From abstract $\vec{\alpha}$ -Ramsey theory to abstract ultra-Ramsey Theory

Timothy Trujillo

SE⊨OP 2016 Iriki Venac, Fruka gora

1 Framework for the results

- 1 Framework for the results
- 2 Notation for trees

- 1 Framework for the results
- 2 Notation for trees
- 3 The alpha-Ramsey theorem

- 1 Framework for the results
- 2 Notation for trees
- 3 The alpha-Ramsey theorem
- 4 Local Ramsey theory

- 1 Framework for the results
- 2 Notation for trees
- 3 The alpha-Ramsey theorem
- 4 Local Ramsey theory
- 5 The alpha-Ellentuck theorem

- 1 Framework for the results
- 2 Notation for trees
- 3 The alpha-Ramsey theorem
- 4 Local Ramsey theory
- 5 The alpha-Ellentuck theorem
- 6 Application to local Ramsey theory

- 1 Framework for the results
- 2 Notation for trees
- 3 The alpha-Ramsey theorem
- 4 Local Ramsey theory
- 5 The alpha-Ellentuck theorem
- 6 Application to local Ramsey theory
- **7** Extending to the abstract setting of triples (\mathcal{R}, \leq, r)

- 1 Framework for the results
- 2 Notation for trees
- 3 The alpha-Ramsey theorem
- 4 Local Ramsey theory
- 5 The alpha-Ellentuck theorem
- 6 Application to local Ramsey theory
- **7** Extending to the abstract setting of triples (\mathcal{R}, \leq, r)
- 8 An application to abstract local Ramsey theory

1 Benci and Di Nasso have introduced a simplified presentation of nonstandard analysis called the Alpha-Theory.

- 1 Benci and Di Nasso have introduced a simplified presentation of nonstandard analysis called the Alpha-Theory.
- 2 Alpha-Theory extends ZFC by adding a nonstandard hypernatural number α .

- Benci and Di Nasso have introduced a simplified presentation of nonstandard analysis called the Alpha-Theory.
- 2 Alpha-Theory extends ZFC by adding a nonstandard hypernatural number α .
- **3** Every function f with domain \mathbb{N} is extended to its "ideal" value at α , $f[\alpha]$.

- Benci and Di Nasso have introduced a simplified presentation of nonstandard analysis called the Alpha-Theory.
- 2 Alpha-Theory extends ZFC by adding a nonstandard hypernatural number α .
- **3** Every function f with domain \mathbb{N} is extended to its "ideal" value at α , $f[\alpha]$.
- 4 If X is a set then ${}^*X = \{f[\alpha] : f : \mathbb{N} \to X\}.$

- Benci and Di Nasso have introduced a simplified presentation of nonstandard analysis called the Alpha-Theory.
- 2 Alpha-Theory extends ZFC by adding a nonstandard hypernatural number α .
- **3** Every function f with domain \mathbb{N} is extended to its "ideal" value at α , $f[\alpha]$.
- 4 If X is a set then ${}^*X = \{f[\alpha] : f : \mathbb{N} \to X\}.$
- **5** Every nonprincipal ultrafilter \mathcal{U} is of the form $\{X \subseteq \mathbb{N} : \beta \in {}^*X\}$ for some $\beta \in {}^*\mathbb{N} \setminus \mathbb{N}$.

- Benci and Di Nasso have introduced a simplified presentation of nonstandard analysis called the Alpha-Theory.
- 2 Alpha-Theory extends ZFC by adding a nonstandard hypernatural number α .
- **3** Every function f with domain \mathbb{N} is extended to its "ideal" value at α , $f[\alpha]$.
- 4 If X is a set then ${}^*X = \{f[\alpha] : f : \mathbb{N} \to X\}.$
- **5** Every nonprincipal ultrafilter \mathcal{U} is of the form $\{X \subseteq \mathbb{N} : \beta \in {}^*X\}$ for some $\beta \in {}^*\mathbb{N} \setminus \mathbb{N}$.
- The framework is convenient but unnecessary. The proofs can be carried by referring directly to the ultrafilters or the notion of a functional extensions as introduced by Forti.

