A remark on the general nature of the Katětov’s construction

Dragan Mašulović

Department of Mathematics and Informatics
University of Novi Sad, Serbia

joint work with Wiesław Kubiś

SE=OP 2014, Novi Sad, 18 Aug 2014
The Urysohn space

P. URYSOHN: *Sur un espace métrique universel.*

\[U \] — complete separable metric space which is homogeneous and embeds all separable metric spaces.

\[U = \overline{U_Q} \]
Katětov’s construction of the Urysohn space

M. Katětov: *On universal metric spaces.*
General topology and its relations to modern analysis and algebra. VI (Prague, 1986),

A Katětov function over a finite rational metric space X is every function $\alpha : X \to \mathbb{Q}$ such that

$$|\alpha(x) - \alpha(y)| \leq d(x, y) \leq \alpha(x) + \alpha(y)$$

$K(X) =$ all Katětov functions over X, which is a rational metric space under sup metric

$$\text{colim}(X \hookrightarrow K(X) \hookrightarrow K^2(X) \hookrightarrow K^3(X) \hookrightarrow \cdots) = U_{\mathbb{Q}}$$
M. Katětov: *On universal metric spaces.*

Observation 1. $U_\mathbb{Q}$ is countable and homogeneous.

Observation 2. $K(X)$ contains all 1-point extensions of X.

Observation 3. K is functorial.
Homogeneity

A

automorphism

isomorphism
Fraïssé theory

\textbf{age}(A) — the class of all finitely generated struct’s which embed into A

\textit{amalgamation class} — a class \(\mathcal{K} \) of fin. generated struct’s s.t.

- there are countably many pairwise noniso struct’s in \(\mathcal{K} \);
- \(\mathcal{K} \) has (HP);
- \(\mathcal{K} \) has (JEP); and
- \(\mathcal{K} \) has (AP):
 for all \(A, B, C \in \mathcal{K} \) and embeddings \(f : A \hookrightarrow B \) and \(g : A \hookrightarrow C \), there exist \(D \in \mathcal{K} \) and embeddings \(u : B \hookrightarrow D \) and \(v : C \hookrightarrow D \) such that \(u \circ f = v \circ g \).
Fraïssé theory

Theorem. [Fraïssé, 1953]

1. If A is a countable homogeneous structure, then $\text{age}(A)$ is an amalgamation class.

2. If \mathcal{K} is an amalgamation class, then there is a unique (up to isomorphism) countable homogeneous structure A such that $\text{age}(A) = \mathcal{K}$.

3. If B is a countable structure *younger than* A (that is, $\text{age}(B) \subseteq \text{age}(A)$), then $B \hookrightarrow A$.

Definition. If \mathcal{K} is an amalgamation class and A is the countable homogeneous structure such that $\text{age}(A) = \mathcal{K}$, we say that A is the *Fraïssé limit* of \mathcal{K} and write $A = \text{Flim}(\mathcal{K})$.
Some prominent Fraïssé limits

\mathbb{Q} — the Fraïssé limit of the class of all linear orders

$U_\mathbb{Q}$ — the Fraïssé limit of the class of finite metric spaces with rational distances (the rational Urysohn space)

R — the Fraïssé limit of the class of all finite graphs (the Rado graph)

H_n — the Fraïssé limit of the class of all finite K_n-free graphs, $n \geq 3$ (Henson graphs)

P — the Fraïssé limit of the class of all finite posets (the random poset)
Recall:

M. Katětov: *On universal metric spaces.*
General topology and its relations to modern analysis and algebra. VI (Prague, 1986),

Katětov’s construction

\[\text{colim}(X \hookrightarrow K(X) \hookrightarrow K^2(X) \hookrightarrow K^3(X) \hookrightarrow \cdots) = U_{\mathbb{Q}} \]

Observation 1. $U_{\mathbb{Q}}$ is countable and homogeneous.

Observation 2. $K(X)$ contains all 1-point extensions of X.

Observation 3. K is functorial.
Katětov functors

\(\mathcal{A} \) — a category of fin generated \(L \)-struct’s with (HP) and (JEP)

\(\mathcal{C} \) — the category of all colimits of \(\omega \)-chains in \(\mathcal{A} \)

Definition. A functor \(K : \mathcal{A} \to \mathcal{C} \) is a Katětov functor if

1. \(K \) preserves embeddings, and
2. there exists a natural transformation \(\eta : \text{ID} \to K \) such that for every embedding \(f : A \hookrightarrow B \) in \(\mathcal{A} \) where \(B \) is a 1-point extension of \(A \) there is an embedding \(g : B \hookrightarrow K(A) \) satisfying

\[
\begin{array}{ccc}
A & \xrightarrow{\eta_A} & K(A) \\
\downarrow f & & \downarrow g \\
& & B
\end{array}
\]
Katětov functors

$K(A)$ is “a functorial amalgam” of all 1-point extensions of A.
Why is it hard to construct a Katětov functor by hand?

