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Definition
Let K be a class of topological spaces. We say that a subclass B of
K is a basis for K if every space X ∈ K contains a subspace
Y ∈ B.

Question
Which classes of topological spaces have manageable bases?

In particular which classes of topological spaces have finite bases?

Remark
It is not difficult to see that in any reasonable positive answers of
one of these questions one will have to work with a class K of
regular spaces.
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Example

The class of infinite first countable spaces has a 2-element basis
{N,Q}.

Question
Does the class of uncountable first countable spaces have a
finite basis?

Remark
The first countability assumption is necessary here by the
well-known L-space construction of J. Moore (2006).

When considering the Basis Problem we have to restrict to
the class of regular and first countable spaces.
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Basis as metrization criteria

Given a class K of topological spaces, let

K⊥ = {X ∈ Top : (∀Y ∈ K)Y 6↪→ X}

Question
Is there a finite list Y1,Y2, ...,Yk of first countable regular
topological spaces so that so that every regular first countable
space in

{Y1,Y2, ...,Yk}⊥

is a continuous images of separable metric spaces?
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Three orthogonal spaces

Definition
We say that two spaces X and Y are orhogonal and write X ⊥ Y
if they don’t contain uncountable isomorphic subspaces.

Let D(ℵ1) be the discrete space on ℵ1 points.

Let B be a fixed ℵ1-dense set of reals with the topology induced
from R.

Let B(→) be the set B with the topology induced by the basis:

[x , y) (x , y ∈ B, x < y).

Remark
Note that D(ℵ1), B(→) and B are pairwise orthogonal.

Theorem (Baumgartner, 1973, 1984)

PFA implies that D(ω1) embeds into B(→)× B(→).
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Question (Fremlin 1980’s)

Is every compact space in D(ℵ1)⊥ an at most 2-to-1 continuous
preimage of a compact metric space?

Question
Is every compact space in {D(ℵ1),B(→)}⊥ metrizable?

Remark
The split interval [0, 1]× {0, 1} is a non-metrizable compact
space in D(ℵ1)⊥.
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Applications

Definition
A space X is perfect if closed subsets of X are Gδ.

Proposition

If X is. a nonmetrizable compactum then its square X × X is not
perfect (its diagonal is not Gδ).

Proposition

Every non metrizable perfect compactum contains an uncountable
subspace orthogonal to the class of uncountable metrizable
subspace.
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Theorem (Gruenhage, 1986, 1990)

Assume PFA and that every uncountable regular first countable
space contains a subspace isomorphic to one of the spaces D(ℵ1),
B(→), B. Then D(ℵ1) ↪→ X × Y for every pair X and Y of
nonmetrizable compacta.
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B(→), B. Then every perfect locally connected compactum is
metrizable.
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The Baire-class-one version of the Basis Problem

Theorem (T., 1999)

Every compact set of Baire-class-one functions on a Polish space
belonging to D(ℵ1)⊥ is an at most 2-to-1 preimage of a compact
metric space.

Theorem (T., 1999)

Every compact set of Baire-class-one functions on a Polish space
belonging to {D(ℵ1), [0, 1]× {0, 1}}⊥ is metrizable.
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Separation

Definition
A topological space X is separated if to every point x of X we
can assign a neighbourhood Ux in such a way that for all x 6= y in
X either x 6∈ Uy of y 6∈ Ux .

Example

The space B(→) is separated by taking Ux = [x ,∞) for x ∈ B.

Remark
Note that a separated space contains no uncountable continuous
image of a separable metric space. In fact we have the following

Proposition

A first countable space X is a continuous image of a separable
metric space iff for every neighbourhoon assignment Ux(x ∈ X )
there is a countable partition X =

⋃
n<ω Xn such that for all n and

x , y ∈ Xn, we have that x ∈ Uy and y ∈ Ux .
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Axioms for the Basis Problem

Definition
For a topological space X , let OGAX assert that if G = (X ,E ) is
an open graph on X then either G is countably chromatic or G
contains an uncountable clique.

Remark
1. If Y is a continuous image of X then OGAX implies OGAY .
2. OGAX fails for uncountable discrete spaces X .

Theorem (T., 1989)

PFA implies OGAX for every continuous image X of a separable
metric space.

Theorem (T. , 1983)

PFA implies that every space in D(ℵ1)⊥ is hereditarily Lindelöf.
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Corollary (PFA)

X 2 ∈ D(ℵ1)⊥ implies OGAX for every regular space X .

Proof.
Let G = (X ,O) be a given open graph on X . Since the family U of
sets of the form U × V for U and V open subsets of X such that
U × V ⊆ O is an open cover of the Lindelöf subspace O of X 2,
there is a sequence Un × Vn of elements of U such that
O =

⋃
n<ω

Un × Vn. Pick a second countable topology τ on X such

that Un and Vn belong to τ for all n. Then G is also an open
graph on the second countable space (X , τ).



Theorem (Peng-T., 2022)

Assume PFA and let X be a space of cardinality ℵ1 with weaker
metrizable topology. Then OGAX implies X ∈ D(ℵ1)⊥.

Question (PFA)

In which class of spaces X ∈ D(ℵ1)⊥ implies X 2 ∈ D(ℵ1)⊥?

In other words, in which class of spaces X the three statements
X ∈ D(ℵ1)⊥, OGAX and X 2 ∈ D(ℵ1)⊥ are equivalent?

