Conjectures of Rado and Chang and the Strong Tree Property

Víctor Torres-Pérez

Vienna University of Technology

Novi Sad Conference in Set Theory and General Topology Iriški Venac, Fruška gora, Serbia. June 20th, 2016

Rado's Conjecture (RC)

Víctor Torres-Pérez Conjectures of Rado and Chang and the Strong Tree Property

・ロト ・回ト ・ヨト ・ヨト

Rado's Conjecture (RC)

Definition (Rado's Conjecture)

Víctor Torres-Pérez Conjectures of Rado and Chang and the Strong Tree Property

Rado's Conjecture (RC)

Definition (Rado's Conjecture)

A family of intervals of a linearly ordered set is the union of countably many disjoint subfamilies (σ -disjoint) if and only if every subfamily of size \aleph_1 is σ -disjoint.

◆□ > ◆□ > ◆ □ > ◆ □ > ●

Todorčević has shown the consistency of this statement relative to the consistency of the existence of a strongly compact cardinal.

Todorčević has shown the consistency of this statement relative to the consistency of the existence of a strongly compact cardinal. Moreover it is shown that RC is consistent with CH as well as consistent with the negation of CH.

Some applications of RC

Víctor Torres-Pérez Conjectures of Rado and Chang and the Strong Tree Property

イロト イヨト イヨト イヨト

臣

Some applications of RC

Theorem (Todorčević, 1993)

Some applications of RC

Theorem (Todorčević, 1993)

Rado's Conjecture implies (some examples):

Some applications of RC

Theorem (Todorčević, 1993)

Rado's Conjecture implies (some examples):

1. $2^{\aleph_0} \le \omega_2$,

Some applications of RC

Theorem (Todorčević, 1993)

Rado's Conjecture implies (some examples):

1.
$$2^{\aleph_0} \leq \omega_2$$
,

2.
$$\theta^{\aleph_0} = \theta$$
 for all regular $\theta \geq \aleph_2$,

Some applications of RC

Theorem (Todorčević, 1993)

Rado's Conjecture implies (some examples):

- 1. $2^{\aleph_0} \le \omega_2$,
- 2. $\theta^{\aleph_0} = \theta$ for all regular $\theta \geq \aleph_2$,
- 3. the Singular Cardinal Hypothesis,

Some applications of RC

Theorem (Todorčević, 1993)

Rado's Conjecture implies (some examples):

1.
$$2^{\aleph_0} \leq \omega_2$$

2.
$$\theta^{\aleph_0} = \theta$$
 for all regular $\theta \geq \aleph_2$,

- 3. the Singular Cardinal Hypothesis,
- 4. \Box_{κ} fails for every uncountable cardinal κ ,

Some applications of RC

Theorem (Todorčević, 1993)

Rado's Conjecture implies (some examples):

1.
$$2^{\aleph_0} \leq \omega_{2}$$

2.
$$\theta^{\aleph_0} = \theta$$
 for all regular $\theta \geq \aleph_2$,

- 3. the Singular Cardinal Hypothesis,
- 4. \Box_{κ} fails for every uncountable cardinal κ ,
- 5. CC*, etc.

Some applications of RC

Theorem (Todorčević, 1993)

Rado's Conjecture implies (some examples):

1.
$$2^{\aleph_0} \leq \omega_{2}$$

2.
$$\theta^{\aleph_0} = \theta$$
 for all regular $\theta \geq \aleph_2$,

- 3. the Singular Cardinal Hypothesis,
- 4. \Box_{κ} fails for every uncountable cardinal κ ,
- 5. CC*, etc.

Theorem (Feng, 1999)

Some applications of RC

Theorem (Todorčević, 1993)

Rado's Conjecture implies (some examples):

1.
$$2^{\aleph_0} \leq \omega_{2}$$

2.
$$\theta^{\aleph_0} = \theta$$
 for all regular $\theta \geq \aleph_2$,

- 3. the Singular Cardinal Hypothesis,
- 4. \Box_{κ} fails for every uncountable cardinal κ ,
- 5. CC*, etc.

Theorem (Feng, 1999)

Rado's Conjecture implies the presaturation of the nonstationary ideal on ω_1 .

Víctor Torres-Pérez Conjectures of Rado and Chang and the Strong Tree Property

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ●

Э

Theorem (Todorcevic)

RC is equivalent to the following statement: A tree T of height ω_1 is the union of countable antichains (special) if and only if every subtree of T of size \aleph_1 is special.

Theorem (Kurepa)

The family of bounded well-ordered sets of rationals, ordered by end-extension, is a nonspecial tree.

Theorem (Kurepa)

The family of bounded well-ordered sets of rationals, ordered by end-extension, is a nonspecial tree.

Theorem (Baumgartner, Malitz, Reihnhardt)

 MA_{\aleph_1} implies that every tree of size \aleph_1 with no uncountable chains is special.

Theorem (Kurepa)

The family of bounded well-ordered sets of rationals, ordered by end-extension, is a nonspecial tree.

Theorem (Baumgartner, Malitz, Reihnhardt)

 MA_{\aleph_1} implies that every tree of size \aleph_1 with no uncountable chains is special.

Corollary

 RC and MA_{\aleph_1} are incompatible.

Rado's Conjecture and special Aronszajn trees

Rado's Conjecture and special Aronszajn trees

We recall that an κ^+ -Aronszajn tree is a tree T of height κ^+ with levels of cardinality κ , but no chains of length κ^+ .

Rado's Conjecture and special Aronszajn trees

We recall that an κ^+ -Aronszajn tree is a tree T of height κ^+ with levels of cardinality κ , but no chains of length κ^+ . We call an κ^+ -Aronszajn tree T special if it can be decomposed into κ antichains.

Rado's Conjecture and special Aronszajn trees

We recall that an κ^+ -Aronszajn tree is a tree T of height κ^+ with levels of cardinality κ , but no chains of length κ^+ . We call an κ^+ -Aronszajn tree T special if it can be decomposed into κ antichains.

Theorem (Specker)

Rado's Conjecture and special Aronszajn trees

We recall that an κ^+ -Aronszajn tree is a tree T of height κ^+ with levels of cardinality κ , but no chains of length κ^+ . We call an κ^+ -Aronszajn tree T special if it can be decomposed into κ antichains.

Theorem (Specker)

 CH implies there is a special \aleph_2 -Aronszajn tree.

