# A TOPOLOGICAL BASIS PROBLEM

Stevo Todorčević

SETTOP, August 22, 2022

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Joint work with Yinhe Peng

#### Definition

Let  $\mathcal{K}$  be a class of topological spaces. We say that a subclass  $\mathcal{B}$  of  $\mathcal{K}$  is a **basis** for  $\mathcal{K}$  if every space  $X \in \mathcal{K}$  contains a subspace  $Y \in \mathcal{B}$ .

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

#### Definition

Let  $\mathcal{K}$  be a class of topological spaces. We say that a subclass  $\mathcal{B}$  of  $\mathcal{K}$  is a **basis** for  $\mathcal{K}$  if every space  $X \in \mathcal{K}$  contains a subspace  $Y \in \mathcal{B}$ .

#### Question

Which classes of topological spaces have manageable bases?

In particular which classes of topological spaces have finite bases?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

#### Definition

Let  $\mathcal{K}$  be a class of topological spaces. We say that a subclass  $\mathcal{B}$  of  $\mathcal{K}$  is a **basis** for  $\mathcal{K}$  if every space  $X \in \mathcal{K}$  contains a subspace  $Y \in \mathcal{B}$ .

#### Question

Which classes of topological spaces have manageable bases?

In particular which classes of topological spaces have finite bases?

#### Remark

It is not difficult to see that in any reasonable **positive** answers of one of these questions one will have to work with a class  $\mathcal{K}$  of **regular** spaces.

# Examples

### Example

# The class of infinite first countable spaces has a 2-element basis $\{\mathbb{N},\mathbb{Q}\}.$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

# Examples

### Example

The class of infinite first countable spaces has a 2-element basis  $\{\mathbb{N},\mathbb{Q}\}.$ 

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

#### Question

Does the class of **uncountable first countable spaces** have a finite basis?

# Examples

### Example

The class of infinite first countable spaces has a 2-element basis  $\{\mathbb{N}, \mathbb{Q}\}.$ 

#### Question

Does the class of **uncountable first countable spaces** have a finite basis?

#### Remark

The **first countability** assumption is necessary here by the well-known *L*-space construction of J. Moore (2006).

When considering the Basis Problem we have to restrict to the class of regular and first countable spaces.

# Basis as metrization criteria

Given a class  $\mathcal{K}$  of topological spaces, let

$$\mathcal{K}^{\perp} = \{ X \in \operatorname{Top} : (\forall Y \in \mathcal{K}) Y \not\hookrightarrow X \}$$

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

### Basis as metrization criteria

Given a class  $\mathcal{K}$  of topological spaces, let

$$\mathcal{K}^{\perp} = \{ X \in \operatorname{Top} : (\forall Y \in \mathcal{K}) Y \not\hookrightarrow X \}$$

#### Question

Is there a finite list  $Y_1, Y_2, ..., Y_k$  of first countable regular topological spaces so that so that every regular first countable space in

$$\{Y_1, Y_2, ..., Y_k\}^{\perp}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

is a continuous images of separable metric spaces?

Definition

We say that two spaces X and Y are **orhogonal** and write  $X \perp Y$  if they don't contain uncountable isomorphic subspaces.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Definition

We say that two spaces X and Y are **orhogonal** and write  $X \perp Y$  if they don't contain uncountable isomorphic subspaces.

Let  $D(\aleph_1)$  be the discrete space on  $\aleph_1$  points.

Let B be a fixed  $\aleph_1$ -dense set of reals with the topology induced from  $\mathbb{R}$ .

Let  $B(\rightarrow)$  be the set B with the topology induced by the basis:

 $[x, y) (x, y \in B, x < y).$ 

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Definition

We say that two spaces X and Y are **orhogonal** and write  $X \perp Y$  if they don't contain uncountable isomorphic subspaces.

Let  $D(\aleph_1)$  be the discrete space on  $\aleph_1$  points.

Let B be a fixed  $\aleph_1$ -dense set of reals with the topology induced from  $\mathbb{R}$ .

Let  $B(\rightarrow)$  be the set B with the topology induced by the basis:

$$[x, y) (x, y \in B, x < y).$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Remark

Note that  $D(\aleph_1)$ ,  $B(\rightarrow)$  and B are pairwise orthogonal.

Definition

We say that two spaces X and Y are **orhogonal** and write  $X \perp Y$  if they don't contain uncountable isomorphic subspaces.

