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Trees

I T ⊆ ω<ω is a tree iff (∀σ ∈ T )(∀n)(σ �n ∈ T ).

I A body of a tree T is defined by the formula

[T ] = {x ∈ ωω : (∀n)(x �n ∈ T )}

Fact
For each tree T its body [T ] is a closed subset of ωω.



Definition
A tree T ⊆ ω<ω is

I a perfect tree iff
(∀σ ∈ T )(∃τ ∈ T )(τ ⊇ σ ∧ (∃n 6= m)(τan, τam ∈ T );

I a Laver tree iff
(∃σ ∈ T )(∀τ ∈ T )(τ ⊆ σ ∨ {n ∈ ω : τan ∈ T} is infinite);

I a Miller tree iff (∃σ ∈ T )(∀τ ∈ T )(τ ⊆ σ∨
(∃τ ′)(τ ⊆ τ ′ ∧ {n ∈ ω : τ ′an ∈ T} is infinite);

Fact
A body of a perfect tree is a perfect set.



Definition of ideals defined by trees

A set A ⊆ ωω

I belongs to s0 iff (∀T ∈ S)(∃T ′ ∈ S)(T ′ ⊆ T ∧ [T ′] ∩ A = ∅);

I belongs to l0 iff (∀T ∈ L)(∃T ′ ∈ L)(T ′ ⊆ T ∧ [T ′] ∩ A = ∅);

I belongs to m0 iff
(∀T ∈M)(∃T ′ ∈M)(T ′ ⊆ T ∧ [T ′] ∩ A = ∅);

where

I S denotes the family of all perfect trees,

I L denotes the family of all Laver trees,

I M denotes the family of all Miller trees.



Definition of s- l- and m-measurability

A set A ⊆ ωω

I is s-measurable iff
(∀T ∈ S)(∃T ′ ∈ S)(T ′ ⊆ T ∧ [T ′] ∩ A = ∅ ∨ [T ′] ⊆ A);

I is l-measurable iff
(∀T ∈ L)(∃T ′ ∈ L)(T ′ ⊆ T ∧ [T ′] ∩ A = ∅ ∨ [T ′] ⊆ A);

I is m-measurable iff
(∀T ∈M)(∃T ′ ∈M)(T ′ ⊆ T ∧ [T ′] ∩ A = ∅ ∨ [T ′] ⊆ A);

where

I S denotes the family of all perfect trees,

I L denotes the family of all Laver trees,

I M denotes the family of all Miller trees.



Theorem (Brendle, 1995)

There are no inclusions between s0, l0,m0.
In particular s0 * l0 and s0 * m0.

Brendle J., Strolling through paradise, Fundamenta
Mathematicae, 148 (1), (1995), 1–25,



Fact

1. there is l-measurable set which is not s-measurable,

2. there is m-measurable set which is not s-measurable,

3. there is l-measurable set which is not m-measurable.

Proof of 1.

I 2ω ⊆ ωω.

I 2ω ∈ l0 and 2ω /∈ s0.

I Choose X ⊆ 2ω which is s-nonmeasurable.
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I A ⊆ ωω is a dominating family iff
(∀x ∈ ωω)(∃a ∈ A)(∀∞n)(x(n) ≤ a(n));

I d = min{|A : A ⊆ ωω is a dominating family};
I A ⊆ ωω is an unbounded family iff
¬(∃x ∈ ωω)(∀a ∈ A)(∀∞n)(a(n) ≤ x(n));

I b = min{|A| : A ⊆ ωω is unbounded family}.

Fact

1. If d = c then there exists A ⊆ ωω such that A is s-measurable
and A is not l-measurable.

2. If b = c then there exists A ⊆ ωω such that A is s-measurable
and A is not m-measurable.

Remark
To prove 1. it is enough to construct A ∈ s0 \ l0.



Proof of d = c =⇒ ∃A ∈ s0 \ l0
I L = {Lα : α < c},
I S = {Sα < c}.

Define a transfinite sequence:

((aξ,Pξ) : ξ < c)

satisfying for any ξ < c

1. aξ ∈ [Lξ],

2. Pξ ⊆ Sξ and Pξ ∈ S,

3. for any η < ξ Pη ∩ {aβ : β < ξ} = ∅.
Finally, A = {aξ : ξ < c}.
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Definition of I-Luzin set
Let I ⊆ P(ωω) be a σ-ideal. L ⊆ ωω is an I-Luzin set iff

(∀X ∈ I)(|X ∩ L| < |L|)

Theorem (Wohofsky, WS2016)

There is no s0-Luzin set.

