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These lectures are based on joint work with Jinďrich Zapletal,
appearing in the book Geometric Set Theory.

The first half of the book studies equivalence relations on
Polish spaces; the second half presents a method for producing
independence results in Choiceless set theory.

Our first two lectures will be on the first half. The others will
be on the second.

Our first lecture is on Chapter 2.
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Geometry is about intersections of points, curves and surfaces.
Geometric set theory is about intersections of models of set
theory.

– Bjørn Kjos-Hanssen
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Part I : Virtual equivalence classes
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Polish spaces and analytic sets

A Polish space is a separable, completely metrizable topological
space (e.g., Rn, 2ω, ωω).

A subset of a Polish space X is analytic if it is a continuous
image of ωω (equivalently, if it is definable by a formula of the
form

∃x ∈ Xφ(x , y),

where the quantifiers in φ range over ω and φ is allowed an
arbitrary element of X as a parameter).

A set is Borel if it is analytic and co-analytic (assuming CCR,
the statement that every countable family of nonempty sets of
reals has a Choice function).
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Borel equivalence relations (I)

• =X , the identity relation on X .

• E0 is the Vitali equivalence on 2ω, connecting x , y ∈ 2ω if
they differ at only finite set of entries.

• E1 is the equivalence relation on (2ω)ω connecting x , y if
they differ at only finite number of entries.
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Borel equivalence relations (II)

• E2 is the relation on 2ω connecting x , y if the sum∑
{ 1

n + 1
: x(n) 6= y(n)}

is finite.

• F2 is the equivalence relation on (2ω)ω connecting x , y if

rng(x) = rng(y).

• EKσ is the set of pairs (f , g) from ωω which are bounded
by the identify function and have bounded difference.
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Countable equivalence relations

An equivalence relation E is said to be countable if every
E -class is countable.

=X and E0 are countable

E1, E2, F2 and EKσ are not.
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Polish group actions

A Polish group consists of a Polish topology on a group for
which the group operation and the inverse operation are
continuous.

If G is a Polish group and X is a Polish space, a Polish G -action
is a continuous map a : G × X → X for which a(e, x) = x and

a(g , a(h, x)) = a(gh, x).

Often we write g · x for a(g , x).

Such an action induces an analytic equivalence relation EG
X on

X , where xEG
X y if there is a g ∈ G such that g · x = y .
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Examples

• S∞ (the group of permutations of ω) acts on a Polish
space of the form Y ω by

g · x(n) = x(g(n)).

• A group G acts on a Polish space of the form Y G by

g · x(h) = x(g−1h).

• (Z,+) acts on 2Z by n · x(m) = x(m − n).
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Orbit equivalence relations

An orbit equivalence relation is a relation induced by a Polish
group action.

Feldman-Moore: Countable Borel equivalence relations are
orbit relations (via a countable group).

F2 is an orbit equivalence relation (via permutations of ω).

E2 and EKσ are also orbit relations.

E1 is not.
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Reductions

Given equivalence relations E and F on a Polish spaces X and
Y , we say that E is Borel-reducible to F (and write E ≤B F ) if
there is a Borel function f : X → Y such that

xEy ⇔ f (x)Ff (y)

for all x , y ∈ X .

We say that E is almost-reducible to F (and write E ≤a F ) if
there exist a Borel function f : X → Y and a countable C ⊆ X
such that

xEy ⇔ f (x)Ff (y)

for all x , y in

X \
⋃
{[x ]E : x ∈ C}.
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Smooth and essentially countable

An equivalence relation E is said to be smooth if E ≤B=X (for
any Polish space X ).

E is said to be essentially countable if E ≤B F for some
countable Borel equivalence relation F .
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Dichotomies

Silver : If E is coanalytic and has uncountably many classes,
then

=X≤B E .

Harrington-Kechris-Louveau : If E is Borel and E 6≤B=X , then

E0 ≤B E .
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Structural relations

Let S be a set of structures on ω, in some relational language
L.

The isomorphism relation on S is analytic.
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Structural relations with
wellfoundedness

If R is a binary relation in L, the following relation is also
analytic : xEy if either x and y are isomorphic, or Rx and Ry

are both illfounded.

1 Eω1 is the corresponding relation for linear orders on ω.

2 HC is the corresponding relation for extensional binary
relations on ω.
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Reinterpretations

When passing from a model M to an extension M[G ], every
analytic subset of every Polish space in M has a natural
reinterpretation in M[G ].

The reinterpretation of an equivalence relation is an
equivalence relation.
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Mutually generic extensions

Given partial orders P and Q, filters G ⊆ P and H ⊆ Q are
said to be mutually V -generic if (G ,H) is V -generic for the
partial order P × Q.