Let  $D(\aleph_1)$  be the discrete space on  $\aleph_1$  points.

Let B be a fixed  $\aleph_1$ -dense set of reals with the topology induced from  $\mathbb{R}$ .

Let  $B(\rightarrow)$  be the set B with the topology induced by the basis:

$$[x, y) (x, y \in B, x < y).$$

Remark

Note that  $D(\aleph_1)$ ,  $B(\rightarrow)$  and B are pairwise orthogonal.

Theorem (Baumgartner, 1973, 1984) PFA implies that  $D(\omega_1)$  embeds into  $B(\rightarrow) \times B(\rightarrow)$ . More metrization criteria

Question Is every first countable space in

 $\{D(\aleph_1), B(\rightarrow)\}^{\perp}$ 

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

continuous images of separable metric spaces?

More metrization criteria

Question Is every first countable space in

 $\{D(\aleph_1), B(\rightarrow)\}^{\perp}$ 

continuous images of separable metric spaces?

Question Is every first countable space in

$$\{X \in \mathrm{Top} : X^2 \perp D(\aleph_1)\}$$

a continuous images of separable metric spaces?

### Question (Fremlin 1980's)

Is every compact space in  $D(\aleph_1)^{\perp}$  an at most 2-to-1 continuous preimage of a **compact metric space**?

### Question (Fremlin 1980's)

Is every compact space in  $D(\aleph_1)^{\perp}$  an at most 2-to-1 continuous preimage of a **compact metric space**?

### Question

Is every compact space in  $\{D(\aleph_1), B(\rightarrow)\}^{\perp}$  metrizable?

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

### Question (Fremlin 1980's)

Is every compact space in  $D(\aleph_1)^{\perp}$  an at most 2-to-1 continuous preimage of a **compact metric space**?

### Question

Is every compact space in  $\{D(\aleph_1), B(\rightarrow)\}^{\perp}$  metrizable?

#### Remark

The **split interval**  $[0,1] \times \{0,1\}$  is a non-metrizable compact space in  $D(\aleph_1)^{\perp}$ .

(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)

# Applications

#### Definition

A space X is **perfect** if closed subsets of X are  $G_{\delta}$ .



# Applications

#### Definition

A space X is **perfect** if closed subsets of X are  $G_{\delta}$ .

#### Proposition

If X is. a nonmetrizable compactum then its square  $X \times X$  is not perfect (its diagonal is not  $G_{\delta}$ ).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

# Applications

#### Definition

A space X is **perfect** if closed subsets of X are  $G_{\delta}$ .

#### Proposition

If X is. a nonmetrizable compactum then its square  $X \times X$  is not perfect (its diagonal is not  $G_{\delta}$ ).

#### Proposition

Every non metrizable perfect compactum contains an uncountable subspace orthogonal to the class of uncountable metrizable subspace.

#### Theorem (Gruenhage, 1986, 1990)

Assume PFA and that every uncountable regular first countable space contains a subspace isomorphic to one of the spaces  $D(\aleph_1)$ ,  $B(\rightarrow)$ , B. Then  $D(\aleph_1) \hookrightarrow X \times Y$  for every pair X and Y of nonmetrizable compacta.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

#### Theorem (Gruenhage, 1986, 1990)

Assume PFA and that every uncountable regular first countable space contains a subspace isomorphic to one of the spaces  $D(\aleph_1)$ ,  $B(\rightarrow)$ , B. Then  $D(\aleph_1) \hookrightarrow X \times Y$  for every pair X and Y of nonmetrizable compacta.

#### Theorem (Gruenhage, 1986, 1990)

Assume PFA and that every uncountable regular first countable space contains a subspace isomorphic to one of the spaces  $D(\aleph_1)$ ,  $B(\rightarrow)$ , B. Then every perfect locally connected compactum is metrizable.

# The Baire-class-one version of the Basis Problem

(4日) (個) (目) (目) (目) (の)()

The Baire-class-one version of the Basis Problem

### Theorem (T., 1999)

Every compact set of Baire-class-one functions on a Polish space belonging to  $D(\aleph_1)^{\perp}$  is an at most 2-to-1 preimage of a compact metric space.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The Baire-class-one version of the Basis Problem

### Theorem (T., 1999)

Every compact set of Baire-class-one functions on a Polish space belonging to  $D(\aleph_1)^{\perp}$  is an at most 2-to-1 preimage of a compact metric space.