For a tree T on \mathbb{N} and $n \in \mathbb{N}$, we use the following notation:

For a tree T on $\mathbb N$ and $n \in \mathbb N$, we use the following notation:

$$[T] = \{X \in [\mathbb{N}]^{\infty} : \forall s \in [\mathbb{N}]^{<\infty} (s \sqsubseteq X \implies s \in T)\},$$

For a tree T on \mathbb{N} and $n \in \mathbb{N}$, we use the following notation:

$$[T] = \{ X \in [\mathbb{N}]^{\infty} : \forall s \in [\mathbb{N}]^{<\infty} (s \sqsubseteq X \implies s \in T) \},$$
$$T(n) = \{ s \in T : |s| = n \}.$$

For a tree T on \mathbb{N} and $n \in \mathbb{N}$, we use the following notation:

$$[T] = \{X \in [\mathbb{N}]^{\infty} : \forall s \in [\mathbb{N}]^{<\infty} (s \sqsubseteq X \implies s \in T)\},$$
$$T(n) = \{s \in T : |s| = n\}.$$

The **stem of** T, if it exists, is the \sqsubseteq -maximal s in T that is \sqsubseteq -comparable to every element of T. If T has a stem we denote it by st(T).

For a tree T on \mathbb{N} and $n \in \mathbb{N}$, we use the following notation:

$$[T] = \{ X \in [\mathbb{N}]^{\infty} : \forall s \in [\mathbb{N}]^{<\infty} (s \sqsubseteq X \implies s \in T) \},$$
$$T(n) = \{ s \in T : |s| = n \}.$$

The **stem of** T, if it exists, is the \sqsubseteq -maximal s in T that is \sqsubseteq -comparable to every element of T. If T has a stem we denote it by st(T).

For $s \in T$, we use the following notation

$$T/s = \{t \in T : s \sqsubseteq t\}.$$

Fix a sequence $\vec{\alpha} = \langle \alpha_s : s \in [\mathbb{N}]^{<\infty} \rangle$ of nonstandard hypernatural numbers.

Fix a sequence $\vec{\alpha} = \langle \alpha_s : s \in [\mathbb{N}]^{<\infty} \rangle$ of nonstandard hypernatural numbers.

Defintion

An $\vec{\alpha}$ -tree is a tree T with stem st(T) such that $T/st(T) \neq \emptyset$ and

Fix a sequence $\vec{\alpha} = \langle \alpha_s : s \in [\mathbb{N}]^{<\infty} \rangle$ of nonstandard hypernatural numbers.

Defintion

An $\vec{\alpha}$ -tree is a tree T with stem st(T) such that $T/st(T) \neq \emptyset$ and for all $s \in T/st(T)$,

$$s \cup \{\alpha_s\} \in {}^*T$$
.

Fix a sequence $\vec{\alpha} = \langle \alpha_s : s \in [\mathbb{N}]^{<\infty} \rangle$ of nonstandard hypernatural numbers.

Defintion

An $\vec{\alpha}$ -tree is a tree T with stem st(T) such that $T/st(T) \neq \emptyset$ and for all $s \in T/st(T)$,

$$s \cup \{\alpha_s\} \in {}^*T$$
.

Example

 $[\mathbb{N}]^{<\infty}$ is an $\vec{\alpha}$ -tree.

Theorem (T.)

For all $\mathcal{X} \subseteq [\mathbb{N}]^{\infty}$ and for all $\vec{\alpha}$ -trees T

Theorem (T.)

For all $\mathcal{X} \subseteq [\mathbb{N}]^{\infty}$ and for all $\vec{\alpha}$ -trees T there exists an $\vec{\alpha}$ -tree $S \subseteq T$ with st(S) = st(T)

Theorem (T.)

For all $\mathcal{X} \subseteq [\mathbb{N}]^{\infty}$ and for all $\vec{\alpha}$ -trees T there exists an $\vec{\alpha}$ -tree $S \subseteq T$ with st(S) = st(T) such that one of the following holds:

Theorem (T.)

For all $\mathcal{X} \subseteq [\mathbb{N}]^{\infty}$ and for all $\vec{\alpha}$ -trees T there exists an $\vec{\alpha}$ -tree $S \subseteq T$ with st(S) = st(T) such that one of the following holds:

- **2** $[S] \cap \mathcal{X} = \emptyset$.

Theorem (T.)