This is equivalent to the assertion that H is V [G ]-generic.

A classical theorem of Solovay says that if G and H are
mutually generic, then

V [G ] ∩ V [H] = V .
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Proof

Suppose that (p, q) ∈ P × Q, τ is a P-name for a set of
ordinals and σ is a Q-name for a set of ordinals.

If p decides the statement α̌ ∈ τ , for each ordinal α, then p
forces that τG ∈ V .

If not, there exist α ∈ Ord and p1, p2 ≤ p such that p1
α̌ ∈ τ
and p2
α̌ 6∈ τ .

Let q′ ≤ q decide the statement α̌ ∈ σ.

If q′
α̌ ∈ σ, then (p2, q
′) ≤ (p, q) forces that τG 6= σH .

If q′
α̌ 6∈ σ, then (p1, q
′) ≤ (p, q) forces that τG 6= σH .
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Pins

Let E be an analytic equivalence relation on a Polish space X .
An E -pin is a pair (Q, τ) such that

• Q is a partial order

• τ is a Q-name for an element of X and,

• for all generic (G ,H) for Q × Q, V [G ,H] |= τGEτH .

An E -pin represents the same E -equivalence class in all
extensions by Q, even though the class may have no members
in the ground model.

Note that for any two V -generic filters G0,G1 ⊆ Q, there exists
in some forcing extension an H ⊆ Q such that (G0,H) and
(G1,H) are both V -generic for Q × Q.
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Trivial pins

When E is an analytic equivalence relation on a Polish space
X , x ∈ X and P is a partial order, then the pair (P, x̌) is a
(trivial) pin.

Some equivalence relations have only trivial pins (up to a
suitable notion of equivalence of pins).

These are equivalence relations are said to be pinned.



Geometric Set
Theory

P.B. Larson

Equivalence
relations

Pins

Virtual classes

Operations

Jumps

Cardinal
invariants

Bounds

Absoluteness

Open
problems

Nontrivial examples (Borel)

• F2 (the “same range” equivalence relation for ω-sequences
from 2ω).

For any (nonempty) set of reals A, (Col(ω,A), ġ) is an
F2-pin, where ġ is a name for the generic surjection from
ω to A.

• The equivalence relation on P(ω)ω of generating the same
filter.

For any (nonempty) filter F on ω, (Col(ω,F ), ġ) is a pin,
where ġ is a name for the generic enumeration of F .

In both cases the examples given characterize all the pins, up
to a suitable notion of equivalence.
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Nontrivial examples (analytic)

• Eω1 (the “isomorphic or both illfounded” equivalence
relation on linear orders on ω).

For any infinite ordinal α, (Col(ω, α), ġ) is an Eω1-pin,
where ġ is a name for a generic wellordering of ω in
ordertype α.

• HC (the “isomorphic or both illfounded” equivalence
relation on extensional binary relations on ω).

For any infinite transitive set X , (Col(ω,X ), τ) is an
HC-pin, where, letting ġ be a generic enumeration of X , τ
is a name for the set of pairs (x , y) ∈ ω2 for which
ġ(x) ∈ ġ(y).

Again, these are all the pins.
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Isomorphism relations

For any theory T in any countable first-order language, the
isomorphism relation on the set of models of T with domain ω
is analytic.

Every model M of T (of any cardinality) induces a pin via the
partial order Col(ω,M).

If M has uncountable Scott rank, then the pin induced by M is
nontrivial.

For some theories T there are more pins, since an infinitary
sentence can be forced to be a Scott sentence in a suitable
collapse extension, without having a model in the ground
model.

Question : Can this happen for the theory of linear orders?
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Equivalent pins

Two pins (Q, τ), (P, σ) are E -equivalent if

V [G ,H] |= τGEσH

holds for all generic

(G ,H) ⊆ Q × P.

The corresponding equivalence classes are the virtual
equivalence classes of E .
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Pinned equivalence relations

An E -pin is said to be trivial if it is equivalent to a pair of the
form (1, x̌), where 1 is the trivial partial order.

Every E -pin of the form (Q, τ) with Q countable (or even
reasonable) is trivial.

An equivalence relation E is pinned if every E -pin is trivial.
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Nontrivial partial orders

A partial order P is reasonable if, for every ordinal γ and every
f : γ<ω → γ in a forcing extension by P, there is an a ⊆ γ
closed under f which is a countable set in the ground model.

Proper forcings are reasonable.

If (P, τ) is a nontrivial pin, then P is not reasonable (in
particular, it is not countable).
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Examples of pinned relations

• Countable Borel equivalence relations.

