Nonmeasurable sets with respect to ideals defined by trees

Robert Rałowski, Szymon Żeberski Wrocław University of Technology

> SetTop 2016 June 20–23, 2016

Trees

• $T \subseteq \omega^{<\omega}$ is a tree iff $(\forall \sigma \in T)(\forall n)(\sigma \upharpoonright n \in T)$.

A body of a tree T is defined by the formula

$$[T] = \{x \in \omega^{\omega} : (\forall n)(x \upharpoonright n \in T)\}$$

Fact

For each tree T its body [T] is a closed subset of ω^{ω} .

Definition

A tree $T \subseteq \omega^{<\omega}$ is

- ► a perfect tree iff $(\forall \sigma \in T)(\exists \tau \in T)(\tau \supseteq \sigma \land (\exists n \neq m)(\tau^{\frown}n, \tau^{\frown}m \in T);$
- ► a Laver tree iff $(\exists \sigma \in T)(\forall \tau \in T)(\tau \subseteq \sigma \lor \{n \in \omega : \tau^n n \in T\}$ is infinite);

▶ a Miller tree iff $(\exists \sigma \in T)(\forall \tau \in T)(\tau \subseteq \sigma \lor (\exists \tau')(\tau \subseteq \tau' \land \{n \in \omega : \tau' \cap n \in T\})$ is infinite);

Fact

A body of a perfect tree is a perfect set.

Definition of ideals defined by trees

A set $A \subseteq \omega^{\omega}$

- ▶ belongs to s_0 iff $(\forall T \in S)(\exists T' \in S)(T' \subseteq T \land [T'] \cap A = \emptyset)$;
- ▶ belongs to I_0 iff $(\forall T \in \mathbb{L})(\exists T' \in \mathbb{L})(T' \subseteq T \land [T'] \cap A = \emptyset)$;

▶ belongs to m_0 iff $(\forall T \in \mathbb{M})(\exists T' \in \mathbb{M})(T' \subseteq T \land [T'] \cap A = \emptyset);$

where

- S denotes the family of all perfect trees,
- ▶ L denotes the family of all Laver trees,
- ▶ M denotes the family of all Miller trees.

Definition of s- I- and m-measurability

A set $A \subseteq \omega^{\omega}$

- ▶ is *s*-measurable iff $(\forall T \in \mathbb{S})(\exists T' \in \mathbb{S})(T' \subseteq T \land [T'] \cap A = \emptyset \lor [T'] \subseteq A);$
- ▶ is *I*-measurable iff $(\forall T \in \mathbb{L})(\exists T' \in \mathbb{L})(T' \subseteq T \land [T'] \cap A = \emptyset \lor [T'] \subseteq A);$
- ► is *m*-measurable iff $(\forall T \in \mathbb{M})(\exists T' \in \mathbb{M})(T' \subseteq T \land [T'] \cap A = \emptyset \lor [T'] \subseteq A);$

where

- S denotes the family of all perfect trees,
- \mathbb{L} denotes the family of all Laver trees,
- M denotes the family of all Miller trees.

Theorem (Brendle, 1995)

There are no inclusions between s_0 , l_0 , m_0 . In particular $s_0 \nsubseteq l_0$ and $s_0 \nsubseteq m_0$.

Brendle J., Strolling through paradise, Fundamenta Mathematicae, 148 (1), (1995), 1–25,

Fact

- 1. there is *I*-measurable set which is not *s*-measurable,
- 2. there is *m*-measurable set which is not *s*-measurable,
- 3. there is l-measurable set which is not m-measurable.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Fact

- 1. there is *I*-measurable set which is not *s*-measurable,
- 2. there is *m*-measurable set which is not *s*-measurable,
- 3. there is *I*-measurable set which is not *m*-measurable.

Proof of 1.

- ► $2^{\omega} \subseteq \omega^{\omega}$.
- ▶ $2^{\omega} \in I_0$ and $2^{\omega} \notin s_0$.
- Choose $X \subseteq 2^{\omega}$ which is *s*-nonmeasurable.

►
$$\mathcal{A} \subseteq \omega^{\omega}$$
 is a dominating family iff
 $(\forall x \in \omega^{\omega})(\exists a \in \mathcal{A})(\forall^{\infty} n)(x(n) \leq a(n));$

▶ $0 = \min\{|A: A \subseteq \omega^{\omega} \text{ is a dominating family}\};$

►
$$\mathcal{A} \subseteq \omega^{\omega}$$
 is an unbounded family iff
 $\neg (\exists x \in \omega^{\omega})(\forall a \in \mathcal{A})(\forall^{\infty} n)(a(n) \leq x(n));$

•
$$\mathbf{b} = \min\{|\mathcal{A}| : \mathcal{A} \subseteq \omega^{\omega} \text{ is unbounded family}\}.$$

Fact

- 1. If $\mathfrak{d} = \mathfrak{c}$ then there exists $A \subseteq \omega^{\omega}$ such that A is s-measurable and A is not *I*-measurable.
- 2. If $\mathfrak{b} = \mathfrak{c}$ then there exists $A \subseteq \omega^{\omega}$ such that A is s-measurable and A is not *m*-measurable.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Remark

To prove 1. it is enough to construct $A \in s_0 \setminus I_0$.