Example. Tournaments.
Example. Tournaments.
Why is it hard to construct a Katětov functor by hand?

Example. Tournaments.

How to add edges in a “functorial” way?
Why is it hard to construct a Katětov functor by hand?

Example. Tournaments.

\[T = (V, E) \] — a tournament with \(n \) vertices
\[T_{\leq n} \] — the tournament with vertices \(V_{\leq n} \) and edges defined by:
 - if \(s \) and \(t \) are seq’s such that \(|s| < |t| \), put \(s \to t \) in \(T_{\leq n} \);
 - if \(s = \langle s_1, \ldots, s_k \rangle \) and \(t = \langle t_1, \ldots, t_k \rangle \) are distinct sequences of the same length, find the smallest \(i \) such that \(s_i \neq t_i \) and then put \(s \to t \) in \(T_{\leq n} \) if and only if \(s_i \to t_i \) in \(T \).

Put \(K(T) = (V^*, E^*) \) where
\[V^* = V \cup V_{\leq n}, \]
\[E^* = E \cup E(T_{\leq n}) \cup \{ v \to s : v \in V, s \in V_{\leq n}, v \text{ appears in } s \} \]
\[\cup \{ s \to v : v \in V, s \in V_{\leq n}, v \text{ does not appear in } s \}. \]
Why is it hard to construct a Katětov functor by hand?

Example. Tournaments.

approx. $2n^n$ new vertices
Katětov functors

\(\mathcal{A} \) — a category of fin generated \(L \)-struct’s with (HP) and (JEP)

\(\mathcal{C} \) — the category of all colimits of \(\omega \)-chains in \(\mathcal{A} \)

Theorem. If there exists a Katětov functor \(K : \mathcal{A} \to \mathcal{C} \), then

1. \(\mathcal{A} \) is an amalgamation class,
2. its Fraïssé limit \(F \) can be obtained by the “Katětov construction” starting from an arbitrary \(A \in \mathcal{A} \):

\[
F = \text{colim}(A \hookrightarrow K(A) \hookrightarrow K^2(A) \hookrightarrow K^3(A) \hookrightarrow \cdots),
\]

3. \(F \) is \(\mathcal{C} \)-morphism-homogeneous.
Definition. A structure F is \mathcal{C}-morphism-homogeneous if every \mathcal{C}-morphism between finitely induced substructures of F extends to a \mathcal{C}-endomorphism of F.
\mathcal{C}-morphism-homogeneity

\mathcal{C}-endomorphism

\mathcal{C}-morphism

A Katětov functor exists for the following categories \mathcal{A}:

- finite linear orders with order-preserving maps,
- finite graphs with graph homomorphisms,
- finite K_n-free graphs with embeddings,
- finite digraphs with digraph homomorphisms,
- finite tournaments with homomorphisms = embeddings.
- finite rational metric spaces with nonexpansive maps,
- finite posets with order-preserving maps,
- finite boolean algebras with homomorphisms,
- finite semilattices/lattices/distributive lattices with embeddings.

A Katětov functor **does not exist** for the category of finite K_n-free graphs and graph homomorphisms.
Existence of Katětov functors

\(\mathcal{A} \) — a category of fin generated \(L \)-struct’s with (HP) and (JEP)

\(\mathcal{C} \) — the category of all colimits of \(\omega \)-chains in \(\mathcal{A} \)

Theorem. There exists a Katětov functor \(K : \mathcal{A} \to \mathcal{C} \) if and only if \(\mathcal{A} \) is an amalgamation class with the *morphism extension* property.
Morphism extension property

\(\mathcal{C} \) — a category

Definition. \(\mathcal{C} \in \mathcal{C} \) has the *morphism extension property in \(\mathcal{C} \) if* for any choice \(f_1, f_2, \ldots\) of partial \(\mathcal{C}\)-morphisms of \(C\) there exist \(D \in \mathcal{C}\) and \(m_1, m_2, \ldots \in \text{End}_\mathcal{C}(D)\) such that \(C\) is a substructure of \(D\), \(m_i\) is an extension of \(f_i\) for all \(i\), and the following *coherence* conditions are satisfied for all \(i, j\) and \(k\):

- if \(f_i = \text{id}_A\), \(A \subseteq C\), then \(m_i = \text{id}_D\),
- if \(f_i\) is an embedding, then so is \(m_i\), and
- if \(f_i \circ f_j = f_k\) then \(m_i \circ m_j = m_k\).