Rado's Conjecture and special Aronszajn trees

We recall that an κ^+ -Aronszajn tree is a tree T of height κ^+ with levels of cardinality κ , but no chains of length κ^+ . We call an κ^+ -Aronszajn tree T special if it can be decomposed into κ antichains.

Theorem (Specker)

CH implies there is a special \aleph_2 -Aronszajn tree.

```
Theorem (Todorcevic-T, 2012)
```

Rado's Conjecture and special Aronszajn trees

We recall that an κ^+ -Aronszajn tree is a tree T of height κ^+ with levels of cardinality κ , but no chains of length κ^+ . We call an κ^+ -Aronszajn tree T special if it can be decomposed into κ antichains.

Theorem (Specker)

CH implies there is a special \aleph_2 -Aronszajn tree.

Theorem (Todorcevic-T, 2012)

Under RC , the following are equivalent:

Rado's Conjecture and special Aronszajn trees

We recall that an κ^+ -Aronszajn tree is a tree T of height κ^+ with levels of cardinality κ , but no chains of length κ^+ . We call an κ^+ -Aronszajn tree T special if it can be decomposed into κ antichains.

Theorem (Specker)

CH implies there is a special \aleph_2 -Aronszajn tree.

Theorem (Todorcevic-T, 2012)

Under RC , the following are equivalent:

1. CH,

Rado's Conjecture and special Aronszajn trees

We recall that an κ^+ -Aronszajn tree is a tree T of height κ^+ with levels of cardinality κ , but no chains of length κ^+ . We call an κ^+ -Aronszajn tree T special if it can be decomposed into κ antichains.

Theorem (Specker)

CH implies there is a special \aleph_2 -Aronszajn tree.

Theorem (Todorcevic-T, 2012)

Under RC , the following are equivalent:

- 1. CH,
- 2. there is a special \aleph_2 -Aronszajn tree.

Strong Chang's Conjecture

Víctor Torres-Pérez Conjectures of Rado and Chang and the Strong Tree Property

Strong Chang's Conjecture

We consider the following strong version of Chang's Conjecture:

Strong Chang's Conjecture

We consider the following strong version of Chang's Conjecture: Definition (CC^*)

Strong Chang's Conjecture

We consider the following strong version of Chang's Conjecture: Definition (CC^*)

For every regular cardinal $\kappa \geq \omega_2$, there are arbitrary large λ such that for every countable $M \prec H_{\lambda}$ and for every $a \in [\kappa]^{\omega_1}$, there is a countable $M^* \prec H_{\lambda}$ and $b \in M^* \cap [\kappa]^{\omega_1}$ such that $M^* \supseteq M$ and $M^* \cap \omega_1 = M \cap \omega_1$.
◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ の < ()

The Semi-Stationary Reflection Principle (SSR) was introduced by Shelah.

The Semi-Stationary Reflection Principle (SSR) was introduced by Shelah.

Given two sets x, y, we denote by $x \sqsubseteq y$ whenever $x \subseteq y$ and $x \cap \omega_1 = y \cap \omega_1$.

The Semi-Stationary Reflection Principle (SSR) was introduced by Shelah.

Given two sets x, y, we denote by $x \sqsubseteq y$ whenever $x \subseteq y$ and

 $x \cap \omega_1 = y \cap \omega_1.$

Given an ordinal λ and a set $X \subseteq [\lambda]^{\omega}$, we say X is *semi-stationary* in $[\lambda]^{\omega}$ if its \sqsubseteq -upward closure is stationary, i.e. if the set $\{y \in [\lambda]^{\omega} : \exists x \in X (x \sqsubseteq y)\}$ is stationary.

The Semi-Stationary Reflection Principle (SSR) was introduced by Shelah.

Given two sets x, y, we denote by $x \sqsubseteq y$ whenever $x \subseteq y$ and

 $x \cap \omega_1 = y \cap \omega_1.$

Given an ordinal λ and a set $X \subseteq [\lambda]^{\omega}$, we say X is *semi-stationary* in $[\lambda]^{\omega}$ if its \sqsubseteq -upward closure is stationary, i.e. if the set $\{y \in [\lambda]^{\omega} : \exists x \in X (x \sqsubseteq y)\}$ is stationary.

Definition

The principle SSR asserts that the following statement $SSR(\lambda)$ holds for every ordinal $\lambda \ge \omega_2$: for every semi-stationary subset $X \subseteq [\lambda]^{\omega}$, there is $W \in [\lambda]^{\omega_1}$ with $W \supseteq \omega_1$ such that $X \cap [W]^{\omega}$ is semi-stationary in $[W]^{\omega}$.

The Semi-Stationary Reflection Principle (SSR) was introduced by Shelah.

```
Given two sets x, y, we denote by x \sqsubseteq y whenever x \subseteq y and
```

 $x \cap \omega_1 = y \cap \omega_1.$

Given an ordinal λ and a set $X \subseteq [\lambda]^{\omega}$, we say X is *semi-stationary* in $[\lambda]^{\omega}$ if its \sqsubseteq -upward closure is stationary, i.e. if the set $\{y \in [\lambda]^{\omega} : \exists x \in X (x \sqsubseteq y)\}$ is stationary.

Definition

The principle SSR asserts that the following statement $SSR(\lambda)$ holds for every ordinal $\lambda \ge \omega_2$: for every semi-stationary subset $X \subseteq [\lambda]^{\omega}$, there is $W \in [\lambda]^{\omega_1}$ with $W \supseteq \omega_1$ such that $X \cap [W]^{\omega}$ is semi-stationary in $[W]^{\omega}$.

Döbler and Schindler proved that both principles CC^\ast and SSR are equivalent.

<ロ> (四) (四) (三) (三) (三)

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ の < ()

CC^\ast is a consequence of $\mathrm{RC}.$ Actually, we proved the following:

CC^\ast is a consequence of $\mathrm{RC}.$ Actually, we proved the following: Theorem

 CC^* is a consequence of RC. Actually, we proved the following: Theorem Under CC^* , the following are equivalent:

 $\rm CC^*$ is a consequence of RC. Actually, we proved the following: Theorem Under $\rm CC^*,$ the following are equivalent:

1. CH,

 CC^\ast is a consequence of $\mathrm{RC}.$ Actually, we proved the following:

Theorem Under CC^* , the following are equivalent:

1. CH,

2. there is a special \aleph_2 -Aronszajn tree.