For all $\mathcal{X} \subseteq [\mathbb{N}]^{\infty}$ and for all $\vec{\alpha}$ -trees T there exists an $\vec{\alpha}$ -tree $S \subseteq T$ with st(S) = st(T) such that one of the following holds:

- $[S] \subseteq \mathcal{X}$.
- **2** [*S*] ∩ X = \emptyset .
- **3** For all $\vec{\alpha}$ -trees S', if $S' \subseteq S$ then $[S'] \not\subseteq \mathcal{X}$ and $[S'] \cap \mathcal{X} \neq \emptyset$.

Defintion

For
$$s \in [\mathbb{N}]^{<\infty}$$
 and $X \in [\mathbb{N}]^{\infty}$, let

$$[s,X] = \{Y \in [\mathbb{N}]^{\infty} : s \sqsubseteq Y \subseteq X\}.$$

Defintion

For $s \in [\mathbb{N}]^{<\infty}$ and $X \in [\mathbb{N}]^{\infty}$, let

$$[s,X] = \{ Y \in [\mathbb{N}]^{\infty} : s \sqsubseteq Y \subseteq X \}.$$

Defintion

Suppose that $\mathcal{C} \subseteq [\mathbb{N}]^{\infty}$.

Defintion

For $s \in [\mathbb{N}]^{<\infty}$ and $X \in [\mathbb{N}]^{\infty}$, let

$$[s,X] = \{Y \in [\mathbb{N}]^{\infty} : s \sqsubseteq Y \subseteq X\}.$$

Defintion

Suppose that $\mathcal{C} \subseteq [\mathbb{N}]^{\infty}$. $\mathcal{X} \subseteq [\mathbb{N}]^{\infty}$ is \mathcal{C} -Ramsey if for all $[s,X] \neq \emptyset$ with $X \in \mathcal{C}$ there exists $Y \in [s,X] \cap \mathcal{C}$ such that either $[s,Y] \subseteq \mathcal{X}$ or $[s,Y] \cap \mathcal{X} = \emptyset$.

Defintion

For $s \in [\mathbb{N}]^{<\infty}$ and $X \in [\mathbb{N}]^{\infty}$, let

$$[s,X] = \{Y \in [\mathbb{N}]^{\infty} : s \sqsubseteq Y \subseteq X\}.$$

Defintion

Suppose that $\mathcal{C} \subseteq [\mathbb{N}]^{\infty}$. $\mathcal{X} \subseteq [\mathbb{N}]^{\infty}$ is \mathcal{C} -Ramsey if for all $[s,X] \neq \emptyset$ with $X \in \mathcal{C}$ there exists $Y \in [s,X] \cap \mathcal{C}$ such that either $[s,Y] \subseteq \mathcal{X}$ or $[s,Y] \cap \mathcal{X} = \emptyset$.

Defintion

 $\mathcal{X} \subseteq [\mathbb{N}]^{\infty}$ is \mathcal{C} -Ramsey null if for all $[s,X] \neq \emptyset$ with $X \in \mathcal{C}$ there exists $Y \in [s,X] \cap \mathcal{C}$ such that $[s,Y] \cap \mathcal{X} = \emptyset$.

Defintion

Suppose that $\mathcal{C} \subseteq [\mathbb{N}]^{\infty}$. We say that $([\mathbb{N}]^{\infty}, \mathcal{C}, \subseteq)$ is a **topological** Ramsey space if the following conditions hold:

- 1 $\{[s,X]:X\in\mathcal{C}\}$ is a neighborhood base for a topology on $[\mathbb{N}]^{\infty}$.
- 2 The collection of \mathcal{C} -Ramsey sets coincides with the σ -algebra of sets with the Baire property with respect to the topology generated by $\{[s,X]:X\in\mathcal{C}\}.$
- 3 The collection of \mathcal{C} -Ramsey null sets coincides with the σ -ideal of meager sets with respect to the topology generated by $\{[s,X]:X\in\mathcal{C}\}.$

Theorem (The Ellentuck Theorem)

 $([\mathbb{N}]^{\infty},[\mathbb{N}]^{\infty},\subseteq)$ is a topological Ramsey space.

Theorem (The Ellentuck Theorem)

 $([\mathbb{N}]^{\infty},[\mathbb{N}]^{\infty},\subseteq)$ is a topological Ramsey space.