For example, is this true in the class of first countable regular
spaces?
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OGA for powers of Moore’s L-space

A C-sequence is a sequence 〈Cα : α < ω1〉 such that Cα+1 = {α}
and Cα is a cofinal subset of α of order type ω for limit α’s.

The walk from β towards a smaller ordinal α is the sequence

β = β0 > β1 > ... > βn = α such that βi+1 = minCβi\α for each i < n.

The maximal weight ρ1 : [ω1]2 → ω is defined recursively by

ρ1(α, β) = max{|Cβ ∩ α|, ρ1(α,min(Cβ \ α))}

with boundary value ρ1(α, α) = 0.
ρ1β : β → ω is defined by ρ1β(α) = ρ1(α, β) for α < β. The lower
trace L : [ω1]2 → [ω1]<ω is recursively defined by

L(α, β) = (L(α,min(Cβ \ α)) ∪ {max(Cβ ∩ α)}) \max(Cβ ∩ α)

with boundary value L(α, α) = ∅.
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The lower trace oscillation osc : [ω1]2 → ω is defined by, for
α < β,

osc(α, β) = |Osc(ρ1α, ρ1β; L(α, β))|,

where the usual oscillation Osc is defined by

Osc(s, t;F ) = {ξ ∈ F \ {minF} : s(ξ−) ≤ t(ξ−) and s(ξ) > t(ξ)}

where F is a finite set of ordinals, s, t : F → Ord are functions
from F to ordinals and ξ− is the greatest element of F below ξ.

Let T = {z ∈ C : |z | = 1}, and fix {zα ∈ T : α < ω1} rationally
independent. Define wβ ∈ Tω1 by

wβ(α) = zosc(α,β)+1
α for α < β

and wβ(α) = 1 otherwise.
Let L = {wβ : β < ω1} viewed as subspace of Tω1 .
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Theorem (Moore, 2006)

1. L is hereditarily Lindelöf.

2. L is not separable.

3. Every continuous function from L into a metric space has
countable range.

4. D(ω1) ↪→ L2.

Theorem (Peng-T., 2022)

PFA implies OCALn for any n < ω .
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Inner topologies

Definition
For a topological space (X , τ) and a collection C ⊂ P(X ), the
inner topology (X , τCin) induced by C is the topology with base

{{x} ∪ OCin : x ∈ O,O ∈ τ}

where OCin =
⋃
{C ∈ C : C ⊂ O}.

Remark
Note that the inner topology is a topology that is finer than the
original topology. If we take C to be {{x} : x ∈ X} or any
network, then τCin = τ .
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Remark
For a subspace Y ⊂ X , by (Y , τCin) denotes the corresponding
subspace of (X , τCin).
In other words, the topology of (Y , τCin) is generated by

{({x} ∪ O I ,C) ∩ Y : O ∈ τ, x ∈ O ∩ Y }.

It may happen that (Y , τCin) 6= (Y , τCYin ) where

CY = {C ∩ Y : C ∈ C} and τCYin can be viewed as the inner
topology of Y induced by CY .
However, if we enlarge C to C′ = C ∪ {C ∩ Y : C ∈ C}, then

(Y , τC
′

in ) = (Y , τ
C′Y
in ).



Lemma
If an inner topology induced by some family C is hereditarily
Lindelöf, then |O \ OCin| ≤ ℵ0 for any open set O.

Lemma
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generated hereditarily Lindelöf inner topology. Then OCAX holds.



Theorem (Peng-T., 2022)

Assume PFA. Suppose that X is first countable. regular space
admitting a countably generated hereditarily Lindelöf inner
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Let (X , τ) be a first countable regular space. Then either,
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Basis problem for compact space

Theorem (Peng-T., 2022)

Assume PFA. Suppose that X is a regular space, M a regular space
with a countably generated hereditarily Lindelöf inner topology and
f : X → M is a finite-to-one perfect mapping. Then every
uncountable subset of X contains a subspace homeomorphic to B
or a subspace homeomorphic to B(→).

Corollary (PFA)

If a compact space X admits a finite-to-one map to a metric
space, then every uncountable subset of X contains an subspace
isomorphic to B or a subspace isomorphic to B(→).
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(ii) Every subspace of size continuum contains an uncountable
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(iii) For any Y ∈ [X ]ω2 , there is Z ∈ [Y ]ω1 orthogonal to R(→).
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If an uncountable regular space X is a perfect preimage of a metric
space, then X contains a subspace homeomorphic to one of the
three spaces D(ℵ1), B(→), B.



Corollary (PFA)

1. Every uncountable compact space K contains an uncountable
subset that is either metrizable or a subspace of R(→)

2. Moreover, if a compact space K is orthogonal to D(ℵ1), then
every subset of K of size continuum contains an uncountable
subset that is either homeomorphic to B or to B(→).

Corollary (PFA)

If an uncountable regular space X is a perfect preimage of a metric
space, then X contains a subspace homeomorphic to one of the
three spaces D(ℵ1), B(→), B.



Open set-mapping principle

Definition
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many pieces Xn such that for each n and x , y in Xn, either
x ∈ N(y) or y ∈ N(x).

Proposition

OSMX holds for every continuous image of a separable metric
space.
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hereditarily Lindelöf inner topology then OSMX holds.



Proposition

OSMR(→) holds.

Proposition

OSML fails for Moore’s L-space L.

Theorem (Peng-T., 2022)

Assume PFA. If X is a regular space with countably generated
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