Hurewicz spaces in the Laver model

Lyubomyr Zdomskyy

Kurt Gödel Research Center for Mathematical Logic University of Vienna

Novi Sad, June 21, 2016

イロト イポト イヨト イヨト 二日

1/18

A topological space X is *Hurewicz* if for every sequence $\langle \mathcal{U}_n : n \in \omega \rangle$ of open covers of X there is a sequence $\langle \mathcal{V}_n : n \in \omega \rangle$ such that $\mathcal{V}_n \in [\mathcal{U}_n]^{<\omega}$ and $\{ \cup \mathcal{V}_n : n \in \omega \}$ is a γ -cover of X.

A topological space X is *Hurewicz* if for every sequence $\langle \mathcal{U}_n : n \in \omega \rangle$ of open covers of X there is a sequence $\langle \mathcal{V}_n : n \in \omega \rangle$ such that $\mathcal{V}_n \in [\mathcal{U}_n]^{<\omega}$ and $\{\cup \mathcal{V}_n : n \in \omega\}$ is a γ -cover of X.

 \mathcal{U} is a γ -cover of X if $\forall x \in X \forall^* U \in \mathcal{U}(x \in U)$.

A topological space X is *Hurewicz* if for every sequence $\langle \mathcal{U}_n : n \in \omega \rangle$ of open covers of X there is a sequence $\langle \mathcal{V}_n : n \in \omega \rangle$ such that $\mathcal{V}_n \in [\mathcal{U}_n]^{<\omega}$ and $\{\cup \mathcal{V}_n : n \in \omega\}$ is a γ -cover of X.

 \mathcal{U} is a γ -cover of X if $\forall x \in X \forall^* U \in \mathcal{U}(x \in U)$.

 σ -compact \rightarrow Hurewicz \rightarrow Menger \rightarrow Lindelöf.

A topological space X is *Hurewicz* if for every sequence $\langle \mathcal{U}_n : n \in \omega \rangle$ of open covers of X there is a sequence $\langle \mathcal{V}_n : n \in \omega \rangle$ such that $\mathcal{V}_n \in [\mathcal{U}_n]^{<\omega}$ and $\{ \cup \mathcal{V}_n : n \in \omega \}$ is a γ -cover of X.

 \mathcal{U} is a γ -cover of X if $\forall x \in X \forall^* U \in \mathcal{U}(x \in U)$.

 σ -compact \rightarrow Hurewicz \rightarrow Menger \rightarrow Lindelöf.

Example: ω^{ω} is not Menger.

A topological space X is *Hurewicz* if for every sequence $\langle \mathcal{U}_n : n \in \omega \rangle$ of open covers of X there is a sequence $\langle \mathcal{V}_n : n \in \omega \rangle$ such that $\mathcal{V}_n \in [\mathcal{U}_n]^{<\omega}$ and $\{\cup \mathcal{V}_n : n \in \omega\}$ is a γ -cover of X.

 \mathcal{U} is a γ -cover of X if $\forall x \in X \forall^* U \in \mathcal{U}(x \in U)$.

 σ -compact \rightarrow Hurewicz \rightarrow Menger \rightarrow Lindelöf.

イロト 不屈 ト 不良 ト 不良 ト 二 臣

2/18

Example: ω^{ω} is not Menger. Witness: $\mathcal{U}_n = \{ \{x : x(n) = k\} : k \in \omega \}.$

A topological space X is *Hurewicz* if for every sequence $\langle \mathcal{U}_n : n \in \omega \rangle$ of open covers of X there is a sequence $\langle \mathcal{V}_n : n \in \omega \rangle$ such that $\mathcal{V}_n \in [\mathcal{U}_n]^{<\omega}$ and $\{\cup \mathcal{V}_n : n \in \omega\}$ is a γ -cover of X.

 \mathcal{U} is a γ -cover of X if $\forall x \in X \forall^* U \in \mathcal{U}(x \in U)$.

 σ -compact \rightarrow Hurewicz \rightarrow Menger \rightarrow Lindelöf.

Example: ω^{ω} is not Menger. Witness: $\mathcal{U}_n = \{ \{x : x(n) = k\} : k \in \omega \}.$

Folklore Fact. For analytic sets of reals Menger is equivalent to σ -compact.

A topological space X is *Hurewicz* if for every sequence $\langle \mathcal{U}_n : n \in \omega \rangle$ of open covers of X there is a sequence $\langle \mathcal{V}_n : n \in \omega \rangle$ such that $\mathcal{V}_n \in [\mathcal{U}_n]^{<\omega}$ and $\{ \cup \mathcal{V}_n : n \in \omega \}$ is a γ -cover of X.

 \mathcal{U} is a γ -cover of X if $\forall x \in X \forall^* U \in \mathcal{U}(x \in U)$.

 $\sigma\text{-compact} \rightarrow \text{Hurewicz} \rightarrow \text{Menger} \rightarrow \text{Lindelöf}.$

Example: ω^{ω} is not Menger. Witness: $\mathcal{U}_n = \{ \{x : x(n) = k\} : k \in \omega \}.$

Folklore Fact. For analytic sets of reals Menger is equivalent to σ -compact.

In L there exists a co-analytic Menger subspace of ω^ω which is not $\sigma\text{-compact}.$

Given $x,y\in\omega^{\omega}\text{, }x\leq^{*}y$ means $\{n:x(n)\leq y(n)\}$ is cofinite.

Given $x, y \in \omega^{\omega}$, $x \leq y$ means $\{n : x(n) \leq y(n)\}$ is cofinite. Theorem (Hurewicz 1925) A zero-dimensional Lindelöf space X is Hurewicz iff f[X] is bounded with respect to $\leq f$ for any continuous $f : X \to \omega^{\omega}$. Given $x, y \in \omega^{\omega}$, $x \leq y$ means $\{n : x(n) \leq y(n)\}$ is cofinite. Theorem (Hurewicz 1925) A zero-dimensional Lindelöf space X is Hurewicz iff f[X] is bounded with respect to $\leq x$ for any continuous $f : X \to \omega^{\omega}$.

A zero-dimensional Lindelöf space X is Menger iff f[X] is non-dominating with respect to \leq^* for any continuous $f: X \to \omega^{\omega}$. Given $x, y \in \omega^{\omega}$, $x \leq^* y$ means $\{n : x(n) \leq y(n)\}$ is cofinite. Theorem (Hurewicz 1925) A zero-dimensional Lindelöf space X is Hurewicz iff f[X] is bounded with respect to \leq^* for any continuous $f : X \to \omega^{\omega}$.

A zero-dimensional Lindelöf space X is Menger iff f[X] is non-dominating with respect to \leq^* for any continuous $f: X \to \omega^{\omega}$.

b is the minimal cardinality of an unbounded subset of ω^{ω} .

Given $x, y \in \omega^{\omega}$, $x \leq^* y$ means $\{n : x(n) \leq y(n)\}$ is cofinite. Theorem (Hurewicz 1925)

A zero-dimensional Lindelöf space X is Hurewicz iff f[X] is bounded with respect to \leq^* for any continuous $f: X \to \omega^{\omega}$.

A zero-dimensional Lindelöf space X is Menger iff f[X] is non-dominating with respect to \leq^* for any continuous $f: X \to \omega^\omega$.

b is the minimal cardinality of an unbounded subset of ω^{ω} . **d** is the minimal cardinality of a dominating subset of ω^{ω} .

Given $x, y \in \omega^{\omega}$, $x \leq^* y$ means $\{n : x(n) \leq y(n)\}$ is cofinite. Theorem (Hurewicz 1925)

A zero-dimensional Lindelöf space X is Hurewicz iff f[X] is bounded with respect to \leq^* for any continuous $f: X \to \omega^{\omega}$.

A zero-dimensional Lindelöf space X is Menger iff f[X] is non-dominating with respect to \leq^* for any continuous $f: X \to \omega^{\omega}$.

b is the minimal cardinality of an unbounded subset of ω^{ω} . **d** is the minimal cardinality of a dominating subset of ω^{ω} .

 $|X| < \mathfrak{b} \to X$ is Hurewicz.

Given $x, y \in \omega^{\omega}$, $x \leq^* y$ means $\{n : x(n) \leq y(n)\}$ is cofinite.

