Pinning Down versus Density

Lajos Soukup

Alfréd Rényi Institute of Mathematics
Hungarian Academy of Sciences
http://www.renyi.hu/~soukup
Novi Sad Conference in Set Theory and General Topology
joint work with I. Juhász, J. van Mill and Z. Szentmiklóssy

Cardinal functions

Cardinal functions

$$
X \mapsto F(X) \in \text { Card }
$$

$$
X \approx Y \Longrightarrow F(X)=F(Y)
$$

Cardinal functions

$$
\begin{gathered}
X \mapsto F(X) \in \text { Card } \\
X \approx Y \Longrightarrow F(X)=F(Y)
\end{gathered}
$$

- $|X|$

Cardinal functions

$$
\begin{gathered}
X \mapsto F(X) \in \text { Card } \\
X \approx Y \Longrightarrow F(X)=F(Y)
\end{gathered}
$$

- $|X|$
- $w(X)=\min \{|\mathcal{B}|: \mathcal{B}$ is a base $\}$

Cardinal functions

$$
\begin{gathered}
X \mapsto F(X) \in \text { Card } \\
X \approx Y \Longrightarrow F(X)=F(Y)
\end{gathered}
$$

- $|X|$
- $w(X)=\min \{|\mathcal{B}|: \mathcal{B}$ is a base $\}$
- $d(X)=\min \left\{|D|: D \subset^{\text {dense }} X\right\}$

Basic inequalities

- $|X|$
- $\mathrm{w}(X)=\min \{|\mathcal{B}|: \mathcal{B}$ is a base $\}$
- $\mathrm{d}(X)=\min \left\{|D|: D \subset^{\text {dense }} X\right\}$

Basic inequalities

- $|X|$
- $\mathrm{w}(X)=\min \{|\mathcal{B}|: \mathcal{B}$ is a base $\}$
- $\mathrm{d}(X)=\min \left\{|D|: D \subset^{\text {dense }} X\right\}$
- $\mathrm{d}(X) \leq \mathrm{w}(X) \leq 2^{|X|}$.

Basic inequalities

- $|X|$
- $\mathrm{w}(X)=\min \{|\mathcal{B}|: \mathcal{B}$ is a base $\}$
- $\mathrm{d}(X)=\min \left\{|D|: D \subset^{\text {dense }} X\right\}$
- $\mathrm{d}(X) \leq \mathrm{w}(X) \leq 2^{|X|}$.
- (Posposil) X Hausdorff: $|X| \leq 2^{2^{d(X)}}$. Sharp: $\beta \omega$

Basic inequalities

- $|X|$
- $\mathrm{w}(X)=\min \{|\mathcal{B}|: \mathcal{B}$ is a base $\}$
- $\mathrm{d}(X)=\min \left\{|D|: D \subset^{\text {dense }} X\right\}$
- $\mathrm{d}(X) \leq \mathrm{w}(X) \leq 2^{|X|}$.
- (Posposil) X Hausdorff: $|X| \leq 2^{2^{d(X)}}$. Sharp: $\beta \omega$
- X regular: $\mathrm{w}(X) \leq 2^{\mathrm{d}(X)}$.

Basic inequalities

- $|X|$
- $\mathrm{w}(X)=\min \{|\mathcal{B}|: \mathcal{B}$ is a base $\}$
- $\mathrm{d}(X)=\min \left\{|D|: D \subset^{\text {dense }} X\right\}$
- $\mathrm{d}(X) \leq \mathrm{w}(X) \leq 2^{|X|}$.
- (Posposil) X Hausdorff: $|X| \leq 2^{2^{d(X)}}$. Sharp: $\beta \omega$
- X regular: $\mathrm{w}(X) \leq 2^{\mathrm{d}(X)}$.
- X Hausdorff: $\mathrm{w}(X) \leq 2^{2^{2^{d(X)}}}$. Sharp (Juhász)