We say that \(\mathcal{C}\) has the *morphism extension property* if every \(\mathcal{C} \in \mathcal{C} \) has the morphism extension property in \(\mathcal{C} \).
Existence of Katětov functors for algebras

L — algebraic language

\mathcal{V} — a variety of L-algebras understood as a category of L-algebras with embeddings

\mathcal{A} — the full subcategory of \mathcal{V} spanned by all finitely generated algebras in \mathcal{V}

\mathcal{C} — the full subcategory of \mathcal{V} spanned by all countably generated algebras in \mathcal{V}

Theorem. There exists a Katětov functor $K : \mathcal{A} \to \mathcal{C}$ if and only if \mathcal{A} is an amalgamation class.
The Importance of Being Earnest Functor

Theorem. Let $K : \mathcal{A} \to \mathcal{C}$ be a Katětov functor and let F be the Fraïssé limit of \mathcal{A}. Then for every object C in \mathcal{C}:

- $\text{Aut}(C) \hookrightarrow \text{Aut}(F)$;
- $\text{End}_C(C) \hookrightarrow \text{End}_C(F)$.

Proof (Idea). Take any $f : C \to C$. Then:

$$
\begin{array}{cccccc}
C & \xrightarrow{\eta} & K(C) & \xrightarrow{\eta} & K^2(C) & \xrightarrow{\eta} & \ldots & \sim & F \\
\downarrow f & & \downarrow K(f) & & \downarrow K^2(f) & & & \downarrow f^* \\
C & \xleftarrow{\eta} & K(C) & \xleftarrow{\eta} & K^2(C) & \xleftarrow{\eta} & \ldots & \sim & F
\end{array}
$$
Theorem. Let $K : A \to C$ be a Katětov functor and let F be the Fraïssé limit of A. Then for every object C in C:

- $\Aut(C) \hookrightarrow \Aut(F)$;
- $\End_C(C) \hookrightarrow \End_C(F)$.

Moreover, if K is locally finite (that is, $K(A)$ is finite whenever A is finite), then the above embeddings are countinuous w.r.t. the topology of pointwise convergence.
Corollary. For the following Fraïssé limits F we have that $\text{Aut}(F)$ embeds all permutation groups on a countable set:

- \mathbb{Q},
- the random graph [Henson 1971],
- Henson graphs [Henson 1971],
- the random digraph,
- the rational Urysohn space [Uspenskij 1990],
- the random poset,
- the countable atomless boolean algebra,
- the random semilattice,
- the random lattice,
- the random distributive lattice.
Corollary. For the following Fraïssé limits F we have that $\text{End}(F)$ embeds all transformation monoids on a countable set:

- \mathbb{Q},
- the random graph [Bonato, Delić, Dolinka 2010],
- the random digraph,
- the rational Urysohn space,
- the random poset [Dolinka 2007],
- the countable atomless boolean algebra.
The Importance of Being Earnest Functor

\mathcal{C} — a locally finite category of L-struct’s and all L-hom’s

\mathcal{A} — the full subcategory of \mathcal{C} consisting of all finite struct’s in \mathcal{C}

Theorem. Assume that there exists a locally finite Katětov functor $K : \mathcal{A} \rightarrow \mathcal{C}$. Then the following are equivalent for a $\mathcal{C} \in \mathcal{C}$:

1. \mathcal{C} is locally K-closed;
2. \mathcal{C} is algebraically closed in \mathcal{C};
3. \mathcal{C} is a retract of $\text{Flim}(\mathcal{A})$.
\(\mathcal{A} \) — a category of fin generated \(L \)-struct’s with (HP) and (JEP)

\(\mathcal{C} \) — the category of all colimits of \(\omega \)-chains in \(\mathcal{A} \)

Theorem. Assume that there exists a Katětov functor \(K : \mathcal{A} \to \mathcal{C} \) and that \(\mathcal{C} \) has retractive natural (JEP). Let \(F \) be the Fraïssé limit of \(\mathcal{A} \). Then:

1. \(\text{End}_\mathcal{C}(F) \) is *strongly distorted*,
2. the *Sierpiński rank* of \(\text{End}_\mathcal{C}(F) \) is at most 5,
3. if \(\text{End}_\mathcal{C}(F) \) is not finitely generated then it has the *semigroup Bergman property*.
Corollary. For the following Fraïssé limits F we have that $\text{End}(F)$ has the semigroup Bergman property:

- random graph,
- random digraph,
- rational Urysohn sphere (the Fraïssé limit of the category of all fin met spaces with distances in $[0, 1]_\mathbb{Q}$),
- random poset,
- random boolean algebra (the Fraïssé limit of the category of all finite boolean algebras).