Theorem (Hurewicz 1925)

A zero-dimensional Lindelöf space X is Hurewicz iff f[X] is bounded with respect to \leq^* for any continuous $f: X \to \omega^\omega$.

A zero-dimensional Lindelöf space X is Menger iff f[X] is non-dominating with respect to \leq^* for any continuous $f: X \to \omega^\omega$.

b is the minimal cardinality of an unbounded subset of ω^{ω} . **d** is the minimal cardinality of a dominating subset of ω^{ω} .

 $|X| < \mathfrak{b} \to X$ is Hurewicz. $|X| < \mathfrak{d} \to X$ is Menger.

 $X\subset \omega^\omega$ is a Luzin set if $|X|=\omega_1$ and $|X\cap M|\leq \omega$ for any meager M.

 $X \subset \omega^{\omega}$ is a *Luzin* set if $|X| = \omega_1$ and $|X \cap M| \leq \omega$ for any meager M. Every Luzin set is Menger because concentrated.

 $X \subset \omega^{\omega}$ is a *Luzin* set if $|X| = \omega_1$ and $|X \cap M| \leq \omega$ for any meager M. Every Luzin set is Menger because concentrated. $X \subset 2^{\omega}$ is a *Sierpinski* set if $|X| = \omega_1$ and $|X \cap N| \leq \omega$ for any measure 0 set N.

 $X \subset \omega^{\omega}$ is a *Luzin* set if $|X| = \omega_1$ and $|X \cap M| \leq \omega$ for any meager M. Every Luzin set is Menger because concentrated. $X \subset 2^{\omega}$ is a *Sierpinski* set if $|X| = \omega_1$ and $|X \cap N| \leq \omega$ for any measure 0 set N.

Theorem (Scheepers 1996)

Let P be compact. $X \subset P$ is Hurewicz iff for every G_{δ} -set $G \supset X$ there exists a σ -compact F such that $X \subset F \subset G$.

 $X \subset \omega^{\omega}$ is a *Luzin* set if $|X| = \omega_1$ and $|X \cap M| \leq \omega$ for any meager M. Every Luzin set is Menger because concentrated. $X \subset 2^{\omega}$ is a *Sierpinski* set if $|X| = \omega_1$ and $|X \cap N| \leq \omega$ for any measure 0 set N.

Theorem (Scheepers 1996)

Let P be compact. $X \subset P$ is Hurewicz iff for every G_{δ} -set $G \supset X$ there exists a σ -compact F such that $X \subset F \subset G$.

Corollary

Luzin sets are Menger but not Hurewicz.

 $X \subset \omega^{\omega}$ is a *Luzin* set if $|X| = \omega_1$ and $|X \cap M| \leq \omega$ for any meager M. Every Luzin set is Menger because concentrated. $X \subset 2^{\omega}$ is a *Sierpinski* set if $|X| = \omega_1$ and $|X \cap N| \leq \omega$ for any measure 0 set N.

Theorem (Scheepers 1996)

Let P be compact. $X \subset P$ is Hurewicz iff for every G_{δ} -set $G \supset X$ there exists a σ -compact F such that $X \subset F \subset G$.

Corollary

Luzin sets are Menger but not Hurewicz. Sierpinski sets are Hurewicz.

 $X \subset \omega^{\omega}$ is a *Luzin* set if $|X| = \omega_1$ and $|X \cap M| \leq \omega$ for any meager M. Every Luzin set is Menger because concentrated. $X \subset 2^{\omega}$ is a *Sierpinski* set if $|X| = \omega_1$ and $|X \cap N| \leq \omega$ for any measure 0 set N.

Theorem (Scheepers 1996)

Let P be compact. $X \subset P$ is Hurewicz iff for every G_{δ} -set $G \supset X$ there exists a σ -compact F such that $X \subset F \subset G$.

Corollary

Luzin sets are Menger but not Hurewicz. Sierpinski sets are Hurewicz.

More generally: \mathfrak{b} -Sierpinski sets are Hurewicz and \mathfrak{d} -Luzin sets are Menger.

A set $X \subset \omega^{\omega}$ is κ -concentrated on a countable Q, if $|X| \ge \kappa$ and $|X \setminus U| < \kappa$ for any open $U \subset \omega^{\omega}$ containing Q.

A set $X \subset \omega^{\omega}$ is κ -concentrated on a countable Q, if $|X| \ge \kappa$ and $|X \setminus U| < \kappa$ for any open $U \subset \omega^{\omega}$ containing Q. If $\kappa \le \mathfrak{d}$, then $X \cup Q$ is Menger.

A set $X \subset \omega^{\omega}$ is κ -concentrated on a countable Q, if $|X| \geq \kappa$ and $|X \setminus U| < \kappa$ for any open $U \subset \omega^{\omega}$ containing Q. If $\kappa \leq \mathfrak{d}$, then $X \cup Q$ is Menger.

Fact. There exists a ϑ -concentrate set.

Proof. Fix a dominating $\{d_{\alpha} : \alpha < \mathfrak{d}\} \subset \omega^{\omega}$ and inductively construct $S = \{s_{\alpha} : \alpha < \mathfrak{d}\} \subset \omega^{\uparrow \omega}$ such that $s_{\alpha} \not\leq^* d_{\beta}$ for all $\beta \leq \alpha$.

A set $X \subset \omega^{\omega}$ is κ -concentrated on a countable Q, if $|X| \geq \kappa$ and $|X \setminus U| < \kappa$ for any open $U \subset \omega^{\omega}$ containing Q. If $\kappa \leq \mathfrak{d}$, then $X \cup Q$ is Menger.

Fact. There exists a ϑ -concentrate set.

Proof. Fix a dominating $\{d_{\alpha} : \alpha < \mathfrak{d}\} \subset \omega^{\omega}$ and inductively construct $S = \{s_{\alpha} : \alpha < \mathfrak{d}\} \subset \omega^{\uparrow \omega}$ such that $s_{\alpha} \not\leq^* d_{\beta}$ for all $\beta \leq \alpha$. Viewed as a subspace of $(\omega + 1)^{\uparrow \omega}$, S is \mathfrak{d} -concentrated on $Q = \{x \in (\omega + 1)^{\uparrow \omega} : x \text{ is eventually } \omega\}$. \Box

A set $X \subset \omega^{\omega}$ is κ -concentrated on a countable Q, if $|X| \ge \kappa$ and $|X \setminus U| < \kappa$ for any open $U \subset \omega^{\omega}$ containing Q. If $\kappa \le \mathfrak{d}$, then $X \cup Q$ is Menger.

Fact. There exists a ϑ -concentrate set.

Proof. Fix a dominating $\{d_{\alpha} : \alpha < \mathfrak{d}\} \subset \omega^{\omega}$ and inductively construct $S = \{s_{\alpha} : \alpha < \mathfrak{d}\} \subset \omega^{\uparrow \omega}$ such that $s_{\alpha} \not\leq^* d_{\beta}$ for all $\beta \leq \alpha$. Viewed as a subspace of $(\omega + 1)^{\uparrow \omega}$, S is \mathfrak{d} -concentrated on $Q = \{x \in (\omega + 1)^{\uparrow \omega} : x \text{ is eventually } \omega\}$. \Box

Fact. There exists a \mathfrak{b} -concentrate set.

Proof. Fix an unbounded $B = \{b_{\alpha} : \alpha < \mathfrak{b}\} \subset \omega^{\omega}$ such that $b_{\beta} \leq^* b_{\alpha}$ for all $\beta \leq \alpha$.

A set $X \subset \omega^{\omega}$ is κ -concentrated on a countable Q, if $|X| \ge \kappa$ and $|X \setminus U| < \kappa$ for any open $U \subset \omega^{\omega}$ containing Q. If $\kappa \le \mathfrak{d}$, then $X \cup Q$ is Menger.

Fact. There exists a ϑ -concentrate set.

