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Introduction

Given a notion of forcing P, we aim to study the directed set of all
maximal antichains in P from the point of view of Tukey reducibility.

This is a joint work (in progress) with Jorg Brendle.
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Definition

Given a relational system A, let us define
» b(A) =min{|F|| F C A_ is unbounded},
» 9(A) =min{|D| | D C A, is dominating}.

Example
Let D = (Yw,%w, <*), where

f<*g <= theset {n<w]|g(n) < f(n)}is finite.

Then b(D) = b and 9(D) = 0.
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Tukey reductions

Definition (Tukey [1940])

Let A= (A_,A;,A) and B = (B_, B, B) be relational systems.
A Tukey reduction from A to B consists of two functions

w_:A_—B_ and ¢;i: By — Ap
such that for all a€ A_ and all b € B}
v_(a) Bb = aAp.(b).
Definition

Write A <7 B if there exists a Tukey reduction from A to B.
Finally, A=1 B means A <t B and B <t A.

Proposition (Schmidt [1955])
If A <1 B then d(A) <0d(B) and b(B) < b(A).



The o operation

Given a relational system A = (A_, A4, A), we define
Ao’ = <A—7wA+7AO'>a

where a A, f <= there exists n < w such that a A f(n).



The o operation

Given a relational system A = (A_, A4, A), we define

Ao’ = <A—7wA+7AO'>a
where a A, f <= there exists n < w such that a A f(n).
Remark

> Always A, <t A
> If A<t B then A, <t B,
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The refinement relation

Let P be a notion of forcing. An antichain is a subset A C P
consisting of pairwise incompatible elements. A maximal antichain
is an antichain which is maximal with respect to inclusion.

Definition
» Let Part(IP) be the set of all maximal antichains of P.

» Given A, B € Part(PP), we say that B refines A, in symbols
A =< B, if for all g € B there exists p € A such that g < p.

» The corresponding relational system is
Part(P) = (Part(P), Part(P), =<).

For the purpose of this analysis, we may assume that PP is in fact a
complete Boolean algebra.
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Almost refinement

Remark

b(Part(B)) is the least cardinal k such that B is not x-distributive.
In particular, for many forcing notions of interest (such as Cohen,
random. .. ), this bounding number will be countable!

Definition
» Given A, B € Part(BB), we say that B almost refines A, in

symbols A <* B, if for all but finitely many a € A there exists
X C B such that a = sup(X).

» The corresponding relational system is
Part*(B) = (Part(B), Part(B), <*).

Lemma
A c.c.c. algebra B is “w-bounding if and only if b(Part*(B)) > No.
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Two Tukey reductions

Lemma
If B is an c.c.c. atomless Boolean algebra, then

(BT,B", >), <t Part(B),.

Definition (Horn and Tarski)

A Boolean algebra B is o-finite c.c. if there are subsets S, C B, for
n < w, such that B* = J,__ S, and every antichain in S, is finite.

n<w

Proposition
If B is a o-finite c.c. atomless Boolean algebra, then

(Yw,%w, <*) <t Part*(B).
In particular, it follows that b(Part*(B)) < b <0 < d(Part(B)).

» Note: If S is a Suslin algebra, then d(Part(S)) = X;. Such an
algebra exists in the Cohen model, where 9 = 2%,



Definition

Let B(“2) be the o-algebra generated by the clopen subsets of the
Cantor space “2. Let

C, = B(“2)/M and B, = B(“2)/N

be the quotients modulo the meagre and null ideal, respectively.
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Cohen forcing

Theorem (Brendle and P.)
Let nwd be the ideal of closed nowhere dense subsets of ¥“2. Then

Part(C,) =7 (nwd,nwd, C).
In particular, d(Part(C,)) = cof (M) and b(Part(C,),) = add(M).

Corollary
For a notion of forcing P, the following conditions are equivalent:

» if c is a Cohen real and G is a P-generic filter over V, then c
is still a Cohen real in V[G];

> for every P-name A of a maximal antichain of C,, and every
condition p € P there exists q < p and a maximal antichain B
of C,, such that gI- A < B;

> P preserves the base of the ideal of meagre sets.
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Theorem (Brendle and P.)
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Idea of the proof.

Since By, is atomless c.c.c., we have (B B}, >), <t Part(B,),
and therefore b(Part(B,,),) < b((B},Bf,>),) = add(/N) by a
result of Cichon-Kamburelis-Pawlikowski.

Conversely, if kK < add(N') then MA,(A) holds. Use Amoeba
generics to construct a sufficiently “generic” element of Part(B,)

and conclude that x < b(Part(B,),). O

Conjecture

We believe the above argument can be dualized to establish that
o(Part(B,,)) = cof (N).



Questions

> Is o(Part(B,,)) = cof (N)?
» What is the relation between d(Part(B)) and other cardinal
invariants of B, in particular the ultrafilter number?



Thank youl!



