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Introduction

Given a notion of forcing P, we aim to study the directed set of all
maximal antichains in P from the point of view of Tukey reducibility.

This is a joint work (in progress) with Jörg Brendle.



Relational systems

We shall consider relational systems A = ⟨A−,A+,A⟩, with
A ⊆ A− × A+.

Definition
Given a relational system A, let us define
▶ b(A) = min{|F | | F ⊆ A− is unbounded},
▶ d(A) = min{|D| | D ⊆ A+ is dominating}.

Example
Let D = ⟨ωω, ωω,≤∗⟩, where

f ≤∗ g ⇐⇒ the set {n < ω | g(n) < f (n)} is finite.

Then b(D) = b and d(D) = d.
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Tukey reductions

Definition (Tukey [1940])
Let A = ⟨A−,A+,A⟩ and B = ⟨B−,B+,B⟩ be relational systems.
A Tukey reduction from A to B consists of two functions

φ− : A− → B− and φ+ : B+ → A+

such that for all a ∈ A− and all b ∈ B+

φ−(a) B b =⇒ a A φ+(b).

Definition
Write A ≤T B if there exists a Tukey reduction from A to B.
Finally, A ≡T B means A ≤T B and B ≤T A.

Proposition (Schmidt [1955])
If A ≤T B then d(A) ≤ d(B) and b(B) ≤ b(A).
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The σ operation

Given a relational system A = ⟨A−,A+,A⟩, we define

Aσ =
〈
A−,

ωA+,Aσ

〉
,

where a Aσ f ⇐⇒ there exists n < ω such that a A f (n).

Remark
▶ Always Aσ ≤T A
▶ If A ≤T B then Aσ ≤T Bσ
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The refinement relation

Let P be a notion of forcing. An antichain is a subset A ⊆ P
consisting of pairwise incompatible elements. A maximal antichain
is an antichain which is maximal with respect to inclusion.

Definition
▶ Let Part(P) be the set of all maximal antichains of P.
▶ Given A,B ∈ Part(P), we say that B refines A, in symbols

A ⪯ B , if for all q ∈ B there exists p ∈ A such that q ≤ p.
▶ The corresponding relational system is

Part(P) = ⟨Part(P),Part(P),⪯⟩.

For the purpose of this analysis, we may assume that P is in fact a
complete Boolean algebra.
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Almost refinement

Remark
b(Part(B)) is the least cardinal κ such that B is not κ-distributive.
In particular, for many forcing notions of interest (such as Cohen,
random. . . ), this bounding number will be countable!

Definition
▶ Given A,B ∈ Part(B), we say that B almost refines A, in

symbols A ⪯∗ B , if for all but finitely many a ∈ A there exists
X ⊆ B such that a = sup(X ).

▶ The corresponding relational system is
Part∗(B) = ⟨Part(B),Part(B),⪯∗⟩.

Lemma
A c.c.c. algebra B is ωω-bounding if and only if b(Part∗(B)) > ℵ0.
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Two Tukey reductions

Lemma
If B is an c.c.c. atomless Boolean algebra, then

⟨B+,B+,≥⟩σ ≤T Part(B)σ.

Definition (Horn and Tarski)
A Boolean algebra B is σ-finite c.c. if there are subsets Sn ⊆ B, for
n < ω, such that B+ =

⋃
n<ω Sn and every antichain in Sn is finite.

Proposition
If B is a σ-finite c.c. atomless Boolean algebra, then

⟨ωω, ωω,≤∗⟩ ≤T Part∗(B).

In particular, it follows that b(Part∗(B)) ≤ b ≤ d ≤ d(Part(B)).

▶ Note: If S is a Suslin algebra, then d(Part(S)) = ℵ1. Such an
algebra exists in the Cohen model, where d = 2ℵ0 .
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Definition

Let B(ω2) be the σ-algebra generated by the clopen subsets of the
Cantor space ω2. Let

Cω = B(ω2)/M and Bω = B(ω2)/N

be the quotients modulo the meagre and null ideal, respectively.



Cohen forcing

Theorem (Brendle and P.)
Let nwd be the ideal of closed nowhere dense subsets of ω2. Then

Part(Cω) ≡T ⟨nwd, nwd,⊆⟩.

In particular, d(Part(Cω)) = cof(M) and b(Part(Cω)σ) = add(M).

Corollary
For a notion of forcing P, the following conditions are equivalent:
▶ if c is a Cohen real and G is a P-generic filter over V , then c

is still a Cohen real in V [G ];
▶ for every P-name Ȧ of a maximal antichain of Cω and every

condition p ∈ P there exists q ≤ p and a maximal antichain B
of Cω such that q ⊩ Ȧ ⪯ B̌ ;

▶ P preserves the base of the ideal of meagre sets.
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Random forcing

Theorem (Brendle and P.)
b(Part(Bω)σ) = add(N )

Idea of the proof.
Since Bω is atomless c.c.c., we have ⟨B+

ω ,B+
ω ,≥⟩σ ≤T Part(Bω)σ

and therefore b(Part(Bω)σ) ≤ b
(
⟨B+

ω ,B+
ω ,≥⟩σ

)
= add(N ) by a

result of Cichoń-Kamburelis-Pawlikowski.
Conversely, if κ < add(N ) then MAκ(A) holds. Use Amoeba
generics to construct a sufficiently “generic” element of Part(Bω)
and conclude that κ < b(Part(Bω)σ).

Conjecture
We believe the above argument can be dualized to establish that
d(Part(Bω)) = cof(N ).
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Questions

▶ Is d(Part(Bω)) = cof(N )?
▶ What is the relation between d(Part(B)) and other cardinal

invariants of B, in particular the ultrafilter number?



Thank you!