Proof. Fix a dominating $\{d_{\alpha} : \alpha < \mathfrak{d}\} \subset \omega^{\omega}$ and inductively construct $S = \{s_{\alpha} : \alpha < \mathfrak{d}\} \subset \omega^{\uparrow \omega}$ such that $s_{\alpha} \not\leq^* d_{\beta}$ for all $\beta \leq \alpha$. Viewed as a subspace of $(\omega + 1)^{\uparrow \omega}$, S is \mathfrak{d} -concentrated on $Q = \{x \in (\omega + 1)^{\uparrow \omega} : x \text{ is eventually } \omega\}$. \Box

Fact. There exists a b-concentrate set.

Proof. Fix an unbounded $B = \{b_{\alpha} : \alpha < \mathfrak{b}\} \subset \omega^{\omega}$ such that $b_{\beta} \leq^* b_{\alpha}$ for all $\beta \leq \alpha$. *B* is \mathfrak{b} -concentrated on *Q*.

A set $X \subset \omega^{\omega}$ is κ -concentrated on a countable Q, if $|X| \ge \kappa$ and $|X \setminus U| < \kappa$ for any open $U \subset \omega^{\omega}$ containing Q. If $\kappa \le \mathfrak{d}$, then $X \cup Q$ is Menger.

Fact. There exists a ϑ -concentrate set.

Proof. Fix a dominating $\{d_{\alpha} : \alpha < \mathfrak{d}\} \subset \omega^{\omega}$ and inductively construct $S = \{s_{\alpha} : \alpha < \mathfrak{d}\} \subset \omega^{\uparrow \omega}$ such that $s_{\alpha} \not\leq^* d_{\beta}$ for all $\beta \leq \alpha$. Viewed as a subspace of $(\omega + 1)^{\uparrow \omega}$, S is \mathfrak{d} -concentrated on $Q = \{x \in (\omega + 1)^{\uparrow \omega} : x \text{ is eventually } \omega\}$. \Box

Fact. There exists a b-concentrate set.

Proof. Fix an unbounded $B = \{b_{\alpha} : \alpha < \mathfrak{b}\} \subset \omega^{\omega}$ such that $b_{\beta} \leq^* b_{\alpha}$ for all $\beta \leq \alpha$. *B* is \mathfrak{b} -concentrated on *Q*. Nontrivial (Bartoszynski-Shelah): $B \cup Q$ is Hurewicz.

A set $X \subset \omega^{\omega}$ is κ -concentrated on a countable Q, if $|X| \ge \kappa$ and $|X \setminus U| < \kappa$ for any open $U \subset \omega^{\omega}$ containing Q. If $\kappa \le \mathfrak{d}$, then $X \cup Q$ is Menger.

Fact. There exists a ϑ -concentrate set.

Proof. Fix a dominating $\{d_{\alpha} : \alpha < \mathfrak{d}\} \subset \omega^{\omega}$ and inductively construct $S = \{s_{\alpha} : \alpha < \mathfrak{d}\} \subset \omega^{\uparrow \omega}$ such that $s_{\alpha} \not\leq^* d_{\beta}$ for all $\beta \leq \alpha$. Viewed as a subspace of $(\omega + 1)^{\uparrow \omega}$, S is \mathfrak{d} -concentrated on $Q = \{x \in (\omega + 1)^{\uparrow \omega} : x \text{ is eventually } \omega\}$. \Box

Fact. There exists a b-concentrate set.

Proof. Fix an unbounded $B = \{b_{\alpha} : \alpha < \mathfrak{b}\} \subset \omega^{\omega}$ such that $b_{\beta} \leq^* b_{\alpha}$ for all $\beta \leq \alpha$. *B* is \mathfrak{b} -concentrated on *Q*. Nontrivial (Bartoszynski-Shelah): $B \cup Q$ is Hurewicz. "All \mathfrak{b} -concentrated sets are Hurewicz" is independent:

A set $X \subset \omega^{\omega}$ is κ -concentrated on a countable Q, if $|X| \ge \kappa$ and $|X \setminus U| < \kappa$ for any open $U \subset \omega^{\omega}$ containing Q. If $\kappa \le \mathfrak{d}$, then $X \cup Q$ is Menger.

Fact. There exists a ϑ -concentrate set.

Proof. Fix a dominating $\{d_{\alpha} : \alpha < \mathfrak{d}\} \subset \omega^{\omega}$ and inductively construct $S = \{s_{\alpha} : \alpha < \mathfrak{d}\} \subset \omega^{\uparrow \omega}$ such that $s_{\alpha} \not\leq^* d_{\beta}$ for all $\beta \leq \alpha$. Viewed as a subspace of $(\omega + 1)^{\uparrow \omega}$, S is \mathfrak{d} -concentrated on $Q = \{x \in (\omega + 1)^{\uparrow \omega} : x \text{ is eventually } \omega\}$. \Box

Fact. There exists a \mathfrak{b} -concentrate set.

Proof. Fix an unbounded $B = \{b_{\alpha} : \alpha < \mathfrak{b}\} \subset \omega^{\omega}$ such that $b_{\beta} \leq^* b_{\alpha}$ for all $\beta \leq \alpha$. *B* is \mathfrak{b} -concentrated on *Q*. Nontrivial (Bartoszynski-Shelah): $B \cup Q$ is Hurewicz. "All \mathfrak{b} -concentrated sets are Hurewicz" is independent: wrong under CH,

A set $X \subset \omega^{\omega}$ is κ -concentrated on a countable Q, if $|X| \ge \kappa$ and $|X \setminus U| < \kappa$ for any open $U \subset \omega^{\omega}$ containing Q. If $\kappa \le \mathfrak{d}$, then $X \cup Q$ is Menger.

Fact. There exists a ϑ -concentrate set.

Proof. Fix a dominating $\{d_{\alpha} : \alpha < \mathfrak{d}\} \subset \omega^{\omega}$ and inductively construct $S = \{s_{\alpha} : \alpha < \mathfrak{d}\} \subset \omega^{\uparrow \omega}$ such that $s_{\alpha} \not\leq^* d_{\beta}$ for all $\beta \leq \alpha$. Viewed as a subspace of $(\omega + 1)^{\uparrow \omega}$, S is \mathfrak{d} -concentrated on $Q = \{x \in (\omega + 1)^{\uparrow \omega} : x \text{ is eventually } \omega\}$. \Box

Fact. There exists a b-concentrate set.

Proof. Fix an unbounded $B = \{b_{\alpha} : \alpha < \mathfrak{b}\} \subset \omega^{\omega}$ such that $b_{\beta} \leq^* b_{\alpha}$ for all $\beta \leq \alpha$. *B* is \mathfrak{b} -concentrated on *Q*. Nontrivial (Bartoszynski-Shelah): $B \cup Q$ is Hurewicz. "All \mathfrak{b} -concentrated sets are Hurewicz" is independent: wrong

under CH, true in the Miller model.

Mathias forcing for filters

A subset \mathcal{F} of $[\omega]^{\omega}$ is called a *filter* if \mathcal{F} contains all cofinite sets,

A subset \mathcal{F} of $[\omega]^{\omega}$ is called a *filter* if \mathcal{F} contains all cofinite sets, is closed under finite intersections of its elements,

A subset \mathcal{F} of $[\omega]^{\omega}$ is called a *filter* if \mathcal{F} contains all cofinite sets, is closed under finite intersections of its elements, and under taking supersets.

 $\mathbb{M}_{\mathcal{F}}$ consists of pairs $\langle s, F \rangle$ such that $s \in [\omega]^{<\omega}$, $F \in \mathcal{F}$, and $\max s < \min F$.

 $\mathbb{M}_{\mathcal{F}}$ consists of pairs $\langle s, F \rangle$ such that $s \in [\omega]^{<\omega}$, $F \in \mathcal{F}$, and $\max s < \min F$. A condition $\langle s, F \rangle$ is stronger than $\langle t, U \rangle$ if $F \subset U$, s is an end-extension of t, and

 $\mathbb{M}_{\mathcal{F}}$ consists of pairs $\langle s, F \rangle$ such that $s \in [\omega]^{<\omega}$, $F \in \mathcal{F}$, and $\max s < \min F$. A condition $\langle s, F \rangle$ is stronger than $\langle t, U \rangle$ if $F \subset U$, s is an end-extension of t, and $s \setminus t \subset U$.