Proof of $\mathfrak{d} = \mathfrak{c} \Longrightarrow \exists A \in \mathfrak{s}_0 \setminus I_0$

$$L = \{L_{\alpha} : \alpha < \mathfrak{c}\},\$$
$$S = \{S_{\alpha} < \mathfrak{c}\}.$$

Define a transfinite sequence:

$$((a_{\xi}, P_{\xi}) : \xi < \mathfrak{c})$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

satisfying for any $\xi < \mathfrak{c}$

1.
$$a_{\xi} \in [L_{\xi}]$$
,
2. $P_{\xi} \subseteq S_{\xi}$ and $P_{\xi} \in \mathbb{S}$,
3. for any $\eta < \xi \ P_{\eta} \cap \{a_{\beta} : \beta < \xi\} = \emptyset$.
Finally, $A = \{a_{\xi} : \xi < \mathfrak{c}\}$.

Definition of \mathcal{I} -Luzin set Let $\mathcal{I} \subseteq P(\omega^{\omega})$ be a σ -ideal. $L \subseteq \omega^{\omega}$ is an \mathcal{I} -Luzin set iff

 $(\forall X \in \mathcal{I})(|X \cap L| < |L|)$

Theorem (Wohofsky, WS2016)

There is no so-Luzin set.

Wohofsky W., There are no large sets which can be translated away from every Marczewski null set, WS2016 Hejnice, http://www.winterschool.eu/files/937...

Fact

- ▶ There is no *l*₀-Luzin set.
- ▶ There is no *m*₀-Luzin set.

Fact

- ▶ There is no *l*₀-Luzin set.
- ▶ There is no *m*₀-Luzin set.

Proof, I_0 case

For every X such that $|X| = \mathfrak{c}$ there exists $A \subseteq X$ such that $A \in I_0$ and $|A| = \mathfrak{c}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

 $(\forall X)(|X| = \mathfrak{c} \to (\exists A \subseteq X)(A \in I_0, \land |A| = \mathfrak{c}))$

- $X \notin I_0$, so there is $L \in \mathbb{L}$ such that $|[L] \cap X| = \mathfrak{c}$.
- Fix a maximal antichain {L_α : α < c} of Laver trees below L such that |[L_α] ∩ X| = c.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Construct $a_{\alpha} \in X \setminus \bigcup_{\xi < \alpha} [L_{\alpha}].$
- $\bullet \ A = \{a_{\alpha} : \ \alpha < \mathfrak{c}\}.$

Definition of m.e.d. familiy

• $x, y \in \omega^{\omega}$ are eventually different iff

$$(\forall^{\infty} n)(x(n) \neq y(n));$$

- A family A ⊆ ω^ω is e.d. family iff it consists of eventually different reals;
- A family A ⊆ ω^ω is m.e.d. family if it is e.d. family maximal with respect to inclusion.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (Rałowski, 2015)

It is consistent that there is a m.e.d. family $\mathcal{A} \subseteq \omega^{\omega}$ which is *cl*-nonmeasurable.

Rałowski R., Families of sets with nonmeasurable unions with respect to ideals defined by trees, Archive for Mathematical Logic, 54, no. 5-6, (2015), 649–658.

Theorem (Rałowski, 2015)

It is consistent that there is a m.e.d. family \mathcal{A} which is cl-nonmeasurable and consists a dominating family of cardinality ω_1 .

Rałowski R., Dominating m.a.d. families in Baire space, RIMS Kôkyûroku No.1949 (2015), pp. 73–80.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem

There exists a m.e.d. family $\mathcal{A} \subseteq \omega^{\omega}$ such that \mathcal{A} is not s, l, m-measurable and contains a dominating family of size \mathfrak{d} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem

There exists a m.e.d. family $\mathcal{A} \subseteq \omega^{\omega}$ such that \mathcal{A} is not s, l, m-measurable and contains a dominating family of size \mathfrak{d} .

Proof

• There exists an e.d. dominating family $\mathcal{D} \subseteq (4\mathbb{N})^{\omega}$, $|\mathcal{D}| = \mathfrak{d}$.

- Choose e.d. trees
 - ▶ $S \subseteq (4\mathbb{N}+1)^{<\omega}$, $S \in \mathbb{S}$,
 - $M \subseteq (4\mathbb{N}+2)^{<\omega}$, $M \in \mathbb{M}$,
 - $L \subseteq (4\mathbb{N}+3)^{<\omega}, L \in \mathbb{L}.$

Proof...