• Actions of Polish cli groups (e.g, locally compact
topological groups).

• E1, E2 and EKσ .
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Examples of unpinned relations

• F2

• Eω1

• HC

• The relation on P(ω)ω of generating the same filter.

• The isomorphism relation for any first-order theory having
models of uncountable Scott rank.
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Compact metric spaces

Zelinsky: Every orbit equivalence relation of a Polish group
action is Borel reducible to the homeomorphism relation on
compact metrizable spaces.

Compact Hausdorff spaces give a class of virtual equivalence
classes.

Given such a space with a basis of size κ, the space naturally
reinterprets (a la Fremlin/Zapletal) as a second countable
compact Hausdorff (and thus metrizable) space after forcing
with Col(ω, κ).

Question: Are these all the virtual equivalence classes?
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Measure equivalence

Two probability measures on a Polish space X are said to be
measure-equivalent if they have the same null sets.

Let EX be the corresponding relation on the space P(X ) of
Borel probability measures on X .

F2 <B EX (that the relation is strict is due to Sofronidis).

Given {µn : n ∈ ω},
∑
µn2−n−1 is in P(X ); the EX -class of the

resulting measure does not depend on the enumeration.

This shows that each infinite subset of P(X ) induces a virtual
EX -class via Col(ω,P(X )).

Again: are these all the virtual equivalence classes?
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Operations on equivalence
relations

Various operations (e.g., products and increasing unions) can
be used to generate equivalence relations.

In many cases the pins for the output relation are generated in
a canonical way from the pins for the input relations.
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Products

Given equivalence relations En on Xn (n ∈ ω), the product
relation E on

∏
Xn is defined by setting fEg to hold if

∀n ∈ ω f (n)Eng(n).

If, for each n, (Qn, τn) is an En-pin, then (
∏

Qn, τ) is an E -pin,
where τ is a name for the sequence of realizations of the τn’s.

This characterizes all the E -pins.

It follows that the class of pinned equivalence relations is
preserved under products.
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Unions

Let E be the the union of an increasing sequence 〈En : n ∈ ω〉
of equivalence relations on some Polish space X .

The E -pins are exactly those pairs (Q, τ) which are En-pins for
some n.

The class of pinned equivalence relations is preserved under
increasing unions.
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Containment

Suppose that E ⊆ F are equivalence relations over the same
Polish space X .

Then every E -pin is an F -pin.

We say that F is countable over E if every F -class is a
countable union of E -classes. In this case, every F -pin is an
E -pin.

In general this doesn’t follow from E ⊆ F : let E be F2 × F2

and F be F2 × ((2ω)ω)2.
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The Friedman-Stanley jump

If E is an equivalence relation on a space X , the
Friedman-Stanley jump of E is the relation E+ on Xω defined
by setting

fE+g

to hold if the ranges of f and g represent the same set of
E -classes.

For example F2 is the Friedman-Stanley jump of =2ω .

An E+ pin is given by a set {(Qi , τi ) : i ∈ I} of E -pins and a∏
Qi × Col(ω, I )-name for an ω-sequence listing the

corresponding realization of the τi ’s.

These represent all the virtual E+-classes.
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The Louveau jump

The Louveau jump of an equivalence relation E on a Polish
space X with respect to a filter F on ω is the relation EF on
Xω given by setting

f EFg

to hold if f (n)Eg(n) for F -many n.

E1 is the Louveau jump of =2ω with respect to the cofinite
(Frechet) filter.

If F is countably generated, then EF is an increasing union of
products of E , so its pins are induced by ω-sequences of E -pins.

In particular, if E is pinned and F is countably generated, then
EF is pinned.
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The Coskey-Clemens jump

Given a countable group Γ, the Coskey-Clemens Γ-jump of an
equivalence relation E on a Polish space X is the relation E [Γ]

on X Γ given by setting
f E [Γ]g

to hold if there is an γ ∈ Γ such that

x(γ−1α)Eg(α)

for all α ∈ Γ.

This is a countable union of products of E , so its pins are
induced by functions from Γ to the set of E -pins.

In particular, if E is pinned, then so is E [Γ].
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κ and λ

It is sometimes possible to prove nonreducibility results
between analytic equivalence relations via the association of
cardinal invariants.

For any analytic equivalence relation E , we let:

• κ(E ), the least cardinal κ such that every E -pin is
equivalent to one of the form (Q, τ), where |Q| < κ (set
to ∞ if there is no such κ and ℵ1 if E is pinned)

• λ(E ), the cardinality of the set of equivalence classes of
E -pins (if it exists, otherwise ∞)

Note that λ(E ) ≤ 2κ(E).
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F2 and Eω1
again

• Every F2 pin is equivalent to one of the form
(Col(ω,A), ġ) for some set of reals A, so

κ(F2) = (2ℵ0)+

and
λ(F2) = 22ℵ0 .

