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A space X is k-resolvable if it has « pairwise disjoint dense sets.
r-irresolvable otherwise.

(inresolvable = 2-(ir)resolvable)

X is OHI if every U € 77(X) is irresolvable.
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A(X) =min{|U| : U e 7H(X)}.
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(He proved: X is irresolvable iff 7+ (X) contains an ultrafilter base.)
Malychin, 1973: If U is a o-complete free ultrafilter on « then the

product of the Tq-space (x,U U {0}) with any countable irresolvable
space is irresolvable.

@ Can Ty be improved to T, or T3?
@ Is the measurable cardinal necessary?

@ Can both factors be "small"?
@ Can we find three spaces whose product is irresolvable?

FACT. Any product of infinitely many non-singleton spaces

is c-resolvable.

Proof: For x,y € [[{Xn: n<w}letx ~ yiff |{n: x(n) # y(n)}| < w.
Every ~-equivalence class is dense in the product.
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If the OHI space X has a A-closed 7-base B then X x Y is irresolvable
whenever Y is irresolvable and | Y| < A.

PROOF. Let X x Y =24 UZ. Forye Yandi< 2 let
Zyi={xeX:(x,y)cZ}. Then X =2Z,0UZ, 4 and so
Int(Z,0) U Int(Z, 1) is dense open in X by OHI.

Fix Y ={ya:a<up}
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DEFINITION. (i) S € P(k) is A-independent if for any p € Fn(S,2; \)
Bo=N{S:p(S) =1} NN{x\S:p(S) =0} # 1.
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(i) MI(x, \) says that there is a separating maximal A-independent
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0-dimensional T, topology 7(S) on « that is irresolvable.
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DEFINITION. (i) S € P(k) is A-independent if for any p € Fn(S,2; \)
By =({S:p(S) =1} N({r\S:p(S)=0}#0.

(i) MI(x, \) says that there is a separating maximal A-independent
family S on k.

(iii) The A\-closed B(S) = {By : p € Fn(S,2; \)} is the base of a
0-dimensional T, topology 7(S) on « that is irresolvable. So, there is
X(8S) € 7(S)™ that is OHL.

THEOREM (Kunen)

The existence of a measurable cardinal implies the consistency of
MI(k,wq) with £ < 2*1, moreover Ml(x,w1) implies CH.
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0-dimensional T, topology 7(S) on « that is irresolvable. So, there is
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THEOREM (Kunen)

The existence of a measurable cardinal implies the consistency of

MI(r, w1 ) with k < 21, moreover Ml(r,w4) implies CH. )

COROLLARY

The existence of a measurable cardinal implies the consistency of
having a 0-dimensional T»-space of size < 2“1 whose product with any
countable irresolvable space is irresolvable.

V.

T = (o}
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M+ (n) denotes that there are n + 1 0-dimensional T,-spaces whose
product is irresolvable.
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QUESTION. (Ceder and Pearson, 1967) Is the product of a maximally
resolvable space with any space maximally resolvable?
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THEOREM

If X is OHl and | Y| < min {¢(X), add(N(X)) } then X x Y'is
¢(X)-irresolvable.

COROLLARY

MI(x,w4) implies the consistency of having a 0-dimensional T,-space
X s.t. ©(X) = wo < A(X) = [X] < 2% and wy < add(N(X)). Then e.g.
X x Q is wo-irresolvable, hence not maximally resolvable.
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COROLLARY

M(1) implies the consistency of having a monotonically normal space
X st [ X|=A(X) =N, and wy ¢ MR(X). Thus X x Q is
wq-irresolvable, hence not maximally resolvable.
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PROOF. There is a decreasing x-sequence {D,, : a < k} of dense sets
in X x Y with empty intersection. So, {E, = mx[D.] : @ < k} consists
of sets dense in X and is also decreasing. For x € X there is a < k s.t.
(x,y) ¢ D, forally € Y, hence x ¢ E,. So, \{E.: a < k} = 0.

COROLLARY

M(1) implies the consistency of having a monotonically normal space
X st [ X|=A(X) =N, and wy ¢ MR(X). Thus X x Q is
wq-irresolvable, hence not maximally resolvable.

X was constructed by J-Magidor, 2012. wy ¢ MR(X) was proved by
Soukup, Stanley, 2017.
A MN and not max. res. X implies CON(M(1) by J-Magidor.
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