The Tree Property (TP)

Víctor Torres-Pérez Conjectures of Rado and Chang and the Strong Tree Property

イロト イヨト イヨト イヨト

臣

The Tree Property (TP)

Definition

Víctor Torres-Pérez Conjectures of Rado and Chang and the Strong Tree Property

イロト イヨト イヨト イヨト

臣

The Tree Property (TP)

Definition

A regular cardinal κ has the *tree property* and we denote it by $TP(\kappa)$, if every tree T of height κ , with levels of size less than κ has a cofinal branch.

We list some results:

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ -

Э

We list some results:

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ -

Э

We list some results:

► TP(ℵ₀) holds. (König)

イロト イヨト イヨト イヨト

臣

We list some results:

- ► TP(ℵ₀) holds. (König)
- $TP(\aleph_1)$ does not hold. (Aronszajn)

イロト イヨト イヨト イヨト

臣

We list some results:

- ► TP(ℵ₀) holds. (König)
- $TP(\aleph_1)$ does not hold. (Aronszajn)
- A tree of height ω₂ with levels of size at most ω has a cofinal branch. (Kurepa)

イロン イヨン イヨン イヨン

We list some results:

- ► TP(ℵ₀) holds. (König)
- $TP(\aleph_1)$ does not hold. (Aronszajn)
- A tree of height ω₂ with levels of size at most ω has a cofinal branch. (Kurepa)

What about trees of height ω_2 and levels of size ω_1 ?

The Tree Property for ω_2

Víctor Torres-Pérez Conjectures of Rado and Chang and the Strong Tree Property

イロト イヨト イヨト イヨト

臣

The Tree Property for ω_2

▶ CH implies there is a special ℵ₂-Aronszajn tree. (Specker)

Víctor Torres-Pérez Conjectures of Rado and Chang and the Strong Tree Property

The Tree Property for ω_2

- ▶ CH implies there is a special ℵ₂-Aronszajn tree. (Specker)
- PFA implies $TP(\omega_2)$. (Baumgartner)

The Tree Property for ω_2

- ▶ CH implies there is a special ℵ₂-Aronszajn tree. (Specker)
- PFA implies $TP(\omega_2)$. (Baumgartner)

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ の < ()

A natural question is if under RC, the negation of the Continuum Hypothesis is enough to imply there are no \aleph_2 -Aronzajn trees at all, i.e. if $TP(\omega_2)$ holds.

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ の < ()

We have the following:

イロト イヨト イヨト イヨト

臣

We have the following:

Theorem (T.-Wu, 2015)

We have the following:

Theorem (T.-Wu, 2015) $CC^* + \neg CH \rightarrow TP(\omega_2).$

The Strong Tree Property

Víctor Torres-Pérez Conjectures of Rado and Chang and the Strong Tree Property

・ロト ・回ト ・ヨト ・ヨト

The Strong Tree Property

Víctor Torres-Pérez Conjectures of Rado and Chang and the Strong Tree Property

・ロト ・回ト ・ヨト ・ヨト

The Strong Tree Property

Jech introduced a strengthening of the tree property, now called the Strong Tree Property.

The Strong Tree Property

Jech introduced a strengthening of the tree property, now called the Strong Tree Property.

He noticed that an inaccessible cardinal κ has the Strong Tree Property if and only if κ is strongly compact.

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ の < ()
Definition (Jech)

Víctor Torres-Pérez Conjectures of Rado and Chang and the Strong Tree Property

・ロト ・回 ト ・ヨト ・ヨト

э

Definition (Jech)

Let $\kappa > \omega_1$ be a regular cardinal, and $\lambda \ge \kappa$.

イロト イヨト イヨト イヨト

臣

Definition (Jech)

Let $\kappa > \omega_1$ be a regular cardinal, and $\lambda \ge \kappa$. Suppose we have a collection of sets $\{\mathscr{F}_a \in P(2^a) : a \in [\kappa]^{<\lambda}\}$ such that

Definition (Jech)

Let $\kappa > \omega_1$ be a regular cardinal, and $\lambda \ge \kappa$. Suppose we have a collection of sets $\{\mathscr{F}_a \in P(2^a) : a \in [\kappa]^{<\lambda}\}$ such that

1. for every $\mathbf{a} \in [\kappa]^{<\lambda}$, $|\mathscr{F}_{\mathbf{a}}| < \lambda$,

Definition (Jech)

Let $\kappa > \omega_1$ be a regular cardinal, and $\lambda \ge \kappa$. Suppose we have a collection of sets $\{\mathscr{F}_a \in P(2^a) : a \in [\kappa]^{<\lambda}\}$ such that

- 1. for every $a \in [\kappa]^{<\lambda}$, $|\mathscr{F}_a| < \lambda$,
- 2. for $a, b \in [\kappa]^{<\lambda}$, $a \subseteq b \to \forall f \in \mathscr{F}_b \exists g \in \mathscr{F}_a$ such that $f \upharpoonright_a = g$.

イロト イポト イヨト イヨト

Definition (Jech)

Let $\kappa > \omega_1$ be a regular cardinal, and $\lambda \ge \kappa$. Suppose we have a collection of sets $\{\mathscr{F}_a \in P(2^a) : a \in [\kappa]^{<\lambda}\}$ such that

- 1. for every $a \in [\kappa]^{<\lambda}$, $|\mathscr{F}_a| < \lambda$,
- 2. for $a, b \in [\kappa]^{<\lambda}$, $a \subseteq b \to \forall f \in \mathscr{F}_b \exists g \in \mathscr{F}_a$ such that $f \upharpoonright_a = g$.

We call $\mathscr{F} = \bigcup_{a \in [\kappa]^{\leq \lambda}} \mathscr{F}_a$ a (κ, λ) -tree, and \mathscr{F}_a the level a of \mathscr{F} for $a \in [\kappa]^{\leq \lambda}$.

Definition (Jech)

Let $\kappa > \omega_1$ be a regular cardinal, and $\lambda \ge \kappa$. Suppose we have a collection of sets $\{\mathscr{F}_a \in P(2^a) : a \in [\kappa]^{<\lambda}\}$ such that

- 1. for every $a \in [\kappa]^{<\lambda}$, $|\mathscr{F}_a| < \lambda$,
- 2. for $a, b \in [\kappa]^{<\lambda}$, $a \subseteq b \to \forall f \in \mathscr{F}_b \exists g \in \mathscr{F}_a$ such that $f \upharpoonright_a = g$.