Wohofsky W., There are no large sets which can be translated
away from every Marczewski null set, WS2016 Hejnice,
http://www.winterschool.eu/files/937...



Fact

I There is no l0-Luzin set.

I There is no m0-Luzin set.

Proof, l0 case

For every X such that |X | = c there exists A ⊆ X such that A ∈ l0
and |A| = c.
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(∀X )(|X | = c→ (∃A ⊆ X )(A ∈ l0,∧|A| = c))

I X /∈ l0, so there is L ∈ L such that |[L] ∩ X | = c.

I Fix a maximal antichain {Lα : α < c} of Laver trees below L
such that |[Lα] ∩ X | = c.

I Construct aα ∈ X \
⋃
ξ<α[Lα].

I A = {aα : α < c}.
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Definition of m.e.d. familiy

I x , y ∈ ωω are eventually different iff

(∀∞n)(x(n) 6= y(n));

I A family A ⊆ ωω is e.d. family iff it consists of eventually
different reals;

I A family A ⊆ ωω is m.e.d. family if it is e.d. family maximal
with respect to inclusion.



Theorem (Ra lowski, 2015)

It is consistent that there is a m.e.d. family A ⊆ ωω which is
cl-nonmeasurable.

Ra lowski R., Families of sets with nonmeasurable unions with
respect to ideals defined by trees, Archive for Mathematical
Logic, 54, no. 5-6, (2015), 649–658.



Theorem (Ra lowski, 2015)

It is consistent that there is a m.e.d. family A which is
cl-nonmeasurable and consists a dominating family of cardinality
ω1.

Ra lowski R., Dominating m.a.d. families in Baire space, RIMS
Kôkyûroku No.1949 (2015), pp. 73–80.



Theorem
There exists a m.e.d. family A ⊆ ωω such that A is not
s, l ,m-measurable and contains a dominating family of size d.

Proof

I There exists an e.d. dominating family D ⊆ (4N)ω, |D| = d.
I Choose e.d. trees

I S ⊆ (4N + 1)<ω, S ∈ S,
I M ⊆ (4N + 2)<ω, M ∈M,
I L ⊆ (4N + 3)<ω, L ∈ L.
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Proof...
Enumerate

I Perf (S) = {Sα : α < c},
I Miller(M) = {Mα : α < c},
I Laver(L) = {Lα : α < c}.

For α < c we will define

wα = (asξ, d
s
ξ , x

s
ξ , a

m
ξ , d

m
ξ , x

m
ξ , a

l
ξ, d

l
ξ, x

l
ξ, )

satisfying

1. asα, d
s
α ∈ Sα,

2. {asξ : ξ < α} ∩ {d s
ξ : ξ < α} = ∅,

3. {asξ : ξ < α} ∪ {x sξ : ξ < α} is e.d.,

4. ∀∞n x sα(n) = d s
α(n) but x sα 6= d s

α.

5. . . .
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2. {asξ : ξ < α} ∩ {d s
ξ : ξ < α} = ∅,

3. {asξ : ξ < α} ∪ {x sξ : ξ < α} is e.d.,

4. ∀∞n x sα(n) = d s
α(n) but x sα 6= d s

α.

5. amα , d
m
α ∈ Mα,

6. {amξ : ξ < α} ∩ {dm
ξ : ξ < α} = ∅,

7. {amξ : ξ < α} ∪ {xmξ : ξ < α} is e.d.,

8. ∀∞n xmα (n) = dm
α (n) but xmα 6= dm

α .

9. alα, d
l
α ∈ Lα,

10. {alξ : ξ < α} ∩ {d l
ξ : ξ < α} = ∅,

11. {alξ : ξ < α} ∪ {x lξ : ξ < α} is e.d.,

12. ∀∞n x lα(n) = d l
α(n) but x lα 6= d l

α.



Proof...
Now set

As = {asα : α < c} ∪ {x sα : α < c},

Am = {amα : α < c} ∪ {xmα : α < c}

and
Al = {alα : α < c} ∪ {x lα : α < c}

And finally

A is m.e.d. family containing D ∪ As ∪ Am ∪ Al .
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Thank You for Your Attention!
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