Enumerate

- $Perf(S) = \{S_{\alpha} : \alpha < \mathfrak{c}\},\$
- $Miller(M) = \{M_{\alpha} : \alpha < \mathfrak{c}\},\$
- Laver(L) = { $L_{\alpha} : \alpha < \mathfrak{c}$ }.

For $\alpha < \mathfrak{c}$ we will define

$$w_{\alpha} = (a_{\xi}^{s}, d_{\xi}^{s}, x_{\xi}^{s}, a_{\xi}^{m}, d_{\xi}^{m}, x_{\xi}^{m}, a_{\xi}^{l}, d_{\xi}^{l}, x_{\xi}^{l},)$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

satisfying

1.
$$a_{\alpha}^{s}, d_{\alpha}^{s} \in S_{\alpha}$$
,
2. $\{a_{\xi}^{s}: \xi < \alpha\} \cap \{d_{\xi}^{s}: \xi < \alpha\} = \emptyset$,
3. $\{a_{\xi}^{s}: \xi < \alpha\} \cup \{x_{\xi}^{s}: \xi < \alpha\}$ is e.d.,
4. $\forall^{\infty} n \ x_{\alpha}^{s}(n) = d_{\alpha}^{s}(n)$ but $x_{\alpha}^{s} \neq d_{\alpha}^{s}$.
5. ...

Proof...

$$w_{\alpha} = (a_{\xi}^{s}, d_{\xi}^{s}, x_{\xi}^{s}, a_{\xi}^{s}, d_{\xi}^{s}, x_{\xi}^{s}, a_{\xi}^{s}, d_{\xi}^{s}, x_{\xi}^{s},) \text{ satisfying}$$
1. $a_{\alpha}^{s}, d_{\alpha}^{s} \in S_{\alpha},$
2. $\{a_{\xi}^{s}: \xi < \alpha\} \cap \{d_{\xi}^{s}: \xi < \alpha\} = \emptyset,$
3. $\{a_{\xi}^{s}: \xi < \alpha\} \cup \{x_{\xi}^{s}: \xi < \alpha\} \text{ is e.d.},$
4. $\forall^{\infty} n \, x_{\alpha}^{s}(n) = d_{\alpha}^{s}(n) \text{ but } x_{\alpha}^{s} \neq d_{\alpha}^{s}.$
5. $a_{\alpha}^{m}, d_{\alpha}^{m} \in M_{\alpha},$
6. $\{a_{\xi}^{m}: \xi < \alpha\} \cap \{d_{\xi}^{m}: \xi < \alpha\} = \emptyset,$
7. $\{a_{\xi}^{m}: \xi < \alpha\} \cup \{x_{\xi}^{m}: \xi < \alpha\} \text{ is e.d.},$
8. $\forall^{\infty} n \, x_{\alpha}^{m}(n) = d_{\alpha}^{m}(n) \text{ but } x_{\alpha}^{m} \neq d_{\alpha}^{m}.$
9. $a_{\alpha}^{l}, d_{\alpha}^{l} \in L_{\alpha},$
10. $\{a_{\xi}^{l}: \xi < \alpha\} \cap \{d_{\xi}^{l}: \xi < \alpha\} = \emptyset,$
11. $\{a_{\xi}^{l}: \xi < \alpha\} \cup \{x_{\xi}^{l}: \xi < \alpha\} \text{ is e.d.},$
12. $\forall^{\infty} n \, x_{\alpha}^{l}(n) = d_{\alpha}^{l}(n) \text{ but } x_{\alpha}^{l} \neq d_{\alpha}^{l}.$

Proof... Now set

$$A_{s} = \{a_{\alpha}^{s} : \alpha < \mathfrak{c}\} \cup \{x_{\alpha}^{s} : \alpha < \mathfrak{c}\},\$$
$$A_{m} = \{a_{\alpha}^{m} : \alpha < \mathfrak{c}\} \cup \{x_{\alpha}^{m} : \alpha < \mathfrak{c}\}$$

and

$$A_{I} = \{a'_{\alpha} : \alpha < \mathfrak{c}\} \cup \{x'_{\alpha} : \alpha < \mathfrak{c}\}$$

And finally

A is m.e.d. family containing $\mathcal{D} \cup A_s \cup A_m \cup A_l$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Thank You for Your Attention!

<□ > < @ > < E > < E > E のQ @

References

- Brendle J., Strolling through paradise, Fundamenta Mathematicae, 148 (1), (1995), 1–25,
- Rałowski R., Families of sets with nonmeasurable unions with respect to ideals defined by trees, Archive for Mathematical Logic, 54, no. 5-6, (2015), 649–658.
- Rałowski R., Dominating m.a.d. families in Baire space, RIMS Kôkyûroku No.1949 (2015), pp. 73–80.
- Rałowski R., Żeberski S., Nonmeasurable sets and unions with respect to selected ideals especially ideals defined by trees, arXiv:1507.02496
- Wohofsky W., There are no large sets which can be translated away from every Marczewski null set, WS2016 Hejnice, http://www.winterschool.eu/files/937...