We call $\mathscr{F} = \bigcup_{a \in [\kappa]^{\leq \lambda}} \mathscr{F}_a$ a (κ, λ) -tree, and \mathscr{F}_a the level a of \mathscr{F} for $a \in [\kappa]^{\leq \lambda}$.

The Strong Tree Property

Víctor Torres-Pérez Conjectures of Rado and Chang and the Strong Tree Property

・ロト ・回ト ・ヨト ・ヨト

The Strong Tree Property

We furnish \mathscr{F} with the following order: for $f, g \in \mathscr{F}$, $f \leq_{\mathscr{F}} g$ if and only if $g|_{\operatorname{dom}(f)} = f$.

The Strong Tree Property

We furnish \mathscr{F} with the following order: for $f, g \in \mathscr{F}$, $f \leq_{\mathscr{F}} g$ if and only if $g|_{\operatorname{dom}(f)} = f$. Observe that in general, $\leq_{\mathscr{F}}$ is not a tree order.

The Strong Tree Property

Víctor Torres-Pérez Conjectures of Rado and Chang and the Strong Tree Property

・ロト ・回ト ・ヨト ・ヨト

The Strong Tree Property

A cofinal branch trough \mathscr{F} is a function $B : \kappa \to 2$ such that $B \upharpoonright_a \in \mathscr{F}$ for every $a \in [\kappa]^{<\lambda}$.

The Strong Tree Property

A cofinal branch trough \mathscr{F} is a function $B : \kappa \to 2$ such that $B|_{a} \in \mathscr{F}$ for every $a \in [\kappa]^{<\lambda}$.

Definition

We say that λ has the Strong Tree Property if every (κ, λ) -tree has a cofinal branch for every $\kappa \geq \lambda$.

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ の < ()

Theorem (Weiß)

Víctor Torres-Pérez Conjectures of Rado and Chang and the Strong Tree Property

・ロト ・回 ト ・ヨト ・ヨト

э

Theorem (Weiß) PFA implies \aleph_2 has the Strong Tree Property.

Theorem (Weiß) PFA implies \aleph_2 has the Strong Tree Property.

Theorem (Sakai and Velickovic)

Theorem (Weiß)

PFA implies \aleph_2 has the Strong Tree Property.

Theorem (Sakai and Velickovic)

CC^* and $\mathrm{MA}_{\omega_1}(\mathrm{Cohen})$ together imply \aleph_2 has the Strong Tree Property.

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ の < ()

```
Theorem (T.-Wu, 2016)
```

 CC^* and $\neg\mathrm{CH}$ together imply \aleph_2 has the Strong Tree Property.

Theorem (T.-Wu, 2016)

 CC^* and $\neg\mathrm{CH}$ together imply \aleph_2 has the Strong Tree Property.

Corollary

Theorem (T.-Wu, 2016)

 CC^* and $\neg\mathrm{CH}$ together imply \aleph_2 has the Strong Tree Property.

Corollary

 RC and $\neg\mathrm{CH}$ together imply \aleph_2 has the Strong Tree Property.

Theorem (T.-Wu, 2016)

 CC^* and $\neg\mathrm{CH}$ together imply \aleph_2 has the Strong Tree Property.

Corollary

RC and \neg CH together imply \aleph_2 has the Strong Tree Property.

We remark that CC^* is consistent with both CH and $\neg CH$, and that CH implies $\neg TP(\omega_2)$.

Theorem (T.-Wu, 2016)

 CC^* and $\neg\mathrm{CH}$ together imply \aleph_2 has the Strong Tree Property.

Corollary

 RC and $\neg\mathrm{CH}$ together imply \aleph_2 has the Strong Tree Property.

We remark that CC^* is consistent with both CH and $\neg CH$, and that CH implies $\neg TP(\omega_2)$. Therefore, our result is in certain sense optimal.

Lemma (CC^*)

Let \mathscr{F} be a (κ, ω_2) -tree with no cofinal branches. Then there are arbitrarily large θ such that for every countable $M \prec H_{\theta}$ we can find $M_0, M_1 \prec H_{\theta}$ countable and $a_0 \in M_0 \cap [\kappa]^{\omega_1}$, $a_1 \in M_1 \cap [\kappa]^{\omega_1}$ such that

イロト イポト イヨト イヨト

Lemma (CC^*)

Let \mathscr{F} be a (κ, ω_2) -tree with no cofinal branches. Then there are arbitrarily large θ such that for every countable $M \prec H_{\theta}$ we can find $M_0, M_1 \prec H_{\theta}$ countable and $a_0 \in M_0 \cap [\kappa]^{\omega_1}$, $a_1 \in M_1 \cap [\kappa]^{\omega_1}$ such that

1.
$$M \cap \omega_1 = M_0 \cap \omega_1 = M_1 \cap \omega_1$$
,

イロト イポト イヨト イヨト

Lemma (CC^*)

Let \mathscr{F} be a (κ, ω_2) -tree with no cofinal branches. Then there are arbitrarily large θ such that for every countable $M \prec H_{\theta}$ we can find $M_0, M_1 \prec H_{\theta}$ countable and $a_0 \in M_0 \cap [\kappa]^{\omega_1}$, $a_1 \in M_1 \cap [\kappa]^{\omega_1}$ such that

1.
$$M \cap \omega_1 = M_0 \cap \omega_1 = M_1 \cap \omega_1$$
,

2. $\mathscr{F}_{a_0} \cap M_0 \perp \mathscr{F}_{a_1} \cap M_1$.

We have the following:

Proposition

(CC^{*}) Let \mathscr{F} be a (κ, ω_2) -tree with no cofinal branches. For λ sufficiently large, if the set

$$S_{\mathscr{F}} = \{ M \in [H_{\lambda}]^{\omega} : \exists b \in [\kappa]^{\omega_1} \forall f \in \mathscr{F}_b \exists a \in M \cap [b]^{\omega_1}(f \mid_a \notin M) \}$$

is nonstationary, then CH holds.