Theorem (Louveau)

If $\mathcal U$ is a selective ultrafilter then $([\mathbb N]^\infty,\mathcal U,\subseteq)$ is a topological Ramsey space.

Local Ramsey Theory

Theorem (The Ellentuck Theorem)

 $([\mathbb{N}]^{\infty}, [\mathbb{N}]^{\infty}, \subseteq)$ is a topological Ramsey space.

Theorem (Louveau)

If \mathcal{U} is a selective ultrafilter then $([\mathbb{N}]^{\infty}, \mathcal{U}, \subseteq)$ is a topological Ramsey space.

Remark

Local Ramsey theory is concerned with characterizing the conditions on $\mathcal C$ which guarantee that $([\mathbb N]^\infty,\mathcal C,\subseteq)$ forms a Ramsey space.

Defintion

 $\mathcal{X} \subseteq [\mathbb{N}]^{\infty}$ is said to be $\vec{\alpha}$ -Ramsey if for all $\vec{\alpha}$ -trees T there exists an $\vec{\alpha}$ -tree $S \subseteq T$ with st(S) = st(T) such that either $[S] \subseteq \mathcal{X}$ or $[S] \cap \mathcal{X} = \emptyset$.

Defintion

 $\mathcal{X} \subseteq [\mathbb{N}]^{\infty}$ is said to be $\vec{\alpha}$ -Ramsey if for all $\vec{\alpha}$ -trees T there exists an $\vec{\alpha}$ -tree $S \subseteq T$ with st(S) = st(T) such that either $[S] \subseteq \mathcal{X}$ or $[S] \cap \mathcal{X} = \emptyset$.

Defintion

 \mathcal{X} is said to be $\vec{\alpha}$ -Ramsey null if for all $\vec{\alpha}$ -trees T there exists an $\vec{\alpha}$ -tree $S \subseteq T$ with st(S) = st(T) such that $[S] \cap \mathcal{X} = \emptyset$.

Defintion

 $\mathcal{X} \subseteq [\mathbb{N}]^{\infty}$ is said to be $\vec{\alpha}$ -Ramsey if for all $\vec{\alpha}$ -trees T there exists an $\vec{\alpha}$ -tree $S \subseteq T$ with st(S) = st(T) such that either $[S] \subseteq \mathcal{X}$ or $[S] \cap \mathcal{X} = \emptyset$.

Defintion

 \mathcal{X} is said to be $\vec{\alpha}$ -Ramsey null if for all $\vec{\alpha}$ -trees T there exists an $\vec{\alpha}$ -tree $S \subseteq T$ with st(S) = st(T) such that $[S] \cap \mathcal{X} = \emptyset$.

Defintion

The topology on $[\mathbb{N}]^{\infty}$ generated by $\{[T] : T \text{ is an } \vec{\alpha}\text{-tree}\}$ is called the $\vec{\alpha}\text{-Ellentuck topology}$.

Defintion

 $\mathcal{X} \subseteq [\mathbb{N}]^{\infty}$ is said to be $\vec{\alpha}$ -Ramsey if for all $\vec{\alpha}$ -trees T there exists an $\vec{\alpha}$ -tree $S \subseteq T$ with st(S) = st(T) such that either $[S] \subseteq \mathcal{X}$ or $[S] \cap \mathcal{X} = \emptyset$.

Defintion

 \mathcal{X} is said to be $\vec{\alpha}$ -Ramsey null if for all $\vec{\alpha}$ -trees T there exists an $\vec{\alpha}$ -tree $S \subseteq T$ with st(S) = st(T) such that $[S] \cap \mathcal{X} = \emptyset$.

Defintion

The topology on $[\mathbb{N}]^{\infty}$ generated by $\{[T] : T \text{ is an } \vec{\alpha}\text{-tree}\}$ is called the $\vec{\alpha}\text{-Ellentuck topology}$.

Remark

The $\vec{\alpha}$ -Ellentuck space is a zero-dimensional Baire space on $[\mathbb{N}]^{\infty}$ with the countable chain condition.

Defintion

 $\mathcal{X} \subseteq [\mathbb{N}]^{\infty}$ is $\vec{\alpha}$ -nowhere dense/ is $\vec{\alpha}$ -meager/ has the $\vec{\alpha}$ -Baire property if it is nowhere dense/ is meager/ has the Baire property with respect to the $\vec{\alpha}$ -Ellentuck topology.