### Theorem (T., 1999)

Every compact set of Baire-class-one functions on a Polish space belonging to  $\{D(\aleph_1), [0, 1] \times \{0, 1\}\}^{\perp}$  is metrizable.

### Definition

A topological space X is **separated** if to every point x of X we can assign a neighbourhood  $U_x$  in such a way that for all  $x \neq y$  in X either  $x \notin U_y$  of  $y \notin U_x$ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

### Definition

A topological space X is **separated** if to every point x of X we can assign a neighbourhood  $U_x$  in such a way that for all  $x \neq y$  in X either  $x \notin U_y$  of  $y \notin U_x$ .

### Example

The space  $B(\rightarrow)$  is separated by taking  $U_x = [x, \infty)$  for  $x \in B$ .

### Definition

A topological space X is **separated** if to every point x of X we can assign a neighbourhood  $U_x$  in such a way that for all  $x \neq y$  in X either  $x \notin U_y$  of  $y \notin U_x$ .

#### Example

The space  $B(\rightarrow)$  is separated by taking  $U_x = [x, \infty)$  for  $x \in B$ .

#### Remark

Note that a separated space contains no uncountable continuous image of a separable metric space. In fact we have the following

### Definition

A topological space X is **separated** if to every point x of X we can assign a neighbourhood  $U_x$  in such a way that for all  $x \neq y$  in X either  $x \notin U_y$  of  $y \notin U_x$ .

### Example

The space  $B(\rightarrow)$  is separated by taking  $U_x = [x, \infty)$  for  $x \in B$ .

#### Remark

Note that a separated space contains no uncountable continuous image of a separable metric space. In fact we have the following

### Proposition

A first countable space X is a **continuous image of a separable metric space** iff for every neighbourhoon assignment  $U_x(x \in X)$ there is a countable partition  $X = \bigcup_{n < \omega} X_n$  such that for all n and  $x, y \in X_n$ , we have that  $x \in U_y$  and  $y \in U_x$ .

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

#### Definition

For a topological space X, let  $OGA_X$  assert that if G = (X, E) is an **open graph** on X then either G is **countably chromatic** or G contains an **uncountable clique**.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

#### Definition

For a topological space X, let  $OGA_X$  assert that if G = (X, E) is an **open graph** on X then either G is **countably chromatic** or G contains an **uncountable clique**.

#### Remark

1. If Y is a continuous image of X then  $OGA_X$  implies  $OGA_Y$ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

2.  $OGA_X$  fails for uncountable discrete spaces X.

#### Definition

For a topological space X, let  $OGA_X$  assert that if G = (X, E) is an **open graph** on X then either G is **countably chromatic** or G contains an **uncountable clique**.

#### Remark

1. If Y is a continuous image of X then  $OGA_X$  implies  $OGA_Y$ .

2.  $OGA_X$  fails for uncountable discrete spaces X.

### Theorem (T., 1989)

PFA implies  $OGA_X$  for every continuous image X of a separable metric space.

#### Definition

For a topological space X, let  $OGA_X$  assert that if G = (X, E) is an **open graph** on X then either G is **countably chromatic** or G contains an **uncountable clique**.

#### Remark

1. If Y is a continuous image of X then  $OGA_X$  implies  $OGA_Y$ .

2.  $OGA_X$  fails for uncountable discrete spaces X.

### Theorem (T., 1989)

PFA implies  $OGA_X$  for every continuous image X of a separable metric space.

### Theorem (T., 1983)

PFA implies that every space in  $D(\aleph_1)^{\perp}$  is hereditarily Lindelöf.
Corollary (PFA)

 $X^2 \in D(\aleph_1)^{\perp}$  implies  $OGA_X$  for every regular space X.

Proof.

Let G = (X, O) be a given open graph on X. Since the family  $\mathcal{U}$  of sets of the form  $U \times V$  for U and V open subsets of X such that  $U \times V \subseteq O$  is an open cover of the Lindelöf subspace O of  $X^2$ , there is a sequence  $U_n \times V_n$  of elements of  $\mathcal{U}$  such that  $O = \bigcup_{n < \omega} U_n \times V_n$ . Pick a second countable topology  $\tau$  on X such that  $U_n$  and  $V_n$  belong to  $\tau$  for all *n*. Then G is also an open graph on the second countable space  $(X, \tau)$ .