Suppose $S_{\mathscr{F}}$ is nonstationary, and let $F : [H_{\lambda}]^{<\omega} \to H_{\lambda}$ be a function such that if $M \in [H_{\lambda}]^{\omega}$ is closed under F, then $M \notin S_{\mathscr{F}}$. As before, let $e : [\kappa]^{\omega_1} \times \omega_1 \to \mathscr{F}$ be a surjective function such that $e(a,\xi) \in \mathscr{F}_a$ for every $\xi \in \omega_1$.

Let θ be sufficiently large such that $\mathscr{F}, S_{\mathscr{F}}, F, e$ and all relevant parameters are in H_{θ} and where the conclusion of previous Lemma holds.

Using previous Lemma, build a binary tree $\langle M_\sigma \rangle_{\sigma \in 2^{<\omega}}$ of countable elementary submodels of H_θ with the property that for every $\sigma \in 2^{<\omega}$

Using previous Lemma, build a binary tree $\langle M_\sigma \rangle_{\sigma \in 2^{<\omega}}$ of countable elementary submodels of H_θ with the property that for every $\sigma \in 2^{<\omega}$

Using previous Lemma, build a binary tree $\langle M_{\sigma} \rangle_{\sigma \in 2^{<\omega}}$ of countable elementary submodels of H_{θ} with the property that for every $\sigma \in 2^{<\omega}$

1. $M_{\sigma} \cap \omega_1 = M_{\sigma \frown 0} \cap \omega_1 = M_{\sigma \frown 1} \cap \omega_1$, and

イロト イボト イヨト
Using previous Lemma, build a binary tree $\langle M_\sigma \rangle_{\sigma \in 2^{<\omega}}$ of countable elementary submodels of H_θ with the property that for every $\sigma \in 2^{<\omega}$

- 1. $M_{\sigma} \cap \omega_1 = M_{\sigma \frown 0} \cap \omega_1 = M_{\sigma \frown 1} \cap \omega_1$, and
- 2. there exists $a_0 \in M_{\sigma \frown 0} \cap [\kappa]^{\omega_1}$ and $a_1 \in M_{\sigma \frown 1} \cap [\kappa]^{\omega_1}$ such that $\mathscr{F}_{a_0} \cap M_{\sigma \frown 0} \perp \mathscr{F}_{a_1} \cap M_{\sigma \frown 1}$.

イロト 不得 トイラト イラト・ラ

Using previous Lemma, build a binary tree $\langle M_{\sigma} \rangle_{\sigma \in 2^{<\omega}}$ of countable elementary submodels of H_{θ} with the property that for every $\sigma \in 2^{<\omega}$

- 1. $M_{\sigma} \cap \omega_1 = M_{\sigma \frown 0} \cap \omega_1 = M_{\sigma \frown 1} \cap \omega_1$, and
- 2. there exists $a_0 \in M_{\sigma \frown 0} \cap [\kappa]^{\omega_1}$ and $a_1 \in M_{\sigma \frown 1} \cap [\kappa]^{\omega_1}$ such that $\mathscr{F}_{a_0} \cap M_{\sigma \frown 0} \perp \mathscr{F}_{a_1} \cap M_{\sigma \frown 1}$.

For every $r \in 2^{\omega}$, let $M_r = \bigcup_{n \in \omega} M_{r \upharpoonright n}$. Let $b \in [\kappa]^{\omega_1}$ be such that $b \supseteq a$ for every $a \in M_{\sigma} \cap [\kappa]^{\omega_1}$ and every $\sigma \in 2^{<\omega}$.

イロト 不得 トイラト イラト・ラ

Using previous Lemma, build a binary tree $\langle M_{\sigma} \rangle_{\sigma \in 2^{<\omega}}$ of countable elementary submodels of H_{θ} with the property that for every $\sigma \in 2^{<\omega}$

- 1. $M_{\sigma} \cap \omega_1 = M_{\sigma \frown 0} \cap \omega_1 = M_{\sigma \frown 1} \cap \omega_1$, and
- 2. there exists $a_0 \in M_{\sigma \frown 0} \cap [\kappa]^{\omega_1}$ and $a_1 \in M_{\sigma \frown 1} \cap [\kappa]^{\omega_1}$ such that $\mathscr{F}_{a_0} \cap M_{\sigma \frown 0} \perp \mathscr{F}_{a_1} \cap M_{\sigma \frown 1}$.

For every $r \in 2^{\omega}$, let $M_r = \bigcup_{n \in \omega} M_{r \mid n}$. Let $b \in [\kappa]^{\omega_1}$ be such that $b \supseteq a$ for every $a \in M_{\sigma} \cap [\kappa]^{\omega_1}$ and every $\sigma \in 2^{<\omega}$. Since $M_r \prec H_{\theta}$ and $F \in M_r$, M_r is closed under F, we have $M_r \cap \kappa \notin S_{\mathscr{F}}$. So we can choose $f_r \in \mathscr{F}_b$ such that $f_r \mid_a \in M_r$ for every $a \in M_r \cap [b]^{\omega_1}$.

イロト 不得 トイラト イラト 二日

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ の < ()

Claim

The application $r \mapsto f_r$ is an injection from 2^{ω} to \mathscr{F}_b (and therefore CH holds).

イロト イヨト イヨト イヨト

Claim

The application $r \mapsto f_r$ is an injection from 2^{ω} to \mathscr{F}_b (and therefore CH holds).

Proof.

イロト イヨト イヨト イヨト

Claim

The application $r \mapsto f_r$ is an injection from 2^{ω} to \mathscr{F}_b (and therefore CH holds).

Proof.

Let $r_0, r_1 \in 2^{\omega}$ with $r_0 \neq r_1$ and denote by f_i the node f_{r_i} for $i \in \{0, 1\}$. We will find two predecessors of f_0 and f_1 that are incompatible.

イロト イポト イヨト イヨト

Claim

The application $r \mapsto f_r$ is an injection from 2^{ω} to \mathscr{F}_b (and therefore CH holds).

Proof.

Let $r_0, r_1 \in 2^{\omega}$ with $r_0 \neq r_1$ and denote by f_i the node f_{r_i} for $i \in \{0, 1\}$. We will find two predecessors of f_0 and f_1 that are incompatible. Let $n \in \omega$ such that $r_0 \upharpoonright_n = r_1 \upharpoonright_n = \sigma$, and $r_0 \upharpoonright_{n+1} \neq r_1 \upharpoonright_{n+1}$.

イロン 不同 とうほう 不同 とう

Claim

The application $r \mapsto f_r$ is an injection from 2^{ω} to \mathscr{F}_b (and therefore CH holds).