Pinning down number

Pinning down number
$U: X \rightarrow \tau_{X}$ is a neighborhood assignment on X iff

$$
p \in U(p) \text { for all } p \in X
$$

Pinning down number

$U: X \rightarrow \tau_{X}$ is a neighborhood assignment on X iff

$$
p \in U(p) \text { for all } p \in X
$$

$A \subset X$ pins down a neighborhood assignment U iff

$$
A \cap U(p) \neq \emptyset \text { for all } p \in X
$$

Pinning down number

$U: X \rightarrow \tau_{X}$ is a neighborhood assignment on X iff

$$
p \in U(p) \text { for all } p \in X
$$

$A \subset X$ pins down a neighborhood assignment U iff

$$
A \cap U(p) \neq \emptyset \text { for all } p \in X
$$

* A dense set pins down every neighborhood assignment

Pinning down number

$U: X \rightarrow \tau_{X}$ is a neighborhood assignment on X iff

$$
p \in U(p) \text { for all } p \in X
$$

$A \subset X$ pins down a neighborhood assignment U iff

$$
A \cap U(p) \neq \emptyset \text { for all } p \in X
$$

* A dense set pins down every neighborhood assignment

Definition (T. Banakh, A. Ravsky)
pinning down number of a space X :

$$
\operatorname{pd}(X)=\min \left\{\kappa: \forall U \in N E A(X) \exists A \in[X]^{\kappa}(A \text { pins down } U)\right\}
$$

Pinning down number

$U: X \rightarrow \tau_{X}$ is a neighborhood assignment on X iff

$$
p \in U(p) \text { for all } p \in X
$$

$A \subset X$ pins down a neighborhood assignment U iff

$$
A \cap U(p) \neq \emptyset \text { for all } p \in X
$$

* A dense set pins down every neighborhood assignment

Definition (T. Banakh, A. Ravsky)
pinning down number of a space X :

$$
\operatorname{pd}(X)=\min \left\{\kappa: \forall U \in N E A(X) \exists A \in[X]^{\kappa}(A \text { pins down } U)\right\}
$$

$\star \quad \mathrm{pd}(X) \leq \mathrm{d}(X)$.

Pinning down number

$U: X \rightarrow \tau_{X}$ is a neighborhood assignment on X iff

$$
p \in U(p) \text { for all } p \in X
$$

$A \subset X$ pins down a neighborhood assignment U iff

$$
A \cap U(p) \neq \emptyset \text { for all } p \in X
$$

* A dense set pins down every neighborhood assignment

Definition (T. Banakh, A. Ravsky)
pinning down number of a space X :

$$
\operatorname{pd}(X)=\min \left\{\kappa: \forall U \in N E A(X) \exists A \in[X]^{\kappa}(A \text { pins down } U)\right\}
$$

$\star \quad \mathrm{pd}(X) \leq \mathrm{d}(X)$.

- T. Banakh, A. Ravsky: $e^{-}(X)$, foredensity ;
- Spadarro: $\mathrm{d}_{N A}(X)$,

First results

- U is a NEA on X iff $U: X \rightarrow \tau_{X}$ s.t. $a \in U(a)$ for all $a \in X$
- $P \subset X$ pins down a nea U iff $P \cap U(a) \neq \emptyset$ for all $a \in X$
- $\operatorname{pd}(X)=\min \left\{\kappa: \forall U \in N E A(X) \exists A \in[X]^{\kappa}(A\right.$ pins down $\left.U)\right\}$
- $\operatorname{pd}(X) \leq \mathrm{d}(X)$.

First results

- U is a NEA on X iff $U: X \rightarrow \tau_{X}$ s.t. $a \in U(a)$ for all $a \in X$
- $P \subset X$ pins down a nea U iff $P \cap U(a) \neq \emptyset$ for all $a \in X$
- $\operatorname{pd}(X)=\min \left\{\kappa: \forall U \in N E A(X) \exists A \in[X]^{\kappa}(A\right.$ pins down $\left.U)\right\}$
- $\operatorname{pd}(X) \leq \mathrm{d}(X)$.

Theorem (T. Banakh, A. Ravsky)

- If X is $T_{2},|X|<\aleph_{\omega}$, then $\operatorname{pd}(X)=\mathrm{d}(X)$.
- If $2^{2^{c(f)}(x)}>\kappa>\operatorname{cf}(\kappa)$, then there is a T_{2} space X with $p d(X)<\mathrm{d}(X)$.