Assume PFA and let X be a space of cardinality  $\aleph_1$  with weaker metrizable topology. Then  $OGA_X$  implies  $X \in D(\aleph_1)^{\perp}$ .

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Assume PFA and let X be a space of cardinality  $\aleph_1$  with weaker metrizable topology. Then  $OGA_X$  implies  $X \in D(\aleph_1)^{\perp}$ .

#### Question (PFA)

In which class of spaces  $X \in D(\aleph_1)^{\perp}$  implies  $X^2 \in D(\aleph_1)^{\perp}$ ?

In other words, in which class of spaces X the three statements  $X \in D(\aleph_1)^{\perp}$ ,  $OGA_X$  and  $X^2 \in D(\aleph_1)^{\perp}$  are equivalent?

For example, is this true in the class of first countable regular spaces?

A **C-sequence** is a sequence  $\langle C_{\alpha} : \alpha < \omega_1 \rangle$  such that  $C_{\alpha+1} = \{\alpha\}$ and  $C_{\alpha}$  is a cofinal subset of  $\alpha$  of order type  $\omega$  for limit  $\alpha$ 's.

A **C**-sequence is a sequence  $\langle C_{\alpha} : \alpha < \omega_1 \rangle$  such that  $C_{\alpha+1} = \{\alpha\}$ and  $C_{\alpha}$  is a cofinal subset of  $\alpha$  of order type  $\omega$  for limit  $\alpha$ 's. The walk from  $\beta$  towards a smaller ordinal  $\alpha$  is the sequence

 $\beta = \beta_0 > \beta_1 > ... > \beta_n = \alpha$  such that  $\beta_{i+1} = \min C_{\beta_i} \setminus \alpha$  for each i < n.

A **C**-sequence is a sequence  $\langle C_{\alpha} : \alpha < \omega_1 \rangle$  such that  $C_{\alpha+1} = \{\alpha\}$ and  $C_{\alpha}$  is a cofinal subset of  $\alpha$  of order type  $\omega$  for limit  $\alpha$ 's. The walk from  $\beta$  towards a smaller ordinal  $\alpha$  is the sequence

 $\beta = \beta_0 > \beta_1 > ... > \beta_n = \alpha$  such that  $\beta_{i+1} = \min C_{\beta_i} \setminus \alpha$  for each i < n.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

The maximal weight  $\rho_1: [\omega_1]^2 \to \omega$  is defined recursively by

$$\rho_1(\alpha,\beta) = \max\{|\mathcal{C}_{\beta} \cap \alpha|, \rho_1(\alpha,\min(\mathcal{C}_{\beta} \setminus \alpha))\}$$

with boundary value  $\rho_1(\alpha, \alpha) = 0$ .  $\rho_{1\beta} : \beta \to \omega$  is defined by  $\rho_{1\beta}(\alpha) = \rho_1(\alpha, \beta)$  for  $\alpha < \beta$ .

A **C**-sequence is a sequence  $\langle C_{\alpha} : \alpha < \omega_1 \rangle$  such that  $C_{\alpha+1} = \{\alpha\}$ and  $C_{\alpha}$  is a cofinal subset of  $\alpha$  of order type  $\omega$  for limit  $\alpha$ 's. The walk from  $\beta$  towards a smaller ordinal  $\alpha$  is the sequence

 $\beta = \beta_0 > \beta_1 > ... > \beta_n = \alpha$  such that  $\beta_{i+1} = \min C_{\beta_i} \setminus \alpha$  for each i < n.

The maximal weight  $\rho_1: [\omega_1]^2 \to \omega$  is defined recursively by

$$\rho_1(\alpha,\beta) = \max\{|\mathcal{C}_{\beta} \cap \alpha|, \rho_1(\alpha,\min(\mathcal{C}_{\beta} \setminus \alpha))\}$$

with boundary value  $\rho_1(\alpha, \alpha) = 0$ .  $\rho_{1\beta} : \beta \to \omega$  is defined by  $\rho_{1\beta}(\alpha) = \rho_1(\alpha, \beta)$  for  $\alpha < \beta$ . The lower trace  $L : [\omega_1]^2 \to [\omega_1]^{<\omega}$  is recursively defined by

$$L(\alpha,\beta) = (L(\alpha,\mathsf{min}(\mathit{C}_{\beta} \setminus \alpha)) \cup \{\mathsf{max}(\mathit{C}_{\beta} \cap \alpha)\}) \setminus \mathsf{max}(\mathit{C}_{\beta} \cap \alpha)$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

with boundary value  $L(\alpha, \alpha) = \emptyset$ .