 $\mathbb{M}_{\mathcal{F}}$ consists of pairs $\langle s, F \rangle$ such that $s \in [\omega]^{<\omega}$, $F \in \mathcal{F}$, and $\max s < \min F$. A condition $\langle s, F \rangle$ is stronger than $\langle t, U \rangle$ if $F \subset U$, s is an end-extension of t, and $s \setminus t \subset U$.

 $\mathbb{M}_{\mathcal{F}}$ is usually called *Mathias forcing associated with* \mathcal{F} .

 $\mathbb{M}_{\mathcal{F}}$ consists of pairs $\langle s, F \rangle$ such that $s \in [\omega]^{<\omega}$, $F \in \mathcal{F}$, and $\max s < \min F$. A condition $\langle s, F \rangle$ is stronger than $\langle t, U \rangle$ if $F \subset U$, s is an end-extension of t, and $s \setminus t \subset U$.

 $\mathbb{M}_{\mathcal{F}}$ is usually called *Mathias forcing associated with* \mathcal{F} .

 $\mathbb{M}_\mathcal{F}$ is a natural forcing adding a pseudointersection of $\mathcal{F}\colon$

 $\mathbb{M}_{\mathcal{F}}$ consists of pairs $\langle s, F \rangle$ such that $s \in [\omega]^{<\omega}$, $F \in \mathcal{F}$, and $\max s < \min F$. A condition $\langle s, F \rangle$ is stronger than $\langle t, U \rangle$ if $F \subset U$, s is an end-extension of t, and $s \setminus t \subset U$.

 $\mathbb{M}_{\mathcal{F}}$ is usually called *Mathias forcing associated with* \mathcal{F} .

 $\mathbb{M}_{\mathcal{F}}$ is a natural forcing adding a pseudointersection of \mathcal{F} : if G is a $\mathbb{M}_{\mathcal{F}}$ -generic, then $X = \bigcup \{s : \exists F \in \mathcal{F}(\langle s, F \rangle \in G)\}$ is almost contained in any $F \in \mathcal{F}$.

 $\mathbb{M}_{\mathcal{F}}$ consists of pairs $\langle s, F \rangle$ such that $s \in [\omega]^{<\omega}$, $F \in \mathcal{F}$, and $\max s < \min F$. A condition $\langle s, F \rangle$ is stronger than $\langle t, U \rangle$ if $F \subset U$, s is an end-extension of t, and $s \setminus t \subset U$.

 $\mathbb{M}_{\mathcal{F}}$ is usually called *Mathias forcing associated with* \mathcal{F} .

 $\mathbb{M}_{\mathcal{F}}$ is a natural forcing adding a pseudointersection of \mathcal{F} : if G is a $\mathbb{M}_{\mathcal{F}}$ -generic, then $X = \bigcup \{s : \exists F \in \mathcal{F}(\langle s, F \rangle \in G)\}$ is almost contained in any $F \in \mathcal{F}$.

Applications:

 $\mathbb{M}_{\mathcal{F}}$ consists of pairs $\langle s, F \rangle$ such that $s \in [\omega]^{<\omega}$, $F \in \mathcal{F}$, and $\max s < \min F$. A condition $\langle s, F \rangle$ is stronger than $\langle t, U \rangle$ if $F \subset U$, s is an end-extension of t, and $s \setminus t \subset U$.

 $\mathbb{M}_{\mathcal{F}}$ is usually called *Mathias forcing associated with* \mathcal{F} .

 $\mathbb{M}_{\mathcal{F}}$ is a natural forcing adding a pseudointersection of \mathcal{F} : if G is a $\mathbb{M}_{\mathcal{F}}$ -generic, then $X = \bigcup \{s : \exists F \in \mathcal{F}(\langle s, F \rangle \in G)\}$ is almost contained in any $F \in \mathcal{F}$.

Applications: killing mad families,

 $\mathbb{M}_{\mathcal{F}}$ consists of pairs $\langle s, F \rangle$ such that $s \in [\omega]^{<\omega}$, $F \in \mathcal{F}$, and $\max s < \min F$. A condition $\langle s, F \rangle$ is stronger than $\langle t, U \rangle$ if $F \subset U$, s is an end-extension of t, and $s \setminus t \subset U$.

 $\mathbb{M}_{\mathcal{F}}$ is usually called *Mathias forcing associated with* \mathcal{F} .

 $\mathbb{M}_{\mathcal{F}}$ is a natural forcing adding a pseudointersection of \mathcal{F} : if G is a $\mathbb{M}_{\mathcal{F}}$ -generic, then $X = \bigcup \{s : \exists F \in \mathcal{F}(\langle s, F \rangle \in G)\}$ is almost contained in any $F \in \mathcal{F}$.

Applications: killing mad families, making the ground model reals not splitting, etc.

A poset \mathbb{P} is said to *add a dominating real* if in $V^{\mathbb{P}}$ there exists $x \in \omega^{\omega}$ such that $y \leq^* x$ for all ground model $y \in \omega^{\omega}$.

A poset \mathbb{P} is said to *add a dominating real* if in $V^{\mathbb{P}}$ there exists $x \in \omega^{\omega}$ such that $y \leq^* x$ for all ground model $y \in \omega^{\omega}$. Example: Laver forcing, Hechler forcing.

Theorem (Canjar 1988)

 $\mathfrak{d} = \mathfrak{c}$ implies the existence of an ultrafilter \mathcal{F} such that $\mathbb{M}_{\mathcal{F}}$ does not add dominating reals.

Theorem (Canjar 1988)

 $\mathfrak{d} = \mathfrak{c}$ implies the existence of an ultrafilter \mathcal{F} such that $\mathbb{M}_{\mathcal{F}}$ does not add dominating reals.

Theorem (Canjar 1988)

 $\mathfrak{d} = \mathfrak{c}$ implies the existence of an ultrafilter \mathcal{F} such that $\mathbb{M}_{\mathcal{F}}$ does not add dominating reals.

Definition (Guzman-Hrusak-Martinez)

A filter ${\cal F}$ on ω is called Canjar if ${\Bbb M}_{{\cal F}}$ does not add dominating reals.

Theorem (Canjar 1988)

 $\mathfrak{d} = \mathfrak{c}$ implies the existence of an ultrafilter \mathcal{F} such that $\mathbb{M}_{\mathcal{F}}$ does not add dominating reals.

Definition (Guzman-Hrusak-Martinez)

A filter \mathcal{F} on ω is called Canjar if $\mathbb{M}_{\mathcal{F}}$ does not add dominating reals.

Let B be an unbounded subset of $\omega^\omega.$

Theorem (Canjar 1988)

 $\mathfrak{d} = \mathfrak{c}$ implies the existence of an ultrafilter \mathcal{F} such that $\mathbb{M}_{\mathcal{F}}$ does not add dominating reals.

Definition (Guzman-Hrusak-Martinez)

A filter \mathcal{F} on ω is called Canjar if $\mathbb{M}_{\mathcal{F}}$ does not add dominating reals.

Let B be an unbounded subset of ω^{ω} . A filter \mathcal{F} on ω is called B-Canjar if $\mathbb{M}_{\mathcal{F}}$ adds no reals dominating all elements of B.

П

Theorem (Canjar 1988)

 $\mathfrak{d} = \mathfrak{c}$ implies the existence of an ultrafilter \mathcal{F} such that $\mathbb{M}_{\mathcal{F}}$ does not add dominating reals.

Definition (Guzman-Hrusak-Martinez)

A filter \mathcal{F} on ω is called Canjar if $\mathbb{M}_{\mathcal{F}}$ does not add dominating reals.

Let B be an unbounded subset of ω^{ω} . A filter \mathcal{F} on ω is called B-Canjar if $\mathbb{M}_{\mathcal{F}}$ adds no reals dominating all elements of B.

П

$\mathbb{M}_\mathcal{F}$ and dominating reals: continuation

Theorem (Brendle 1998)

1) Every σ -compact filter is Canjar.

$\mathbb{M}_{\mathcal{F}}$ and dominating reals: continuation

Theorem (Brendle 1998)

1) Every σ -compact filter is Canjar. 2) ($\mathfrak{b} = \mathfrak{c}$). Let \mathcal{A} be a mad family.