Proof.

Let $r_0, r_1 \in 2^{\omega}$ with $r_0 \neq r_1$ and denote by f_i the node f_{r_i} for $i \in \{0, 1\}$. We will find two predecessors of f_0 and f_1 that are incompatible. Let $n \in \omega$ such that $r_0 \upharpoonright_n = r_1 \upharpoonright_n = \sigma$, and $r_0 \upharpoonright_{n+1} \neq r_1 \upharpoonright_{n+1}$. Without loss of generality, suppose $r_i(n) = i$ for $i \in \{0, 1\}$.

イロト イポト イヨト イヨト

Claim

The application $r \mapsto f_r$ is an injection from 2^{ω} to \mathscr{F}_b (and therefore CH holds).

Proof.

Let $r_0, r_1 \in 2^{\omega}$ with $r_0 \neq r_1$ and denote by f_i the node f_{r_i} for $i \in \{0, 1\}$. We will find two predecessors of f_0 and f_1 that are incompatible. Let $n \in \omega$ such that $r_0 \upharpoonright_n = r_1 \upharpoonright_n = \sigma$, and $r_0 \upharpoonright_{n+1} \neq r_1 \upharpoonright_{n+1}$. Without loss of generality, suppose $r_i(n) = i$ for $i \in \{0, 1\}$. By the construction of our binary tree, we can take $a_0 \in M_{r_{0n+1}}$ and $a_1 \in M_{r_{0n+1}}$ such that $\mathscr{F}_{a_0} \cap M_{r_{0n+1}} \perp \mathscr{F}_{a_1} \cap M_{r_{0n+1}}$.

イロト イポト イヨト イヨト

Claim

The application $r \mapsto f_r$ is an injection from 2^{ω} to \mathscr{F}_b (and therefore CH holds).

Proof.

Let $r_0, r_1 \in 2^{\omega}$ with $r_0 \neq r_1$ and denote by f_i the node f_{r_i} for $i \in \{0, 1\}$. We will find two predecessors of f_0 and f_1 that are incompatible. Let $n \in \omega$ such that $r_0 \upharpoonright_n = r_1 \upharpoonright_n = \sigma$, and $r_0 \upharpoonright_{n+1} \neq r_1 \upharpoonright_{n+1}$. Without loss of generality, suppose $r_i(n) = i$ for $i \in \{0, 1\}$. By the construction of our binary tree, we can take $a_0 \in M_{r_{0n+1}}$ and $a_1 \in M_{r_{0n+1}}$ such that $\mathscr{F}_{a_0} \cap M_{r_{0n+1}} \perp \mathscr{F}_{a_1} \cap M_{r_{0n+1}}$. However, observe that for $i \in \{0, 1\}$, $a_i \in M_{r_{0n+1}} \subseteq M_{r_i}$, and so $f_i \upharpoonright_{a_i} \in M_{r_{0n+1}}$.

イロト イポト イヨト イヨト 二日

Claim

The application $r \mapsto f_r$ is an injection from 2^{ω} to \mathscr{F}_b (and therefore CH holds).

Proof.

Let $r_0, r_1 \in 2^{\omega}$ with $r_0 \neq r_1$ and denote by f_i the node f_{r_i} for $i \in \{0, 1\}$. We will find two predecessors of f_0 and f_1 that are incompatible. Let $n \in \omega$ such that $r_0 \upharpoonright_n = r_1 \upharpoonright_n = \sigma$, and $r_0 \upharpoonright_{n+1} \neq r_1 \upharpoonright_{n+1}$. Without loss of generality, suppose $r_i(n) = i$ for $i \in \{0, 1\}$. By the construction of our binary tree, we can take $a_0 \in M_{r_{0n+1}}$ and $a_1 \in M_{r_{1n+1}}$ such that $\mathscr{F}_{a_0} \cap M_{r_{0n+1}} \perp \mathscr{F}_{a_1} \cap M_{r_{1n+1}}$. However, observe that for $i \in \{0, 1\}$, $a_i \in M_{r_{0n+1}} \subseteq M_{r_i}$, and so $f_i \upharpoonright_{a_i} \in M_{r_{0n+1}}$. Therefore, $f_0 \upharpoonright_{a_0}$ and $f_1 \upharpoonright_{a_1}$ are incompatible, and so are f_0 and f_1 .

イロト イポト イヨト イヨト

Claim

The application $r \mapsto f_r$ is an injection from 2^{ω} to \mathscr{F}_b (and therefore CH holds).

Proof.

Let $r_0, r_1 \in 2^{\omega}$ with $r_0 \neq r_1$ and denote by f_i the node f_{r_i} for $i \in \{0, 1\}$. We will find two predecessors of f_0 and f_1 that are incompatible. Let $n \in \omega$ such that $r_0 \upharpoonright_n = r_1 \upharpoonright_n = \sigma$, and $r_0 \upharpoonright_{n+1} \neq r_1 \upharpoonright_{n+1}$. Without loss of generality, suppose $r_i(n) = i$ for $i \in \{0, 1\}$. By the construction of our binary tree, we can take $a_0 \in M_{r_{0n+1}}$ and $a_1 \in M_{r_{1n+1}}$ such that $\mathscr{F}_{a_0} \cap M_{r_{0n+1}} \perp \mathscr{F}_{a_1} \cap M_{r_{1n+1}}$. However, observe that for $i \in \{0, 1\}$, $a_i \in M_{r_{0n+1}} \subseteq M_{r_i}$, and so $f_i \upharpoonright_{a_i} \in M_{r_{0n+1}}$. Therefore, $f_0 \upharpoonright_{a_0}$ and $f_1 \upharpoonright_{a_1}$ are incompatible, and so are f_0 and f_1 .

This finishes the proof of the Proposition.

・ロト ・回ト ・ヨト ・ヨト

We are ready to prove the main Theorem of this section.

Theorem

(CC^{*}) If CH does not hold, then ω_2 has the Strong Tree Property.

Proof of Theorem

¹For example, let $h: X \to \omega_1$ be a bijection. So the set $\{h^{-1}[\alpha]: \alpha \in \omega_1 \setminus \omega\}$ is a club of size ω_1 , and take its intersection with $S \to \mathbb{R}$

Víctor Torres-Pérez Conjectures of Rado and Chang and the Strong Tree Property

Proof of Theorem

Assume CH does not hold, but suppose there is a (κ, ω_2) -tree \mathscr{F} with no cofinal branches.