First results

- U is a NEA on X iff $U: X \rightarrow \tau_{X}$ s.t. $a \in U(a)$ for all $a \in X$
- $P \subset X$ pins down a nea U iff $P \cap U(a) \neq \emptyset$ for all $a \in X$
- $\operatorname{pd}(X)=\min \left\{\kappa: \forall U \in N E A(X) \exists A \in[X]^{\kappa}(A\right.$ pins down $\left.U)\right\}$
- $\operatorname{pd}(X) \leq \mathrm{d}(X)$.

Theorem (T. Banakh, A. Ravsky)

- If X is $T_{2},|X|<\aleph_{\omega}$, then $\operatorname{pd}(X)=\mathrm{d}(X)$.
- If $2^{2^{c f(}(\kappa)}>\kappa>\operatorname{cf}(\kappa)$, then there is a T_{2} space X with $p d(X)<\mathrm{d}(X)$.

A topological space X is an example iff $p d(X)<d(X)$.

First results

- U is a NEA on X iff $U: X \rightarrow \tau_{X}$ s.t. $a \in U(a)$ for all $a \in X$
- $P \subset X$ pins down a nea U iff $P \cap U(a) \neq \emptyset$ for all $a \in X$
- $\operatorname{pd}(X)=\min \left\{\kappa: \forall U \in N E A(X) \exists A \in[X]^{\kappa}(A\right.$ pins down $\left.U)\right\}$
- $\operatorname{pd}(X) \leq \mathrm{d}(X)$.

Theorem (T. Banakh, A. Ravsky)

- If X is $T_{2},|X|<\aleph_{\omega}$, then $\operatorname{pd}(X)=\mathrm{d}(X)$.
- If $2^{2^{c f(}(\kappa)}>\kappa>\operatorname{cf}(\kappa)$, then there is a T_{2} space X with $p d(X)<\mathrm{d}(X)$.

A topological space X is an example iff $p d(X)<d(X)$.
Questions

- Regular example?
- ZFC example?

First equivalence

- U is a NEA on X iff $U: X \rightarrow \tau_{X}$ s.t. $a \in U(a)$ for all $a \in X$
- $P \subset X$ pins down a nea U iff $P \cap U(a) \neq \emptyset$ for all $a \in X$
- $\operatorname{pd}(X)=\min \left\{\kappa: \forall U \in N E A(X) \exists A \in[X]^{\kappa}(A\right.$ pins down $\left.U)\right\}$

First equivalence

- U is a NEA on X iff $U: X \rightarrow \tau_{X}$ s.t. $a \in U(a)$ for all $a \in X$
- $P \subset X$ pins down a nea U iff $P \cap U(a) \neq \emptyset$ for all $a \in X$
- $\operatorname{pd}(X)=\min \left\{\kappa: \forall U \in N E A(X) \exists A \in[X]^{\kappa}(A\right.$ pins down $\left.U)\right\}$

Theorem (I. Juhász, L.S., Z. Szentmiklóssy)
T.F.A.E:
(1) $2^{\kappa}<\kappa^{+\omega}$ for each cardinal κ,
(2) $\operatorname{pd}(X)=\mathrm{d}(X)$ for each T_{2} space X,
(3) $\operatorname{pd}(X)=\mathrm{d}(X)$ for each 0-dimensional T_{2} space X.

A special case

A special case

- dispersion character

$$
\Delta(X)=\min \left\{|U|: \emptyset \neq U \subset^{\text {open }} X\right\} .
$$

A special case

- dispersion character

$$
\Delta(X)=\min \left\{|U|: \emptyset \neq U \subset^{\text {open }} X\right\} .
$$

- X is neat: $|X|=\Delta(X)$

A special case

- dispersion character

$$
\Delta(X)=\min \left\{|U|: \emptyset \neq U \subset^{\text {open }} X\right\} .
$$

- X is neat: $|X|=\Delta(X)$

We prove:
If $2^{\omega}>\omega_{\omega}$ then there is a 0 -dimensional space X with $\operatorname{pd}(X)=\omega$ and $|X|=\Delta(X)=d(X)=\omega_{\omega}$.
X_{n}

X_{m}

- $X=\left\langle\omega_{\omega} \times \omega, \tau\right\rangle \bullet X_{n}=\left(\omega_{n} \backslash \omega_{n-1}\right) \times \omega . \bullet \mathbb{P}=\Pi\left(\omega_{n} \backslash \omega_{n-1}\right)$.
X_{0}

- $X=\left\langle\omega_{\omega} \times \omega, \tau\right\rangle \bullet X_{n}=\left(\omega_{n} \backslash \omega_{n-1}\right) \times \omega . \bullet \mathbb{P}=\prod\left(\omega_{n} \backslash \omega_{n-1}\right)$.