Defintion

 $\mathcal{X} \subseteq [\mathbb{N}]^{\infty}$ is $\vec{\alpha}$ -nowhere dense/ is $\vec{\alpha}$ -meager/ has the $\vec{\alpha}$ -Baire property if it is nowhere dense/ is meager/ has the Baire property with respect to the $\vec{\alpha}$ -Ellentuck topology.

Defintion

We say that $([\mathbb{N}]^{\infty}, \vec{\alpha}, \subseteq)$ is a $\vec{\alpha}$ -Ramsey space if the collection of $\vec{\alpha}$ -Ramsey sets coincides with the σ -algebra of sets with the $\vec{\alpha}$ -Baire property and the collection of $\vec{\alpha}$ -Ramsey null sets coincides with the σ -ideal of $\vec{\alpha}$ -meager sets.

Defintion

 $\mathcal{X} \subseteq [\mathbb{N}]^{\infty}$ is $\vec{\alpha}$ -nowhere dense/ is $\vec{\alpha}$ -meager/ has the $\vec{\alpha}$ -Baire property if it is nowhere dense/ is meager/ has the Baire property with respect to the $\vec{\alpha}$ -Ellentuck topology.

Defintion

We say that $([\mathbb{N}]^{\infty}, \vec{\alpha}, \subseteq)$ is a $\vec{\alpha}$ -Ramsey space if the collection of $\vec{\alpha}$ -Ramsey sets coincides with the σ -algebra of sets with the $\vec{\alpha}$ -Baire property and the collection of $\vec{\alpha}$ -Ramsey null sets coincides with the σ -ideal of $\vec{\alpha}$ -meager sets.

Theorem (The $\vec{\alpha}$ -Ellentuck Theorem)

 $([\mathbb{N}]^{\infty}, \vec{\alpha}, \subseteq)$ is an $\vec{\alpha}$ -Ramsey space.

Application to Local Ramsey Theory

Theorem (T.)

Suppose that $\mathcal{U} := \{X \subseteq \omega : \beta \in {}^*X\}$ is selective ultrafilter on \mathbb{N} . For $\mathcal{X} \subseteq [\mathbb{N}]^{\infty}$ the following are equivalent:

- **1** \mathcal{X} has the β -Baire property.
- 2 \mathcal{X} is β -Ramsey.
- 3 \mathcal{X} has the \mathcal{U} -Baire property.
- $m{4}$ \mathcal{X} is \mathcal{U} -Ramsey.

Furthermore, the following are equivalent:

- 1 \mathcal{X} is β -meager.
- 2 \mathcal{X} is β -Ramsey null.
- 3 \mathcal{X} is \mathcal{U} -meager.
- 4 \mathcal{X} is \mathcal{U} -Ramsey null.

Defintion (Strong Cauchy Infinitesimal Principle)

Every nonstandard hypernatural number β is the ideal value of an increasing sequence of natural numbers.

Defintion (Strong Cauchy Infinitesimal Principle)

Every nonstandard hypernatural number β is the ideal value of an increasing sequence of natural numbers.

Theorem (Benci and Di Nasso, [1])

Alpha-Theory cannot prove nor disprove SCIP. Moreover, Alpha-Theory+SCIP is a sound system.

Defintion (Strong Cauchy Infinitesimal Principle)

Every nonstandard hypernatural number β is the ideal value of an increasing sequence of natural numbers.

Theorem (Benci and Di Nasso, [1])

Alpha-Theory cannot prove nor disprove SCIP. Moreover, Alpha-Theory+SCIP is a sound system.

Theorem (T.)

The following are equivalent:

- 1 The strong Cauchy infinitesimal principle.
- **2** $\{X \in [\mathbb{N}]^{\infty} : \alpha \in {}^*X\}$ is a selective ultrafilter.
- 3 If T is an α -tree and $s \in T/st(T)$ then there exists $X \in [s, \mathbb{N}]$ such that $\alpha \in {}^*X$ and $[s, X] \subseteq [T]$.
- **4** $([\mathbb{N}]^{\infty}, \{X \in [\mathbb{N}]^{\infty} : \alpha \in {}^*X\}, \subseteq)$ is a topological Ramsey space.