¹For example, let $h: X \to \omega_1$ be a bijection. So the set $\{h^{-1}[\alpha]: \alpha \in \omega_1 \setminus \omega\}$ is a club of size ω_1 , and take its intersection with S.

Proof of Theorem

Assume CH does not hold, but suppose there is a (κ, ω_2) -tree \mathscr{F} with no cofinal branches. From Proposition, for λ sufficiently large, the set $S_{\mathscr{F}}$ is stationary in $[H_{\lambda}]^{\omega}$, and in particular it is semi-stationary. Without loss of generality, we can consider that every set in $S_{\mathscr{F}}$ is closed under e.

¹For example, let $h: X \to \omega_1$ be a bijection. So the set $\{h^{-1}[\alpha]: \alpha \in \omega_1 \setminus \omega\}$ is a club of size ω_1 , and take its intersection with $S \to \mathbb{R}$

Proof of Theorem

Assume CH does not hold, but suppose there is a (κ, ω_2) -tree \mathscr{F} with no cofinal branches. From Proposition, for λ sufficiently large, the set $S_{\mathscr{F}}$ is stationary in $[H_{\lambda}]^{\omega}$, and in particular it is semi-stationary. Without loss of generality, we can consider that every set in $S_{\mathscr{F}}$ is closed under e. Since CC^* and SSR are equivalent, we can apply SSR to obtain $X \in [H_{\lambda}]^{\omega_1}$ with $X \supseteq \omega_1$ such that the set $[X]^{\omega} \cap S_{\mathscr{F}}$ is semi-stationary.

¹For example, let $h: X \to \omega_1$ be a bijection. So the set $\{h^{-1}[\alpha]: \alpha \in \omega_1 \setminus \omega\}$ is a club of size ω_1 , and take its intersection with S.

Proof of Theorem

Assume CH does not hold, but suppose there is a (κ, ω_2) -tree \mathscr{F} with no cofinal branches. From Proposition, for λ sufficiently large, the set $S_{\mathscr{F}}$ is stationary in $[H_{\lambda}]^{\omega}$, and in particular it is semi-stationary. Without loss of generality, we can consider that every set in $S_{\mathscr{F}}$ is closed under e. Since CC^* and SSR are equivalent, we can apply SSR to obtain $X \in [H_{\lambda}]^{\omega_1}$ with $X \supseteq \omega_1$ such that the set $[X]^{\omega} \cap S_{\mathscr{F}}$ is semi-stationary. Let

$$S = \{x \in [X]^{\omega} : \exists M_x \in S_{\mathscr{F}} \cap [X]^{\omega} (x \sqsupseteq M_x)\},\$$

which is stationary by definition of semi-stationary set.

¹For example, let $h: X \to \omega_1$ be a bijection. So the set $\{h^{-1}[\alpha]: \alpha \in \omega_1 \setminus \omega\}$ is a club of size ω_1 , and take its intersection with $S \to \mathbb{R}$

Proof of Theorem

Assume CH does not hold, but suppose there is a (κ, ω_2) -tree \mathscr{F} with no cofinal branches. From Proposition, for λ sufficiently large, the set $S_{\mathscr{F}}$ is stationary in $[H_{\lambda}]^{\omega}$, and in particular it is semi-stationary. Without loss of generality, we can consider that every set in $S_{\mathscr{F}}$ is closed under e. Since CC^* and SSR are equivalent, we can apply SSR to obtain $X \in [H_{\lambda}]^{\omega_1}$ with $X \supseteq \omega_1$ such that the set $[X]^{\omega} \cap S_{\mathscr{F}}$ is semi-stationary. Let

$$S = \{x \in [X]^{\omega} : \exists M_x \in S_{\mathscr{F}} \cap [X]^{\omega} (x \sqsupseteq M_x)\},\$$

which is stationary by definition of semi-stationary set. Take a stationary set $S' \subseteq S$ of size ω_1 .¹

¹For example, let $h: X \to \omega_1$ be a bijection. So the set $\{h^{-1}[\alpha]: \alpha \in \omega_1 \setminus \omega\}$ is a club of size ω_1 , and take its intersection with S.

Proof of Theorem

Víctor Torres-Pérez Conjectures of Rado and Chang and the Strong Tree Property

ヘロン 人間 とくほど くほどう

臣

Proof of Theorem

For $x \in S'$, using the definition of $S_{\mathscr{F}}$, choose $b_x \in [\kappa]^{\omega_1}$ such that for every $f \in \mathscr{F}_{b_x}$, there is $a \in M_x \cap [b_x]^{\omega_1}$ with $f \models_a \notin M_x$.

イロン 不同 とくほど 不同 とう

Proof of Theorem

For $x \in S'$, using the definition of $S_{\mathscr{F}}$, choose $b_x \in [\kappa]^{\omega_1}$ such that for every $f \in \mathscr{F}_{b_x}$, there is $a \in M_x \cap [b_x]^{\omega_1}$ with $f \models_a \notin M_x$. Let $b = \bigcup_{x \in S'} b_x$ (and so $|b| = \omega_1$).

イロト イボト イヨト

Proof of Theorem

For $x \in S'$, using the definition of $S_{\mathscr{F}}$, choose $b_x \in [\kappa]^{\omega_1}$ such that for every $f \in \mathscr{F}_{b_x}$, there is $a \in M_x \cap [b_x]^{\omega_1}$ with $f \upharpoonright_a \notin M_x$. Let $b = \bigcup_{x \in S'} b_x$ (and so $|b| = \omega_1$). Fix $f \in \mathscr{F}_b$. Then for $x \in S'$, we can choose $a_x \in M_x \cap [b_x]^{\omega_1}$ such that

$$(f \upharpoonright_{b_{x}}) \upharpoonright_{a_{x}} = f \upharpoonright_{a_{x}} \notin M_{x}.$$

$$(1)$$

Proof of Theorem

For $x \in S'$, using the definition of $S_{\mathscr{F}}$, choose $b_x \in [\kappa]^{\omega_1}$ such that for every $f \in \mathscr{F}_{b_x}$, there is $a \in M_x \cap [b_x]^{\omega_1}$ with $f \models_a \notin M_x$. Let $b = \bigcup_{x \in S'} b_x$ (and so $|b| = \omega_1$). Fix $f \in \mathscr{F}_b$. Then for $x \in S'$, we can choose $a_x \in M_x \cap [b_x]^{\omega_1}$ such that

$$(f \upharpoonright_{b_x}) \upharpoonright_{a_x} = f \upharpoonright_{a_x} \notin M_x. \tag{1}$$

Apply the Pressing Down Lemma to find $a \in [\kappa]^{\omega_1}$ and a stationary set $S'' \subseteq S'$ such that $a_x = a$ for every $x \in S''$.