$\mathbb{M}_{\mathcal{F}}$ and dominating reals: continuation

Theorem (Brendle 1998)

1) Every σ -compact filter is Canjar. 2) ($\mathfrak{b} = \mathfrak{c}$). Let \mathcal{A} be a mad family. Then for any unbounded $B = \{b_{\alpha} : \alpha < \mathfrak{b}\} \subset \omega^{\omega}$ such that $b_{\alpha} \leq^* b_{\beta}$ for all $\alpha < \beta$,

1) Every σ -compact filter is Canjar. 2) $(\mathfrak{b} = \mathfrak{c})$. Let \mathcal{A} be a mad family. Then for any unbounded $B = \{b_{\alpha} : \alpha < \mathfrak{b}\} \subset \omega^{\omega}$ such that $b_{\alpha} \leq^* b_{\beta}$ for all $\alpha < \beta$, in the extension obtained by adding \mathfrak{b} many Cohens, there exists a B-Canjar $\mathcal{F} \supset \mathcal{F}_{\mathcal{A}}$.

1) Every σ -compact filter is Canjar. 2) ($\mathfrak{b} = \mathfrak{c}$). Let \mathcal{A} be a mad family. Then for any unbounded $B = \{b_{\alpha} : \alpha < \mathfrak{b}\} \subset \omega^{\omega}$ such that $b_{\alpha} \leq^* b_{\beta}$ for all $\alpha < \beta$, in the extension obtained by adding \mathfrak{b} many Cohens, there exists a B-Canjar $\mathcal{F} \supset \mathcal{F}_{\mathcal{A}}$.

Theorem (Guzman-Hrusak-Martinez 2013; Blass-Hrusak-Verner 2011 for ultrafilters)

A filter \mathcal{F} is Canjar iff it is a coherent strong P^+ -filter.

1) Every σ -compact filter is Canjar. 2) ($\mathfrak{b} = \mathfrak{c}$). Let \mathcal{A} be a mad family. Then for any unbounded $B = \{b_{\alpha} : \alpha < \mathfrak{b}\} \subset \omega^{\omega}$ such that $b_{\alpha} \leq^* b_{\beta}$ for all $\alpha < \beta$, in the extension obtained by adding \mathfrak{b} many Cohens, there exists a B-Canjar $\mathcal{F} \supset \mathcal{F}_{\mathcal{A}}$.

Theorem (Guzman-Hrusak-Martinez 2013; Blass-Hrusak-Verner 2011 for ultrafilters)

A filter \mathcal{F} is Canjar iff it is a coherent strong P^+ -filter.

 \mathcal{F} is a strong P^+ -filter if for every sequence $\langle \mathcal{C}_n \colon n \in \omega \rangle$ of compact subsets of \mathcal{F}^+ there exists an increasing sequence $\langle k_n \colon n \in \omega \rangle$ of integers such that if $X_n \in \mathcal{C}_n$ for all n

1) Every σ -compact filter is Canjar. 2) ($\mathfrak{b} = \mathfrak{c}$). Let \mathcal{A} be a mad family. Then for any unbounded $B = \{b_{\alpha} : \alpha < \mathfrak{b}\} \subset \omega^{\omega}$ such that $b_{\alpha} \leq^* b_{\beta}$ for all $\alpha < \beta$, in the extension obtained by adding \mathfrak{b} many Cohens, there exists a B-Canjar $\mathcal{F} \supset \mathcal{F}_{\mathcal{A}}$.

Theorem (Guzman-Hrusak-Martinez 2013; Blass-Hrusak-Verner 2011 for ultrafilters)

A filter \mathcal{F} is Canjar iff it is a coherent strong P^+ -filter.

 \mathcal{F} is a strong P^+ -filter if for every sequence $\langle \mathcal{C}_n \colon n \in \omega \rangle$ of compact subsets of \mathcal{F}^+ there exists an increasing sequence $\langle k_n \colon n \in \omega \rangle$ of integers such that if $X_n \in \mathcal{C}_n$ for all n, then $\bigcup_{n \in \omega} (X_n \cap [k_n, k_{n+1})) \in \mathcal{F}^+$.

1) Every σ -compact filter is Canjar. 2) ($\mathfrak{b} = \mathfrak{c}$). Let \mathcal{A} be a mad family. Then for any unbounded $B = \{b_{\alpha} : \alpha < \mathfrak{b}\} \subset \omega^{\omega}$ such that $b_{\alpha} \leq^* b_{\beta}$ for all $\alpha < \beta$, in the extension obtained by adding \mathfrak{b} many Cohens, there exists a B-Canjar $\mathcal{F} \supset \mathcal{F}_{\mathcal{A}}$.

Theorem (Guzman-Hrusak-Martinez 2013; Blass-Hrusak-Verner 2011 for ultrafilters)

A filter \mathcal{F} is Canjar iff it is a coherent strong P^+ -filter.

 \mathcal{F} is a strong P^+ -filter if for every sequence $\langle \mathcal{C}_n \colon n \in \omega \rangle$ of compact subsets of \mathcal{F}^+ there exists an increasing sequence $\langle k_n \colon n \in \omega \rangle$ of integers such that if $X_n \in \mathcal{C}_n$ for all n, then $\bigcup_{n \in \omega} (X_n \cap [k_n, k_{n+1})) \in \mathcal{F}^+$.

Theorem (Hurewicz 1925)

A zero-dimensional Lindelöf space X is Hurewicz iff f[X] is bounded for any continuous $f: X \to \omega^{\omega}$.

Theorem (Hurewicz 1925)

A zero-dimensional Lindelöf space X is Hurewicz iff f[X] is bounded for any continuous $f: X \to \omega^{\omega}$.

A zero-dimensional Lindelöf space X is Menger iff f[X] is non-dominating for any continuous $f: X \to \omega^{\omega}$.

Theorem (Hurewicz 1925)

A zero-dimensional Lindelöf space X is Hurewicz iff f[X] is bounded for any continuous $f: X \to \omega^{\omega}$.

A zero-dimensional Lindelöf space X is Menger iff f[X] is non-dominating for any continuous $f: X \to \omega^{\omega}$.

<ロト < 部 > < 目 > < 目 > 三 の < C 10 / 18

<ロト < 部 > < 目 > < 目 > 三 の < C 10 / 18

Theorem (Chodounský-Repovš-Z. 2014) 1) \mathcal{F} is Canjar iff \mathcal{F} has the Menger covering property as a subspace of $\mathcal{P}(\omega)$.

Theorem (Chodounský-Repovš-Z. 2014)

1) \mathcal{F} is Canjar iff \mathcal{F} has the Menger covering property as a subspace of $\mathcal{P}(\omega)$. 2) $\mathbb{M}_{\mathcal{F}}$ is almost ω^{ω} -bounding

Theorem (Chodounský-Repovš-Z. 2014)

1) \mathcal{F} is Canjar iff \mathcal{F} has the Menger covering property as a subspace of $\mathcal{P}(\omega)$. 2) $\mathbb{M}_{\mathcal{F}}$ is almost ω^{ω} -bounding iff \mathcal{F} is B-Canjar for all unbounded $B \subset \omega^{\omega}$

Theorem (Chodounský-Repovš-Z. 2014)

1) \mathcal{F} is Canjar iff \mathcal{F} has the Menger covering property as a subspace of $\mathcal{P}(\omega)$. 2) $\mathbb{M}_{\mathcal{F}}$ is almost ω^{ω} -bounding iff \mathcal{F} is B-Canjar for all unbounded $B \subset \omega^{\omega}$ iff \mathcal{F} is Hurewicz.

Theorem (Chodounský-Repovš-Z. 2014)

1) \mathcal{F} is Canjar iff \mathcal{F} has the Menger covering property as a subspace of $\mathcal{P}(\omega)$. 2) $\mathbb{M}_{\mathcal{F}}$ is almost ω^{ω} -bounding iff \mathcal{F} is B-Canjar for all unbounded $B \subset \omega^{\omega}$ iff \mathcal{F} is Hurewicz.

Corollary

Let \mathcal{F} be an analytic filter on ω .