$$osc(\alpha, \beta) = |Osc(\rho_{1\alpha}, \rho_{1\beta}; L(\alpha, \beta))|,$$

where the usual oscillation Osc is defined by

 $Osc(s, t; F) = \{\xi \in F \setminus \{\min F\} : s(\xi^{-}) \le t(\xi^{-}) \text{ and } s(\xi) > t(\xi)\}$ 

where F is a finite set of ordinals,  $s, t : F \to Ord$  are functions from F to ordinals and  $\xi^-$  is the greatest element of F below  $\xi$ .

$$osc(\alpha,\beta) = |Osc(\rho_{1\alpha},\rho_{1\beta};L(\alpha,\beta))|,$$

where the usual oscillation Osc is defined by

 $Osc(s, t; F) = \{\xi \in F \setminus \{\min F\} : s(\xi^{-}) \leq t(\xi^{-}) \text{ and } s(\xi) > t(\xi)\}$ 

where F is a finite set of ordinals,  $s, t : F \to Ord$  are functions from F to ordinals and  $\xi^-$  is the greatest element of F below  $\xi$ . Let  $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$ , and fix  $\{z_\alpha \in \mathbb{T} : \alpha < \omega_1\}$  rationally independent.

$$osc(\alpha,\beta) = |Osc(\rho_{1\alpha},\rho_{1\beta};L(\alpha,\beta))|,$$

where the usual oscillation Osc is defined by

 $Osc(s, t; F) = \{\xi \in F \setminus \{\min F\} : s(\xi^{-}) \leq t(\xi^{-}) \text{ and } s(\xi) > t(\xi)\}$ 

where F is a finite set of ordinals,  $s, t : F \to Ord$  are functions from F to ordinals and  $\xi^-$  is the greatest element of F below  $\xi$ . Let  $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$ , and fix  $\{z_\alpha \in \mathbb{T} : \alpha < \omega_1\}$  rationally independent. Define  $w_\beta \in \mathbb{T}^{\omega_1}$  by

$$w_{\beta}(\alpha) = z_{\alpha}^{osc(\alpha,\beta)+1}$$
 for  $\alpha < \beta$ 

and  $w_{\beta}(\alpha) = 1$  otherwise.

$$osc(\alpha,\beta) = |Osc(\rho_{1\alpha},\rho_{1\beta};L(\alpha,\beta))|,$$

where the **usual oscillation** Osc is defined by

 $Osc(s, t; F) = \{\xi \in F \setminus \{\min F\} : s(\xi^{-}) \leq t(\xi^{-}) \text{ and } s(\xi) > t(\xi)\}$ 

where F is a finite set of ordinals,  $s, t : F \to Ord$  are functions from F to ordinals and  $\xi^-$  is the greatest element of F below  $\xi$ . Let  $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$ , and fix  $\{z_\alpha \in \mathbb{T} : \alpha < \omega_1\}$  rationally independent. Define  $w_\beta \in \mathbb{T}^{\omega_1}$  by

$$w_{\beta}(\alpha) = z_{\alpha}^{osc(\alpha,\beta)+1}$$
 for  $\alpha < \beta$ 

and  $w_{\beta}(\alpha) = 1$  otherwise. Let  $\mathcal{L} = \{w_{\beta} : \beta < \omega_1\}$  viewed as subspace of  $\mathbb{T}^{\omega_1}$ . Theorem (Moore, 2006)

- 1.  $\mathcal{L}$  is hereditarily Lindelöf.
- 2.  $\mathcal{L}$  is not separable.
- 3. Every continuous function from  $\mathcal{L}$  into a metric space has countable range.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

4.  $D(\omega_1) \hookrightarrow \mathcal{L}^2$ .

Theorem (Moore, 2006)

- 1. *L* is hereditarily Lindelöf.
- 2.  $\mathcal{L}$  is not separable.
- 3. Every continuous function from  $\mathcal{L}$  into a metric space has countable range.