We extend the main results to the setting of triples

$$(\mathcal{R}, \leq, r)$$

 $\mathbf{1} \leq \text{is a quasi-order on } \mathcal{R},$

We extend the main results to the setting of triples

$$(\mathcal{R}, \leq, r)$$

- $\mathbf{1} \leq \mathsf{is} \; \mathsf{a} \; \mathsf{quasi}\text{-}\mathsf{order} \; \mathsf{on} \; \mathcal{R}$,
- 2 r is a function with domain $\mathbb{N} \times \mathcal{R}$.

We extend the main results to the setting of triples

$$(\mathcal{R}, \leq, r)$$

- $\mathbf{1} \leq \mathsf{is} \; \mathsf{a} \; \mathsf{quasi}\text{-}\mathsf{order} \; \mathsf{on} \; \mathcal{R}$,
- 2 r is a function with domain $\mathbb{N} \times \mathcal{R}$.

Example (The Ellentuck Space)

 $([\mathbb{N}]^{\infty},\subseteq,r)$ where r is the map such that for all $n\in\mathbb{N}$ and for all $X=\{x_0,x_1,x_2,\dots\}$, listed in increasing order,

$$r(n,X) = \begin{cases} \emptyset & \text{if } n = 0, \\ \{x_0, \dots, x_{n-1}\} & \text{otherwise.} \end{cases}$$

We extend the main results to the setting of triples

$$(\mathcal{R}, \leq, r)$$

- $\mathbf{1} \leq \mathsf{is} \; \mathsf{a} \; \mathsf{quasi}\text{-}\mathsf{order} \; \mathsf{on} \; \mathcal{R}$,
- 2 *r* is a function with domain $\mathbb{N} \times \mathcal{R}$.

Example (The Ellentuck Space)

 $([\mathbb{N}]^{\infty},\subseteq,r)$ where r is the map such that for all $n\in\mathbb{N}$ and for all $X=\{x_0,x_1,x_2,\dots\}$, listed in increasing order,

$$r(n,X) = \begin{cases} \emptyset & \text{if } n = 0, \\ \{x_0, \dots, x_{n-1}\} & \text{otherwise.} \end{cases}$$

The range of r is $[\mathbb{N}]^{<\infty}$ and for all $s \in [\mathbb{N}]^{<\infty}$ and for all $X \in [\mathbb{N}]^{\infty}$, $s \sqsubseteq X$ if and only if there exists $n \in \mathbb{N}$ such that r(n,X) = s.

The range of r, is denoted by \mathcal{AR} .

The range of r, is denoted by AR.

For $n \in \mathbb{N}$ and $X \in \mathcal{R}$ we use the following notation

$$\mathcal{AR}_{n} = \{ r(n, X) \in \mathcal{AR} : X \in \mathcal{R} \},$$

$$\mathcal{AR}_{n} \upharpoonright X = \{ r(n, Y) \in \mathcal{AR} : Y \in \mathcal{R} \& Y \leq X \},$$

$$\mathcal{AR} \upharpoonright X = \bigcup_{n=0}^{\infty} \mathcal{AR}_{n} \upharpoonright X.$$

The range of r, is denoted by AR.

For $n \in \mathbb{N}$ and $X \in \mathcal{R}$ we use the following notation

$$\mathcal{AR}_{n} = \{ r(n, X) \in \mathcal{AR} : X \in \mathcal{R} \},$$

$$\mathcal{AR}_{n} \upharpoonright X = \{ r(n, Y) \in \mathcal{AR} : Y \in \mathcal{R} \& Y \leq X \},$$

$$\mathcal{AR} \upharpoonright X = \bigcup_{n=0}^{\infty} \mathcal{AR}_{n} \upharpoonright X.$$

If $s \in \mathcal{AR}$ and $X \in \mathcal{R}$ then we say s is an initial segment of X and write $s \sqsubseteq X$, if there exists $n \in \mathbb{N}$ such that s = r(n, X).

The range of r, is denoted by AR.