Theorem (Chodounský-Repovš-Z. 2014)

1) \mathcal{F} is Canjar iff \mathcal{F} has the Menger covering property as a subspace of $\mathcal{P}(\omega)$. 2) $\mathbb{M}_{\mathcal{F}}$ is almost ω^{ω} -bounding iff \mathcal{F} is B-Canjar for all unbounded $B \subset \omega^{\omega}$ iff \mathcal{F} is Hurewicz.

Corollary

Let \mathcal{F} be an analytic filter on ω . Then $\mathbb{M}_{\mathcal{F}}$ does not add a dominating real iff \mathcal{F} is σ -compact.

Theorem (Chodounský-Repovš-Z. 2014)

1) \mathcal{F} is Canjar iff \mathcal{F} has the Menger covering property as a subspace of $\mathcal{P}(\omega)$. 2) $\mathbb{M}_{\mathcal{F}}$ is almost ω^{ω} -bounding iff \mathcal{F} is B-Canjar for all unbounded $B \subset \omega^{\omega}$ iff \mathcal{F} is Hurewicz.

Corollary

Let \mathcal{F} be an analytic filter on ω . Then $\mathbb{M}_{\mathcal{F}}$ does not add a dominating real iff \mathcal{F} is σ -compact.

Answers a question of Hrusak and Minami.

Theorem (Chodounský-Repovš-Z. 2014)

1) \mathcal{F} is Canjar iff \mathcal{F} has the Menger covering property as a subspace of $\mathcal{P}(\omega)$. 2) $\mathbb{M}_{\mathcal{F}}$ is almost ω^{ω} -bounding iff \mathcal{F} is B-Canjar for all unbounded $B \subset \omega^{\omega}$ iff \mathcal{F} is Hurewicz.

Corollary

Let \mathcal{F} be an analytic filter on ω . Then $\mathbb{M}_{\mathcal{F}}$ does not add a dominating real iff \mathcal{F} is σ -compact.

Answers a question of Hrusak and Minami. For Borel filters has been independently proved by Guzman, Hrusak, and Martinez.

Theorem (Chodounský-Repovš-Z. 2014)

1) \mathcal{F} is Canjar iff \mathcal{F} has the Menger covering property as a subspace of $\mathcal{P}(\omega)$. 2) $\mathbb{M}_{\mathcal{F}}$ is almost ω^{ω} -bounding iff \mathcal{F} is B-Canjar for all unbounded $B \subset \omega^{\omega}$ iff \mathcal{F} is Hurewicz.

Corollary

Let \mathcal{F} be an analytic filter on ω . Then $\mathbb{M}_{\mathcal{F}}$ does not add a dominating real iff \mathcal{F} is σ -compact.

Answers a question of Hrusak and Minami. For Borel filters has been independently proved by Guzman, Hrusak, and Martinez.

Corollary (Hrušák-Martínez 2012)

There exists a mad family \mathcal{A} on ω such that $\mathbb{M}_{\mathcal{F}(\mathcal{A})}$ adds a dominating real (= $\mathcal{F}(\mathcal{A})$ is not Canjar).

П

Theorem (Chodounský-Repovš-Z. 2014)

1) \mathcal{F} is Canjar iff \mathcal{F} has the Menger covering property as a subspace of $\mathcal{P}(\omega)$. 2) $\mathbb{M}_{\mathcal{F}}$ is almost ω^{ω} -bounding iff \mathcal{F} is B-Canjar for all unbounded $B \subset \omega^{\omega}$ iff \mathcal{F} is Hurewicz.

Corollary

Let \mathcal{F} be an analytic filter on ω . Then $\mathbb{M}_{\mathcal{F}}$ does not add a dominating real iff \mathcal{F} is σ -compact.

Answers a question of Hrusak and Minami. For Borel filters has been independently proved by Guzman, Hrusak, and Martinez.

Corollary (Hrušák-Martínez 2012)

There exists a mad family \mathcal{A} on ω such that $\mathbb{M}_{\mathcal{F}(\mathcal{A})}$ adds a dominating real (= $\mathcal{F}(\mathcal{A})$ is not Canjar).

Answers a question of Brendle.

П

Theorem (Chodounský-Repovš-Z. 2014)

1) \mathcal{F} is Canjar iff \mathcal{F} has the Menger covering property as a subspace of $\mathcal{P}(\omega)$. 2) $\mathbb{M}_{\mathcal{F}}$ is almost ω^{ω} -bounding iff \mathcal{F} is B-Canjar for all unbounded $B \subset \omega^{\omega}$ iff \mathcal{F} is Hurewicz.

Corollary

Let \mathcal{F} be an analytic filter on ω . Then $\mathbb{M}_{\mathcal{F}}$ does not add a dominating real iff \mathcal{F} is σ -compact.

Answers a question of Hrusak and Minami. For Borel filters has been independently proved by Guzman, Hrusak, and Martinez.

П

П

10 / 18

Corollary (Hrušák-Martínez 2012)

There exists a mad family \mathcal{A} on ω such that $\mathbb{M}_{\mathcal{F}(\mathcal{A})}$ adds a dominating real (= $\mathcal{F}(\mathcal{A})$ is not Canjar).

Answers a question of Brendle.

Corollary

A filter ${\cal F}$ is Canjar iff it is a strong P^+ -filter.

Problem

Is every regular Lindelöf space a D-space?

Problem

Is every regular Lindelöf space a D-space?

Theorem (Aurichi 2010)

Menger spaces are *D*-spaces.

Problem

Is every regular Lindelöf space a D-space?

Theorem (Aurichi 2010)

Menger spaces are *D*-spaces.

Theorem (Essentially A. Dow)

Let (X, τ) be a Lindelöf space. Then X is Menger in $V^{Fn(\mu,2)}$. Proof. Two steps.

Problem

Is every regular Lindelöf space a D-space?

Theorem (Aurichi 2010)

Menger spaces are *D*-spaces.

Theorem (Essentially A. Dow)

Let (X, τ) be a Lindelöf space. Then X is Menger in $V^{Fn(\mu,2)}$. Proof. Two steps. 1. X remains Lindelöf.

Problem

Is every regular Lindelöf space a D-space?

Theorem (Aurichi 2010)

Menger spaces are *D*-spaces.

Theorem (Essentially A. Dow)

Let (X, τ) be a Lindelöf space. Then X is Menger in $V^{Fn(\mu,2)}$. Proof. Two steps. 1. X remains Lindelöf. 2. X becomes Menger.

Problem

Is every regular Lindelöf space a D-space?

Theorem (Aurichi 2010)

Menger spaces are *D*-spaces.

Theorem (Essentially A. Dow)

Let (X, τ) be a Lindelöf space. Then X is Menger in $V^{Fn(\mu,2)}$. Proof. Two steps. 1. X remains Lindelöf. 2. X becomes Menger.

Problem

Is every regular Lindelöf space a D-space?

Theorem (Aurichi 2010)

Menger spaces are *D*-spaces.

Theorem (Essentially A. Dow)

Let (X, τ) be a Lindelöf space. Then X is Menger in $V^{Fn(\mu,2)}$. Proof. Two steps. 1. X remains Lindelöf. 2. X becomes Menger.

Let P, Q be directed posets.

Let P, Q be directed posets. Then $P \ge_T Q$ if there is a map $\phi: P \to Q$ that takes cofinal subsets of P to cofinal subsets of Q.

Let P, Q be directed posets. Then $P \ge_T Q$ if there is a map $\phi: P \to Q$ that takes cofinal subsets of P to cofinal subsets of Q. Theorem (Christensen 1974)

If M is a separable metrizable space, then $\omega^{\omega} \geq_T \mathcal{K}(M)$ if and only if M is Polish.

Let P, Q be directed posets. Then $P \ge_T Q$ if there is a map $\phi: P \to Q$ that takes cofinal subsets of P to cofinal subsets of Q. There is a map Q that takes cofinal subsets of Q.

Theorem (Christensen 1974)

If M is a separable metrizable space, then $\omega^{\omega} \geq_T \mathcal{K}(M)$ if and only if M is Polish.

Theorem (Gartside-Mamatelashvili 201?)

Let M be a separable metrizable space. Then $\mathcal{K}(M) \not\geq_T \mathcal{K}(\mathbb{Q})$ iff $\mathcal{K}(M)$ is hereditarily Baire.

