set L and Sierpiński set S such that $L + S$ is a Bernstein set.

Follows from
Lemma
Let A be a null set. We can find a perfect set P such that for every n

\[A + P + P + \cdots + P \in \mathcal{N}. \]
Lemma
Let A be a null set. We can find a perfect set P such that for every n

$$A + P + P + \cdots + P \in \mathcal{N}.$$

Proof of lemma
We can assume that A is Borel. Let V be our universe. We enlarge it (via forcing) to V' satisfying $V' \models add(\mathcal{N}) = \omega_3$.
Proof of lemma...

Let us work now in V'. Take $X \subseteq \mathbb{R}$ of cardinality ω_2. Then $A + X \in \mathcal{N}'$, so we can find a null Borel set B, such that $A + X \subseteq B$. Notice that $\{x : x + A \subseteq B\}$ is a coanalytic set of cardinality ω_2, hence, it contains a perfect set P_0.
Proof of lemma...
Let us work now in V'. Take $X \subseteq \mathbb{R}$ of cardinality ω_2. Then $A + X \in \mathcal{N}$, so we can find a null Borel set B, such that $A + X \subseteq B$. Notice that $\{x : x + A \subseteq B\}$ is a coanalytic set of cardinality ω_2, hence, it contains a perfect set P_0.
Now, set $A_1 = A_0 + P_0$. We want to find a perfect set $P_1 \subseteq P_0$ such that $A_1 + P_1 \in \mathcal{N}$. Moreover, we require that the first splitting node in P_0 is still a splitting node in P_1.
Proof of lemma...
Let us work now in V'. Take $X \subseteq \mathbb{R}$ of cardinality ω_2. Then $A + X \in \mathcal{N}$, so we can find a null Borel set B, such that $A + X \subseteq B$. Notice that $\{x : x + A \subseteq B\}$ is a coanalytic set of cardinality ω_2, hence, it contains a perfect set P_0. Now, set $A_1 = A_0 + P_0$. We want to find a perfect set $P_1 \subseteq P_0$ such that $A_1 + P_1 \in \mathcal{N}$. Moreover, we require that the first splitting node in P_0 is still a splitting node in P_1. We proceed by a simple induction on n-th step finding for a null set A_n and a perfect set P_n a perfect set $P_{n+1} \subseteq P_n$ such that $A_{n+1} = A_n + P_{n+1}$ is null and all splitting nodes from first $n + 1$ levels in P_n remains splitting nodes in P_{n+1}.
Proof of lemma...

We get a sequence of perfect sets \((P_n, n \in \omega)\) such that
\[P = \bigcap_{n \in \omega} P_n \] is a perfect set. Moreover, we can find a null \(G_\delta\) \(B\) such that \(B \supseteq \bigcup_{n \in \omega} A_n\). Notice that

\[V' \models (\exists P \in \text{Perf})(\exists B)(\forall n)(\forall x)(\forall a)(\forall b)(B \text{ is null } G_\delta \land (a \in A \land b \not\in B \land x_0, x_1, \ldots, x_n \in P \rightarrow a + x_0 + \cdots + x_n \neq b)), \]

where \(x_0, x_1, \ldots, x_n\) are naturally coded by \(x\) e.g. by the formula
\[x_i(k) = x(kn + i). \]

Above formula is \(\Sigma^1_2\). \(\square\)
Marcin Michalski, Szymon Żeberski, “Luzin and Sierpiński sets, some nonmeasurable subsets of the plane“, arXiv.org/abs/1406.3062