4.  $D(\omega_1) \hookrightarrow \mathcal{L}^2$ .

Theorem (Peng-T., 2022) PFA implies  $OCA_{\mathcal{L}^n}$  for any  $n < \omega$ .

### Inner topologies

#### Definition

For a topological space  $(X, \tau)$  and a collection  $C \subset P(X)$ , the **inner topology**  $(X, \tau_{in}^{\mathcal{C}})$  induced by C is the topology with base

$$\{\{x\} \cup O_{in}^{\mathcal{C}} : x \in O, O \in \tau\}$$

where  $O_{in}^{\mathcal{C}} = \bigcup \{ C \in \mathcal{C} : C \subset O \}.$ 

## Inner topologies

#### Definition

For a topological space  $(X, \tau)$  and a collection  $C \subset P(X)$ , the **inner topology**  $(X, \tau_{in}^{C})$  induced by C is the topology with base

$$\{\{x\} \cup O_{in}^{\mathcal{C}} : x \in O, O \in \tau\}$$

where 
$$O_{in}^{\mathcal{C}} = \bigcup \{ C \in \mathcal{C} : C \subset O \}.$$

#### Remark

Note that the inner topology is a topology that is finer than the original topology. If we take C to be  $\{\{x\} : x \in X\}$  or any **network**, then  $\tau_{in}^{C} = \tau$ .

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

#### Remark

For a subspace  $Y \subset X$ , by  $(Y, \tau_{in}^{\mathcal{C}})$  denotes the corresponding subspace of  $(X, \tau_{in}^{\mathcal{C}})$ .

In other words, the topology of  $(Y, \tau_{in}^{\mathcal{C}})$  is generated by

$$\{(\{x\}\cup O^{I,\mathcal{C}})\cap Y: O\in\tau, x\in O\cap Y\}.$$

It may happen that  $(Y, \tau_{in}^{\mathcal{C}}) \neq (Y, \tau_{in}^{\mathcal{C}_Y})$  where  $\mathcal{C}_Y = \{C \cap Y : C \in \mathcal{C}\}$  and  $\tau_{in}^{\mathcal{C}_Y}$  can be viewed as the inner topology of Y induced by  $\mathcal{C}_Y$ . However, if we enlarge  $\mathcal{C}$  to  $\mathcal{C}' = \mathcal{C} \cup \{C \cap Y : C \in \mathcal{C}\}$ , then

$$(\mathbf{Y}, \tau_{in}^{\mathcal{C}'}) = (\mathbf{Y}, \tau_{in}^{\mathcal{C}'_{\mathbf{Y}}}).$$

#### Lemma

If an inner topology induced by some family C is hereditarily Lindelöf, then  $|O \setminus O_{in}^{C}| \leq \aleph_0$  for any open set O.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

#### Lemma

If an inner topology induced by some family C is hereditarily Lindelöf, then  $|O \setminus O_{in}^{C}| \leq \aleph_0$  for any open set O.

#### Lemma

If  $f : X \to Y$  is a continuous surjection and  $(X, \tau_{in}^{\mathcal{C}})$  is hereditarily Lindelöf for some  $\mathcal{C} \subset P(X)$ , then  $(Y, \tau_{in}^{f(\mathcal{C})})$  is hereditarily Lindelöf where  $f(\mathcal{C}) = \{f[C] : C \in \mathcal{C}\}$ .

Inner topologies and the Basis Problem

<□ > < □ > < □ > < Ξ > < Ξ > < Ξ > Ξ · の < @

Inner topologies and the Basis Problem

#### Definition

An inner topology  $(X, \tau_{in}^{\mathcal{C}})$  of some topological space  $(X, \tau)$  is. countably generated if the family  $\mathcal{C}$  is countable.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Inner topologies and the Basis Problem

#### Definition

An inner topology  $(X, \tau_{in}^{\mathcal{C}})$  of some topological space  $(X, \tau)$  is. countably generated if the family  $\mathcal{C}$  is countable.

### Theorem (Peng-T., 2022)

Assume PFA. Let  $(X, \tau)$  be a regular space that admits a countably generated hereditarily Lindelöf inner topology, then either

1.  $(X, \tau)$  is a continuous image of a separable metric space, or

2.  $B(\rightarrow)$  embeds into  $(X, \tau)$ .