Let P, Q be directed posets. Then $P \ge_T Q$ if there is a map $\phi: P \to Q$ that takes cofinal subsets of P to cofinal subsets of Q.

Theorem (Christensen 1974)

If M is a separable metrizable space, then $\omega^{\omega} \geq_T \mathcal{K}(M)$ if and only if M is Polish.

Theorem (Gartside-Mamatelashvili 201?)

Let M be a separable metrizable space. Then $\mathcal{K}(M) \not\geq_T \mathcal{K}(\mathbb{Q})$ iff $\mathcal{K}(M)$ is hereditarily Baire.

Question

Is there a ZFC example of a space M such that $\mathcal{K}(M)$ is hereditarily Baire non-Polish?

Let P, Q be directed posets. Then $P \ge_T Q$ if there is a map $\phi: P \to Q$ that takes cofinal subsets of P to cofinal subsets of Q.

Theorem (Christensen 1974)

If M is a separable metrizable space, then $\omega^{\omega} \geq_T \mathcal{K}(M)$ if and only if M is Polish.

Theorem (Gartside-Mamatelashvili 201?)

Let M be a separable metrizable space. Then $\mathcal{K}(M) \not\geq_T \mathcal{K}(\mathbb{Q})$ iff $\mathcal{K}(M)$ is hereditarily Baire.

Question

Is there a ZFC example of a space M such that $\mathcal{K}(M)$ is hereditarily Baire non-Polish?

Yes, by the following

Theorem (Gartside-Medini-Z. 2016)

Let $X \subset 2^{\omega}$ be Menger non- σ -compact. Then $\mathcal{K}(2^{\omega} \setminus X)$ is hereditarily Baire non-Polish.

12/18

Is it consistent that there exists an analytic non-Borel $X \subset 2^{\omega}$ such that $\mathcal{K}(\mathbb{Q}) \geq_T \mathcal{K}(X)$?

Is it consistent that there exists an analytic non-Borel $X \subset 2^{\omega}$ such that $\mathcal{K}(\mathbb{Q}) \geq_T \mathcal{K}(X)$?

Yes, by the following

Theorem (Gartside-Medini-Z. 2016)

(V=L). There exists an analytic non-Borel $X \subset 2^{\omega}$ such that $\mathcal{K}(\mathbb{Q}) >_T \mathcal{K}(X)$.

Is it consistent that there exists an analytic non-Borel $X \subset 2^{\omega}$ such that $\mathcal{K}(\mathbb{Q}) \geq_T \mathcal{K}(X)$?

Yes, by the following

Theorem (Gartside-Medini-Z. 2016)

(V=L). There exists an analytic non-Borel $X \subset 2^{\omega}$ such that $\mathcal{K}(\mathbb{Q}) >_T \mathcal{K}(X)$.

We construct a co-analytic Hurewicz $Y \subset 2^\omega$ such that $X = 2^\omega \setminus Y$ is as required.

Is it consistent that there exists an analytic non-Borel $X \subset 2^{\omega}$ such that $\mathcal{K}(\mathbb{Q}) \geq_T \mathcal{K}(X)$?

Yes, by the following

Theorem (Gartside-Medini-Z. 2016)

(V=L). There exists an analytic non-Borel $X \subset 2^{\omega}$ such that $\mathcal{K}(\mathbb{Q}) >_T \mathcal{K}(X)$.

We construct a co-analytic Hurewicz $Y \subset 2^{\omega}$ such that $X = 2^{\omega} \setminus Y$ is as required. We use results of Vidnyanszky to make sure that Y is co-analytic, which extend and unify earlier results of A. Miller.

Fact. (CH.) There are two Sierpinski (hence Hurewicz) sets S_0, S_1 whose product is not Menger.

Proof. Fix a countable dense $Q \subset 2^{\omega}$ and write

 $2^{\omega} \setminus Q = \{x_{\alpha} : \alpha < \omega_1\}.$

Fact. (CH.) There are two Sierpinski (hence Hurewicz) sets S_0, S_1 whose product is not Menger.

Proof. Fix a countable dense $Q \subset 2^{\omega}$ and write

 $2^{\omega} \setminus Q = \{x_{\alpha} : \alpha < \omega_1\}$. In the construction of a Sierpinski set by transfinite induction at each stage α we can pick a point s_{α} outside of a given measure zero set $Z_{\alpha} \subset 2^{\omega}$.

Fact. (CH.) There are two Sierpinski (hence Hurewicz) sets S_0, S_1 whose product is not Menger.

Proof. Fix a countable dense $Q \subset 2^{\omega}$ and write

 $2^{\omega} \setminus Q = \{x_{\alpha} : \alpha < \omega_1\}$. In the construction of a Sierpinski set by transfinite induction at each stage α we can pick a point s_{α} outside of a given measure zero set $Z_{\alpha} \subset 2^{\omega}$. 2^{ω} has a natural structure of a topological group, and the sum of any two measure 1 sets is the whole group.

Fact. (CH.) There are two Sierpinski (hence Hurewicz) sets S_0, S_1 whose product is not Menger.

Proof. Fix a countable dense $Q \subset 2^{\omega}$ and write

 $2^{\omega} \setminus Q = \{x_{\alpha} : \alpha < \omega_1\}.$ In the construction of a Sierpinski set by transfinite induction at each stage α we can pick a point s_{α} outside of a given measure zero set $Z_{\alpha} \subset 2^{\omega}$. 2^{ω} has a natural structure of a topological group, and the sum of any two measure 1 sets is the whole group. Choose $s_{\alpha}^0, s_{\alpha}^1 \in 2^{\omega} \setminus Z_{\alpha}$ such that $s_{\alpha}^0 + s_{\alpha}^1 = x_{\alpha}$ and $s_{\alpha}^i + \{s_{\beta}^{1-i} : \beta < \alpha\} \cap Q = \emptyset.$

Fact. (CH.) There are two Sierpinski (hence Hurewicz) sets S_0, S_1 whose product is not Menger.

Proof. Fix a countable dense $Q \subset 2^{\omega}$ and write

 $\begin{array}{l} 2^{\omega} \setminus Q = \{x_{\alpha}: \alpha < \omega_1\}. \quad \text{In the construction of a Sierpinski set by}\\ \text{transfinite induction at each stage } \alpha \text{ we can pick a point } s_{\alpha} \text{ outside}\\ \text{of a given measure zero set } Z_{\alpha} \subset 2^{\omega}. \ 2^{\omega} \text{ has a natural structure of}\\ \text{a topological group, and the sum of any two measure 1 sets is the}\\ \text{whole group. Choose } s_{\alpha}^0, s_{\alpha}^1 \in 2^{\omega} \setminus Z_{\alpha} \text{ such that } s_{\alpha}^0 + s_{\alpha}^1 = x_{\alpha}\\ \text{and } s_{\alpha}^i + \{s_{\beta}^{1-i}: \beta < \alpha\} \cap Q = \emptyset. \text{ Set } S_i = \{s_{\alpha}^i: \alpha < \omega_1\}. \end{array}$

Fact. (CH.) There are two Sierpinski (hence Hurewicz) sets S_0, S_1 whose product is not Menger.

Proof. Fix a countable dense $Q \subset 2^{\omega}$ and write

 $\begin{array}{l} 2^{\omega} \setminus Q = \{x_{\alpha}: \alpha < \omega_1\}. \quad \text{In the construction of a Sierpinski set by}\\ \text{transfinite induction at each stage } \alpha \text{ we can pick a point } s_{\alpha} \text{ outside}\\ \text{of a given measure zero set } Z_{\alpha} \subset 2^{\omega}. \ 2^{\omega} \text{ has a natural structure of}\\ \text{a topological group, and the sum of any two measure 1 sets is the}\\ \text{whole group. Choose } s_{\alpha}^0, s_{\alpha}^1 \in 2^{\omega} \setminus Z_{\alpha} \text{ such that } s_{\alpha}^0 + s_{\alpha}^1 = x_{\alpha}\\ \text{and } s_{\alpha}^i + \{s_{\beta}^{1-i}: \beta < \alpha\} \cap Q = \emptyset. \text{ Set } S_i = \{s_{\alpha}^i: \alpha < \omega_1\}. \end{array}$

Problem

- Is it consistent that the product of two metrizable Menger spaces is Menger?
- Is it consistent that the product of two metrizable Hurewicz spaces is Hurewicz?
- ► Is it consistent that the product of two metrizable Hurewicz spaces is Menger?