• Every Eω1 pin is equivalent to one of the form
(Col(ω, α), ġ) for some ordinal α, so

κ(Eω1) = λ(Eω1) =∞.
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If E is pinned, then κ(E ) = ℵ1 and λ(E ) = 2ℵ0 .

If E is the product of 〈En : n ∈ ω〉, then

κ(E ) ≤ (
∏
n

κ(En))+

and
λ(E ) =

∏
n

λ(En).

If E is the increasing union of {En : n ∈ ω} then

λ(E ) = supnλ(En)

and
κ(E ) = sup

n
κ(En).
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λ and the Friedman-Stanley jump

If E+ is the Friedman-Stanley jump of E (and E has infintely
many classes), then

λ(E+) = 2λ(E).
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Embeddings of relations

Let E be an analytic equivalence relation on a Polish space X ,
and let F be a Borel equivalence relation on a set Y .

We let EF be the restriction of (E × F )+ to the set of
ω-sequences from X × Y whose second coordinates are all
F -distinct.

Then λ(EF ) = λ(E )λ(F ), as the EF -virtual classes are
respresented by functions from the set of virtual F -classes to
the set of virtual E -classes.
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Comparing equivalence relations

If E ≤a F then κ(E ) ≤ κ(F ) and λ(E ) ≤ λ(F ).

This shows that:

• If E ≤a F and F is pinned, then so is E ;

• Eω1 6≤a F2;

• for any E with infinitely many classes, E+ 6≤a E , where
E+ is the Friedman-Stanley jump of E .
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ℵα and iα

Recall that

• ℵ0 = i0 = |N|,
• ℵα+1 = ℵ+

α ,

• iα+1 = 2iα ,

• for limit ordinals γ,

ℵγ = sup
α<γ
ℵα

and
iγ = sup

α<γ
iα.

The Generalized Continuum Hypothesis (GCH) is the
statement that ℵα = iα for all ordinals α.
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For each countable ordinal α there are Borel equivalence
relations Eα and Fα for which, provably,

κ(Eα) = ℵα

and
κ(Fα) = i+

α .

The relative values of ℵα and iβ can be manipulated by
forcing.

This shows for instance that neither of E3 and F1 is
Borel-reducible to the other.
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Bounds for Borel relations

Work of Jacques Stern from 1984 shows that if E is a Borel
equivalence relation of Borel rank α, then

κ(E ) < i+
α

for every Borel equivalence relation E .

In particular,
κ(E ) < iω1

for every Borel equivalence relation E .
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Bounds for analytic relations

For analytic equivalence relations E with κ(E ) <∞ the least
measurable cardinal is an upper bound on κ(E ), but it not
known if this can be improved.

It cannot be improved below the least ω1-Erdös cardinal.

If there is a measurable cardinal, then for any analytic
equivalence relation E ,

κ(E ) =∞

if and only if
Eω1 ≤a E .
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Absoluteness (Borel)

For Borel equivalence relations E , the property of being pinned
is absolute (Π1

1) between models of ZFC.

E is pinned (in V ) if and only if it is pinned in every countable
ω-model of a sufficient fragment of ZFC.

Being pinned is not absolute between models of ZF, however.

The restriction of F2 to sets linearly ordered by any fixed Borel
relation (with the property that every uncountable set has an
upper bound) is unpinned in ZFC but pinned in many
Choiceless models.
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Absoluteness (analytic)

If there exists a proper class of Woodin cardinals, then for
analytic equivalence relations, the property of being pinned is
absolute.

Downwards absoluteness of pinnedness can fail between models
of ZFC for analytic equivalence relations.
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Open Question 1

By Silver’s theorem, every unpinned Borel equivalence relation
has at least 2ℵ0 many classes.

Question : Must every unpinned Borel equivalence relation
have at least 2ℵ1 many virtual classes?

This does hold for ground model relations after Col(ω, κ),
when κ is a strongly inaccessible cardinal, even just restricting
to pins for Col(ω, ω1).

This strong form doesn’t hold in general for analytic relations:
consistently (relative to a strongly inaccessible cardinal, Eω1

has less than 2ℵ1 many virtual classes on Col(ω, ω1)).
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Open Question 2

Suppose that M is a transitive inner model of ZFC containing a
code for a Borel equivalence relation E . Must κ(E )M ≤ κ(E )?

The answer is yes if E is almost-reducible to an orbit
equivalence relation coded in M such that the reduction is also
coded in M.
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