イロト イポト イヨト イヨト 二日

Proof of Theorem

For $x \in S'$, using the definition of $S_{\mathscr{F}}$, choose $b_x \in [\kappa]^{\omega_1}$ such that for every $f \in \mathscr{F}_{b_x}$, there is $a \in M_x \cap [b_x]^{\omega_1}$ with $f \upharpoonright_a \notin M_x$. Let $b = \bigcup_{x \in S'} b_x$ (and so $|b| = \omega_1$). Fix $f \in \mathscr{F}_b$. Then for $x \in S'$, we can choose $a_x \in M_x \cap [b_x]^{\omega_1}$ such that

$$(f \upharpoonright_{b_x}) \upharpoonright_{a_x} = f \upharpoonright_{a_x} \notin M_x. \tag{1}$$

Apply the Pressing Down Lemma to find $a \in [\kappa]^{\omega_1}$ and a stationary set $S'' \subseteq S'$ such that $a_x = a$ for every $x \in S''$. Observe that since S'' is stationary in $[X]^{\omega}$, in particular it is cofinal in $[X]^{\omega}$, and since $X \supseteq \omega_1$, we have $\bigcup_{x \in S''} (x \cap \omega_1) = \omega_1$. Therefore we can fix $x \in S''$ and $\xi \in x$ such that $e(a, \xi) = f|_a$.

<ロ> (四) (四) (三) (三) (三)

Proof of Theorem

For $x \in S'$, using the definition of $S_{\mathscr{F}}$, choose $b_x \in [\kappa]^{\omega_1}$ such that for every $f \in \mathscr{F}_{b_x}$, there is $a \in M_x \cap [b_x]^{\omega_1}$ with $f|_a \notin M_x$. Let $b = \bigcup_{x \in S'} b_x$ (and so $|b| = \omega_1$). Fix $f \in \mathscr{F}_b$. Then for $x \in S'$, we can choose $a_x \in M_x \cap [b_x]^{\omega_1}$ such that

$$(f \upharpoonright_{b_x}) \upharpoonright_{a_x} = f \upharpoonright_{a_x} \notin M_x. \tag{1}$$

Apply the Pressing Down Lemma to find $a \in [\kappa]^{\omega_1}$ and a stationary set $S'' \subseteq S'$ such that $a_x = a$ for every $x \in S''$. Observe that since S'' is stationary in $[X]^{\omega}$, in particular it is cofinal in $[X]^{\omega}$, and since $X \supseteq \omega_1$, we have $\bigcup_{x \in S''} (x \cap \omega_1) = \omega_1$. Therefore we can fix $x \in S''$ and $\xi \in x$ such that $e(a, \xi) = f|_a$. However, M_x is closed under e, and $M_x \cap \omega_1 = x \cap \omega_1$ (since $x \sqsupseteq M_x$), and so $e(\xi, a) \in M_x$, contradicting (1).

Further comments

Theorem (Sakai, Velickovic) WRP + MA $_{\omega_1}$ (Cohen) *imply* ω_2 *has the Super Tree Property*

Víctor Torres-Pérez Conjectures of Rado and Chang and the Strong Tree Property

イロト イポト イヨト イヨト

Further comments

Theorem (Sakai, Velickovic)

 $WRP + MA_{\omega_1}(Cohen)$ imply ω_2 has the Super Tree Property Similarly, Magidor showed that an uncountable cardinal κ is supercompact if and only if it is inaccessible and has the super tree property.

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ の < ()

Definition

A forcing \mathbb{P} is a standard iteration of length κ if

イロト イヨト イヨト イヨト

э

Definition

A forcing $\mathbb P$ is a standard iteration of length κ if

1. \mathbb{P} is a direct limit of an iteration $\langle \mathbb{P}_{\alpha} : \alpha < \kappa \rangle$ that takes direct limits stationarily often,

イロト イヨト イヨト イヨト

Definition

A forcing $\mathbb P$ is a standard iteration of length κ if

- 1. $\mathbb P$ is a direct limit of an iteration $\langle \mathbb P_\alpha:\alpha<\kappa\rangle$ that takes direct limits stationarily often,
- 2. \mathbb{P}_{α} has size less than κ for all $\alpha < \kappa$.

イロン 不同 とうほう 不同 とう

Э

Definition

A forcing $\mathbb P$ is a standard iteration of length κ if

- 1. \mathbb{P} is a direct limit of an iteration $\langle \mathbb{P}_{\alpha} : \alpha < \kappa \rangle$ that takes direct limits stationarily often,
- 2. \mathbb{P}_{α} has size less than κ for all $\alpha < \kappa$.

Lemma (Viale-Weiß)

If \mathbb{P} is a proper standard iteration of length κ and suppose κ is inaccessible. If \mathbb{P} forces κ has the super tree property, then κ is supercompact.

イロト イポト イヨト イヨト

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ の < ()

Theorem (Usuba)

Let κ be a strongly compact cardinal. Then there is a proper standard iteration of length $\kappa \mathbb{P}$ such that \mathbb{P} forces Rado's Conjecture, $2^{\omega} = \omega_2$, and $MA_{\omega_1}(Cohen)$.

イロト イポト イヨト イヨト
Rado's Conjecture Some applications of RC Special Aronszajn trees The Tree Property The Strong Tree Property

Corollary $\operatorname{RC} + \operatorname{MA}_{\omega_1}(\operatorname{Cohen}) + \neg \operatorname{CH}$ do not imply ω_2 has the super tree property.

・ロト ・回ト ・ヨト ・ヨト

Rado's Conjecture Some applications of RC Special Aronszajn trees The Tree Property The Strong Tree Property

Thanks!

Víctor Torres-Pérez Conjectures of Rado and Chang and the Strong Tree Property

◆□ > ◆□ > ◆ □ > ◆ □ > ●

Ð,