 $X \times Y$ may fail to be a Lindelöf space.

 $X \times Y$ may fail to be a Lindelöf space. This may indeed happen: in ZFC there are two normal spaces X, Y with a covering property much stronger than the Hurewicz one such that $X \times Y$ is not Lindelöf (Todorcevic 1995).

 $X \times Y$ may fail to be a Lindelöf space. This may indeed happen: in ZFC there are two normal spaces X, Y with a covering property much stronger than the Hurewicz one such that $X \times Y$ is not Lindelöf (Todorcevic 1995).

X imes Y is Lindelöf, e.g., $X, Y \subset 2^\omega$.

 $X \times Y$ may fail to be a Lindelöf space. This may indeed happen: in ZFC there are two normal spaces X, Y with a covering property much stronger than the Hurewicz one such that $X \times Y$ is not Lindelöf (Todorcevic 1995).

 $X\times Y$ is Lindelöf, e.g., $X,Y\subset 2^\omega.$ This case is sensitive to the ambient set-theoretic universe:

 $X \times Y$ may fail to be a Lindelöf space. This may indeed happen: in ZFC there are two normal spaces X, Y with a covering property much stronger than the Hurewicz one such that $X \times Y$ is not Lindelöf (Todorcevic 1995).

 $X \times Y$ is Lindelöf, e.g., $X, Y \subset 2^{\omega}$. This case is sensitive to the ambient set-theoretic universe: under CH there exists a Hurewicz space whose square is not Menger.

 $X \times Y$ may fail to be a Lindelöf space. This may indeed happen: in ZFC there are two normal spaces X, Y with a covering property much stronger than the Hurewicz one such that $X \times Y$ is not Lindelöf (Todorcevic 1995).

 $X \times Y$ is Lindelöf, e.g., $X, Y \subset 2^{\omega}$. This case is sensitive to the ambient set-theoretic universe: under CH there exists a Hurewicz space whose square is not Menger. Requires cov(N) = cof(N) as proved by Scheepers and Tsaban in 2002.

 $X \times Y$ may fail to be a Lindelöf space. This may indeed happen: in ZFC there are two normal spaces X, Y with a covering property much stronger than the Hurewicz one such that $X \times Y$ is not Lindelöf (Todorcevic 1995).

 $X \times Y$ is Lindelöf, e.g., $X, Y \subset 2^{\omega}$. This case is sensitive to the ambient set-theoretic universe: under CH there exists a Hurewicz space whose square is not Menger. Requires cov(N) = cof(N) as proved by Scheepers and Tsaban in 2002.

Theorem (Repovs-Z. 2016)

In the Laver model for the consistency of the Borel's conjecture, the product of any two Hurewicz metrizable spaces has the Menger property.

 $X \times Y$ may fail to be a Lindelöf space. This may indeed happen: in ZFC there are two normal spaces X, Y with a covering property much stronger than the Hurewicz one such that $X \times Y$ is not Lindelöf (Todorcevic 1995).

 $X \times Y$ is Lindelöf, e.g., $X, Y \subset 2^{\omega}$. This case is sensitive to the ambient set-theoretic universe: under CH there exists a Hurewicz space whose square is not Menger. Requires cov(N) = cof(N) as proved by Scheepers and Tsaban in 2002.

Theorem (Repovs-Z. 2016)

In the Laver model for the consistency of the Borel's conjecture, the product of any two Hurewicz metrizable spaces has the Menger property.

As a result, in this model the product of any two Hurewicz spaces has the Menger property provided that it is Lindelöf

 $X \times Y$ may fail to be a Lindelöf space. This may indeed happen: in ZFC there are two normal spaces X, Y with a covering property much stronger than the Hurewicz one such that $X \times Y$ is not Lindelöf (Todorcevic 1995).

 $X \times Y$ is Lindelöf, e.g., $X, Y \subset 2^{\omega}$. This case is sensitive to the ambient set-theoretic universe: under CH there exists a Hurewicz space whose square is not Menger. Requires cov(N) = cof(N) as proved by Scheepers and Tsaban in 2002.

Theorem (Repovs-Z. 2016)

In the Laver model for the consistency of the Borel's conjecture, the product of any two Hurewicz metrizable spaces has the Menger property.

As a result, in this model the product of any two Hurewicz spaces has the Menger property provided that it is Lindelöf

Note: The conclusion doesn't follow from the Borel's Conjecture.

X is weakly concentrated if for every collection $\mathsf{Q} \subset [X]^\omega$ which is cofinal with respect to inclusion,

X is weakly concentrated if for every collection $\mathsf{Q} \subset [X]^\omega$ which is cofinal with respect to inclusion,

and for every function $R: \mathbb{Q} \to \mathcal{P}(X)$ assigning to each $Q \in \mathbb{Q}$ a G_{δ} -set R(Q) containing Q,

X is weakly concentrated if for every collection $\mathsf{Q} \subset [X]^\omega$ which is cofinal with respect to inclusion,

and for every function $R: \mathbb{Q} \to \mathcal{P}(X)$ assigning to each $Q \in \mathbb{Q}$ a G_{δ} -set R(Q) containing Q,

there exists $Q_1 \in [Q]^{\omega_1}$ such that $X \subset \bigcup_{Q \in Q_1} R(Q)$.

X is weakly concentrated if for every collection $\mathsf{Q} \subset [X]^\omega$ which is cofinal with respect to inclusion,

and for every function $R: \mathbb{Q} \to \mathcal{P}(X)$ assigning to each $Q \in \mathbb{Q}$ a G_{δ} -set R(Q) containing Q,

there exists $\mathsf{Q}_1 \in [\mathsf{Q}]^{\omega_1}$ such that $X \subset igcup_{Q \in \mathsf{Q}_1} R(Q)$.

Under CH any subset of 2^ω is weakly concentrated.

X is weakly concentrated if for every collection $\mathsf{Q} \subset [X]^\omega$ which is cofinal with respect to inclusion,

and for every function $R: \mathbb{Q} \to \mathcal{P}(X)$ assigning to each $Q \in \mathbb{Q}$ a G_{δ} -set R(Q) containing Q,

there exists $\mathsf{Q}_1 \in [\mathsf{Q}]^{\omega_1}$ such that $X \subset igcup_{Q \in \mathsf{Q}_1} R(Q)$.

Under CH any subset of 2^{ω} is weakly concentrated. So the notion might be interesting only under $\mathfrak{c} > \omega_1$.

X is weakly concentrated if for every collection $\mathsf{Q} \subset [X]^\omega$ which is cofinal with respect to inclusion,

and for every function $R:\mathsf{Q}\to\mathcal{P}(X)$ assigning to each $Q\in\mathsf{Q}$ a $G_{\delta}\text{-set }R(Q)$ containing Q,

there exists $Q_1 \in [Q]^{\omega_1}$ such that $X \subset \bigcup_{Q \in Q_1} R(Q)$.

Under CH any subset of 2^ω is weakly concentrated. So the notion might be interesting only under $\mathfrak{c}>\omega_1.$

Lemma

► In the Laver model every Hurewicz subspace of P(ω) is weakly concentrated.

X is weakly concentrated if for every collection $\mathsf{Q} \subset [X]^\omega$ which is cofinal with respect to inclusion,

and for every function $R: Q \to \mathcal{P}(X)$ assigning to each $Q \in Q$ a G_{δ} -set R(Q) containing Q,

there exists $Q_1 \in [Q]^{\omega_1}$ such that $X \subset \bigcup_{Q \in Q_1} R(Q)$.

Under CH any subset of 2^ω is weakly concentrated. So the notion might be interesting only under $\mathfrak{c}>\omega_1.$

Lemma

- In the Laver model every Hurewicz subspace of P(ω) is weakly concentrated.
- If b > ω₁, then a product of a weakly concentrated X ⊂ 2^ω and a Hurewicz Y ⊂ 2^ω is Menger.

Time permitting, it should be explained on the blackboard why Hurewicz x concentrated is Menger.

Thank you for your attention.