For $n \in \mathbb{N}$ and $X \in \mathcal{R}$ we use the following notation

$$\mathcal{AR}_{n} = \{r(n, X) \in \mathcal{AR} : X \in \mathcal{R}\},$$

$$\mathcal{AR}_{n} \upharpoonright X = \{r(n, Y) \in \mathcal{AR} : Y \in \mathcal{R} \& Y \leq X\},$$

$$\mathcal{AR} \upharpoonright X = \bigcup_{n=0}^{\infty} \mathcal{AR}_{n} \upharpoonright X.$$

If $s \in \mathcal{AR}$ and $X \in \mathcal{R}$ then we say s is an initial segment of X and write $s \sqsubseteq X$, if there exists $n \in \mathbb{N}$ such that s = r(n, X).

If $s \sqsubseteq X$ and $s \neq X$ then we write $s \sqsubseteq X$. We use the following notation:

$$[s] = \{ Y \in \mathcal{R} : s \sqsubseteq Y \},$$
$$[s, X] = \{ Y \in \mathcal{R} : s \sqsubseteq Y \le X \}.$$

A subset T of AR is called a **tree on** R if $T \neq \emptyset$ and for all $s, t \in AR$,

$$s \sqsubseteq t \in T \implies s \in T$$
.

For a tree T on R and $n \in \mathbb{N}$, we use the following notation:

$$[T] = \{X \in \mathcal{R} : \forall s \in \mathcal{AR}(s \sqsubseteq X \implies s \in T)\},$$
$$T(n) = \{s \in T : s \in \mathcal{AR}_n\}.$$

A subset T of \mathcal{AR} is called a **tree on** \mathcal{R} if $T \neq \emptyset$ and for all $s, t \in \mathcal{AR}$,

$$s \sqsubseteq t \in T \implies s \in T$$
.

For a tree T on R and $n \in \mathbb{N}$, we use the following notation:

$$[T] = \{X \in \mathcal{R} : \forall s \in \mathcal{AR}(s \sqsubseteq X \implies s \in T)\},$$
$$T(n) = \{s \in T : s \in \mathcal{AR}_n\}.$$

Lemma

If (\mathcal{R}, \leq, r) satisfies A.1(Sequencing), A.2(Finitization) and A.4(Pigeonhole Principle) then for all $s \in \mathcal{AR}$ and for all $X \in \mathcal{X}$ such that $s \sqsubseteq X$, there exists $\alpha_s \in {}^*(\mathcal{AR} \upharpoonright X) \setminus (\mathcal{AR} \upharpoonright X)$ such that

$$s \sqsubseteq \alpha_s \in {}^*\mathcal{AR}_{|s|+1}.$$

Defintion

An $\vec{\alpha}$ -tree is a tree T on \mathcal{R} with stem st(T) such that $T/st(T) \neq \emptyset$ and for all $s \in T/st(T)$,

$$\alpha_s \in {}^*T$$
.

Defintion

An $\vec{\alpha}$ -tree is a tree T on \mathcal{R} with stem st(T) such that $T/st(T) \neq \emptyset$ and for all $s \in T/st(T)$,

$$\alpha_s \in {}^*T$$
.

Example

Note that \mathcal{AR} is a tree on \mathcal{R} with stem \emptyset . Moreover, for all $s \in \mathcal{AR}$, $\alpha_s \in {}^*\mathcal{AR}$. Thus, \mathcal{AR} is an $\vec{\alpha}$ -tree.

Theorem (T.)

Assume that (\mathcal{R}, \leq, r) satisfies A.1, A.2 and A.4 and for all $s \in \mathcal{AR}$, *s = s. For all $\mathcal{X} \subseteq \mathcal{R}$ and for all $\vec{\alpha}$ -trees T there exists an $\vec{\alpha}$ -tree $S \subseteq T$ with $\mathsf{st}(S) = \mathsf{st}(T)$ such that one of the following holds:

- $[S] \subseteq \mathcal{X}$.
- **2** [*S*] ∩ $X = \emptyset$.
- **3** For all $\vec{\alpha}$ -trees S', if $S' \subseteq S$ then $[S'] \not\subseteq \mathcal{X}$ and $[S'] \cap \mathcal{X} \neq \emptyset$.

The Abstract $\vec{\alpha}$ -Ellentuck Theorem

Defintion

Assume that (\mathcal{R}, \leq, r) satisfies A.1, A.2 and A.4 and for all $s \in \mathcal{AR}$, *s = s. The topology on \mathcal{R} generated by $\{[T]: T \text{ is an } \vec{\alpha}\text{-tree}\}$ is called **the** $\vec{\alpha}\text{-Ellentuck topology}$.