Assume PFA. Suppose that X is first countable. regular space admitting a countably generated hereditarily Lindelöf inner topology. Then X contains a subspace isomorphic to B or a subspace isomorphic to  $B(\rightarrow)$ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Assume PFA. Suppose that X is first countable. regular space admitting a countably generated hereditarily Lindelöf inner topology. Then X contains a subspace isomorphic to B or a subspace isomorphic to  $B(\rightarrow)$ .

#### Theorem (Peng-T., 2022)

Assume PFA. Suppose X is a regular space admitting a countably generated hereditarily Lindelöf inner topology. Then  $OCA_X$  holds.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Assume PFA.

Let  $(X, \tau)$  be a first countable regular space. Then either,

1. For any countable collection C of subsets of X, the space  $(X, \tau_{in}^{\mathcal{C}})$  is  $\sigma$ -discrete, or

2. X contains a subspace isomorphic to B or a subspace isomorphic to  $B(\rightarrow)$ .

Assume PFA.

Let  $(X, \tau)$  be a first countable regular space. Then either,

- 1. For any countable collection C of subsets of X, the space  $(X, \tau_{in}^{\mathcal{C}})$  is  $\sigma$ -discrete, or
- 2. X contains a subspace isomorphic to B or a subspace isomorphic to  $B(\rightarrow)$ .

#### Theorem (Peng-T., 2022)

Assume PFA. Let X be a first countable regular hereditarily Lindelöf space of size  $\aleph_1$  with a countably generated hereditarily Lindelöf inner topology. Then there is a partition  $X = \bigcup_{n < \omega} X_n$  such that each  $X_n$  is either metrizable or isomorphic to a subspace of  $\mathbb{R}(\rightarrow)$ .

# Basis problem for compact space

▲□▶▲圖▶★≣▶★≣▶ ≣ の�?

## Basis problem for compact space

### Theorem (Peng-T., 2022)

Assume PFA. Suppose that X is a regular space, M a regular space with a countably generated hereditarily Lindelöf inner topology and  $f: X \to M$  is a finite-to-one perfect mapping. Then every uncountable subset of X contains a subspace homeomorphic to B or a subspace homeomorphic to  $B(\to)$ .

## Basis problem for compact space

### Theorem (Peng-T., 2022)

Assume PFA. Suppose that X is a regular space, M a regular space with a countably generated hereditarily Lindelöf inner topology and  $f: X \to M$  is a finite-to-one perfect mapping. Then every uncountable subset of X contains a subspace homeomorphic to B or a subspace homeomorphic to  $B(\to)$ .

### Corollary (PFA)

If a compact space X admits a finite-to-one map to a metric space, then every uncountable subset of X contains an subspace isomorphic to B or a subspace isomorphic to  $B(\rightarrow)$ .

# Perfect preimages

# Perfect preimages

### Theorem (Peng-T., 2022)

Assume PFA. Suppose that X is a regular hereditarily Lindelöf perfect preimage of a metric space. Then there is a 2-to-1 perfect map from X to a subspace of  $[0,1]^{\omega_1}$ . In particular, X is first countable and there is an increasing union  $X = \bigcup_{\alpha < \omega_1} X_{\alpha}$  such that each  $X_{\alpha}$  admits a 2-to-1 perfect map to a metric space.

# Perfect preimages

## Theorem (Peng-T., 2022)

Assume PFA. Suppose that X is a regular hereditarily Lindelöf perfect preimage of a metric space. Then there is a 2-to-1 perfect map from X to a subspace of  $[0,1]^{\omega_1}$ . In particular, X is first countable and there is an increasing union  $X = \bigcup_{\alpha < \omega_1} X_{\alpha}$  such that each  $X_{\alpha}$  admits a 2-to-1 perfect map to a metric space.

### Theorem (Peng-T., 2022)

Assume PFA. Suppose that X is a regular hereditarily Lindelöf perfect preimage of a metric space. Then the following are equivalent:

(i) X is homeomorphic to a subspace of  $[0,1]^{\omega_1}$ . Hence  $w(X) \leq \omega_1$ and X is an increasing union of  $\omega_1$  metrizable subspaces. (ii) Every subspace of size continuum contains an uncountable

metrizable subspace.

(iii) For any  $Y \in [X]^{\omega_2}$ , there is  $Z \in [Y]^{\omega_1}$  orthogonal to  $\mathbb{R}(\rightarrow)$ .

<□> <@> < E> < E> E のQ@

### Corollary (PFA)

- Every uncountable compact space K contains an uncountable subset that is either metrizable or a subspace of ℝ(→)
- 2. Moreover, if a compact space K is orthogonal to  $D(\aleph_1)$ , then every subset of K of size continuum contains an uncountable subset that is either homeomorphic to B or to  $B(\rightarrow)$ .

### Corollary (PFA)

- 1. Every uncountable compact space K contains an uncountable subset that is either metrizable or a subspace of  $\mathbb{R}(\rightarrow)$
- 2. Moreover, if a compact space K is orthogonal to  $D(\aleph_1)$ , then every subset of K of size continuum contains an uncountable subset that is either homeomorphic to B or to  $B(\rightarrow)$ .

## Corollary (PFA)

If an uncountable regular space X is a perfect preimage of a metric space, then X contains a subspace homeomorphic to one of the three spaces  $D(\aleph_1)$ ,  $B(\rightarrow)$ , B.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Open set-mapping principle

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ◆ ○ ○ ○

## Open set-mapping principle

Definition

For a space  $(X, \tau)$ , an **open set mapping** is a mapping  $N : X \to \tau$  such that  $x \in N(x)$  for all  $x \in X$ .

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

## Open set-mapping principle

#### Definition

For a space  $(X, \tau)$ , an **open set mapping** is a mapping  $N : X \to \tau$  such that  $x \in N(x)$  for all  $x \in X$ .

#### Definition

For a regular space  $(X, \tau)$ , we let  $OSM_X$  asserts that for any open set-mapping  $N : X \to \tau$ , there is a partition of X into countably many pieces  $X_n$  such that for each n and x, y in  $X_n$ , either  $x \in N(y)$  or  $y \in N(x)$ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで
### Open set-mapping principle

#### Definition

For a space  $(X, \tau)$ , an **open set mapping** is a mapping  $N : X \to \tau$  such that  $x \in N(x)$  for all  $x \in X$ .

#### Definition

For a regular space  $(X, \tau)$ , we let  $OSM_X$  asserts that for any open set-mapping  $N : X \to \tau$ , there is a partition of X into countably many pieces  $X_n$  such that for each n and x, y in  $X_n$ , either  $x \in N(y)$  or  $y \in N(x)$ .

#### Proposition

 $OSM_X$  holds for every continuous image of a separable metric space.

# $\begin{array}{l} \mbox{Proposition}\\ \mbox{OSM}_{\mathbb{R}(\rightarrow)} \mbox{ holds.} \end{array}$

## $\begin{array}{l} \mbox{Proposition}\\ \mbox{OSM}_{\mathbb{R}(\rightarrow)} \mbox{ holds.} \end{array}$

Proposition  $OSM_{\mathcal{L}}$  fails for Moore's L-space  $\mathcal{L}$ .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Proposition  $OSM_{\mathbb{R}(\rightarrow)}$  holds.

Proposition  $OSM_{\mathcal{L}}$  fails for Moore's L-space  $\mathcal{L}$ .

Theorem (Peng-T., 2022)

Assume PFA. If X is a regular space with countably generated hereditarily Lindelöf inner topology then  $OSM_X$  holds.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

#### References

1. J. E. Baumgartner, All  $\aleph_1$ -dense sets of reals can be isomorphic, *Fund. Math.*, **79** (1973), 101-106

2. G. Gruenhage, Perfectly normal compacta, cosmic spaces, and some partition problems, in: Open Problems in Topology, pp. 85-90. North-Holland, Amsterdam, 1990.

3. J. T. Moore, A five element basis for the uncountable linear orders, Annals of Mathematics (2) 163: 669-688, 2006.

- 4. J. T. Moore, A solution to the L space problem, *J. Amer. Math. Soc.*, **19** (3) (2006) 717-736.
- 5. Y. Peng and S.Todorcevic, Analysis of a topological basis problem, accepted for publication 2022.

6. S. Todorcevic, Forcing positive partition relations, *Trans. Amer. Math. Soc.*, **280** (1983), no. 2, 703–720.

7. S. Todorcevic, Partitioning pairs of countable ordinals, *Acta Math.*, **159** (3-4) (1987) 261-294.

8. S. Todorcevic, Compact subsets of the first Baire class, J. Amer. Math. Soc. 4: 1179–1212, 1999.