The Abstract $\vec{\alpha}$ -Ellentuck Theorem

Defintion

Assume that (\mathcal{R}, \leq, r) satisfies A.1, A.2 and A.4 and for all $s \in \mathcal{AR}$, *s = s. The topology on \mathcal{R} generated by $\{[T]: T \text{ is an } \vec{\alpha}\text{-tree}\}$ is called **the** $\vec{\alpha}\text{-Ellentuck topology}$.

Defintion

We say that $(\mathcal{R}, \vec{\alpha}, \leq, r)$ is an $\vec{\alpha}$ -Ramsey space if the collection of $\vec{\alpha}$ -Ramsey sets coincides with the σ -algebra of sets with the $\vec{\alpha}$ -Baire property and the collection of $\vec{\alpha}$ -Ramsey null sets coincides with the σ -ideal of $\vec{\alpha}$ -meager sets.

The Abstract $\vec{\alpha}$ -Ellentuck Theorem

Defintion

Assume that (\mathcal{R}, \leq, r) satisfies A.1, A.2 and A.4 and for all $s \in \mathcal{AR}$, *s = s. The topology on \mathcal{R} generated by $\{[T]: T \text{ is an } \vec{\alpha}\text{-tree}\}$ is called **the** $\vec{\alpha}\text{-Ellentuck topology}$.

Defintion

We say that $(\mathcal{R}, \vec{\alpha}, \leq, r)$ is an $\vec{\alpha}$ -Ramsey space if the collection of $\vec{\alpha}$ -Ramsey sets coincides with the σ -algebra of sets with the $\vec{\alpha}$ -Baire property and the collection of $\vec{\alpha}$ -Ramsey null sets coincides with the σ -ideal of $\vec{\alpha}$ -meager sets.

Theorem (T.)

If (\mathcal{R}, \leq, r) satisfies A.1, A.2 and A.4 and for all $s \in \mathcal{AR}$, *s = s then $(\mathcal{R}, \vec{\alpha}, \leq, r)$ is an $\vec{\alpha}$ -Ramsey space.

Application to Abstract Local Ramsey Theory

Theorem (T.)

Assume that (\mathcal{R}, \leq, r) satisfies A.1, A.2 and A.4 and for all $s \in \mathcal{AR}$, *s = s. Let

$$\mathcal{R}_{\vec{\alpha}} = \{ X \in \mathcal{R} : \forall s \in \mathcal{AR} \upharpoonright X, \ \alpha_s \in {}^*r_{|s|+1}[s,X] \}.$$

If for all $\vec{\alpha}$ -trees T there exists $X \in \mathcal{R}_{\vec{\alpha}}$ such that $\emptyset \neq [st(T), X] \subseteq [T]$, then $(\mathcal{R}, \mathcal{R}_{\vec{\alpha}}, \leq, r)$ is a topological Ramsey space.

Application to Abstract Local Ramsey Theory

Question

Let (\mathcal{R}, \leq, r) be a topological Ramsey space satisfying A.1-A.4. Suppose that $\mathcal{U} \subseteq \mathcal{R}$ a selective ultrafilter with respect to \mathcal{R} as defined by Di Prisco, Mijares and Nieto. For each $s \in \mathcal{AR}$, let \mathcal{U}_s be the ultrafilter on $\{t \in \mathcal{AR}_{|s|+1} : s \sqsubseteq t\}$ generated by $\{r_{|s|+1}[s,X] : X \in \mathcal{U}\}$ and $\vec{\mathcal{U}} = \langle \mathcal{U}_s : s \in \mathcal{AR} \rangle$. Is it the case that for all $\vec{\mathcal{U}}$ -trees T there exists $X \in \mathcal{R}_{\vec{\mathcal{U}}}$ such that $\emptyset \neq [st(T),X] \subseteq [T]$?

Thank you for your attention.

- [1] Benci and Di Nasso, Alpha-theory: an elementary axiomatics for nonstandard analysis, Expositiones Mathematicae (2003)
- [2] Trujillo, From abstract $\vec{\alpha}$ -Ramsey theory to abstract ultra-Ramsey Theory arXiv preprint (2016)