If $n \in \omega, f \in \mathbb{P}, \boldsymbol{A} \subset \omega$ let $G(n, f, A)=\bigcup_{m \geq n}\left(\left(\omega_{m} \backslash f(m)\right) \times \boldsymbol{A}\right)$.
X_{0}

X_{n}

X_{m}

- $X=\left\langle\omega_{\omega} \times \omega, \tau\right\rangle \bullet X_{n}=\left(\omega_{n} \backslash \omega_{n-1}\right) \times \omega . \bullet \mathbb{P}=\Pi\left(\omega_{n} \backslash \omega_{n-1}\right)$.

If $n \in \omega, f \in \mathbb{P}, A \subset \omega$ let $G(n, f, A)=\bigcup_{m \geq n}\left(\left(\omega_{m} \backslash f(m)\right) \times A\right)$.

- $X=\left\langle\omega_{\omega} \times \omega, \tau\right\rangle \bullet X_{n}=\left(\omega_{n} \backslash \omega_{n-1}\right) \times \omega . \bullet \mathbb{P}=\prod\left(\omega_{n} \backslash \omega_{n-1}\right)$.

If $n \in \omega, f \in \mathbb{P}, \boldsymbol{A} \subset \omega$ let $G(n, f, A)=\bigcup_{m \geq n}\left(\left(\omega_{m} \backslash f(m)\right) \times \boldsymbol{A}\right)$.
X_{n}
X_{m}

- $X=\left\langle\omega_{\omega} \times \omega, \tau\right\rangle \bullet X_{n}=\left(\omega_{n} \backslash \omega_{n-1}\right) \times \omega . \bullet \mathbb{P}=\Pi\left(\omega_{n} \backslash \omega_{n-1}\right)$.

If $n \in \omega, f \in \mathbb{P}, A \subset \omega$ let $G(n, f, A)=\bigcup_{m \geq n}\left(\left(\omega_{m} \backslash f(m)\right) \times A\right)$.
X_{n}
X_{m}

- $X=\left\langle\omega_{\omega} \times \omega, \tau\right\rangle \bullet X_{n}=\left(\omega_{n} \backslash \omega_{n-1}\right) \times \omega . \bullet \mathbb{P}=\Pi\left(\omega_{n} \backslash \omega_{n-1}\right)$.

If $n \in \omega, f \in \mathbb{P}, A \subset \omega$ let $G(n, f, A)=\bigcup_{m \geq n}\left(\left(\omega_{m} \backslash f(m)\right) \times A\right)$.
X_{n}
X_{m}

- $X=\left\langle\omega_{\omega} \times \omega, \tau\right\rangle \bullet X_{n}=\left(\omega_{n} \backslash \omega_{n-1}\right) \times \omega . \bullet \mathbb{P}=\Pi\left(\omega_{n} \backslash \omega_{n-1}\right)$.

If $n \in \omega, f \in \mathbb{P}, \boldsymbol{A} \subset \omega$ let $G(n, f, A)=\bigcup_{m \geq n}\left(\left(\omega_{m} \backslash f(m)\right) \times \boldsymbol{A}\right)$.
Fix an independent family $\mathcal{A}=\left\{A_{n, f}: n \in \omega, f \in \mathbb{P}\right\} \subset[\omega]^{\omega}$.
Clopen subbase of $\tau:\left\{G\left(n, f, A_{n, f}\right): n \in \omega, f \in \mathbb{P}.\right\}$
X_{n}
X_{m}

- $X=\left\langle\omega_{\omega} \times \omega, \tau\right\rangle \bullet X_{n}=\left(\omega_{n} \backslash \omega_{n-1}\right) \times \omega . \bullet \mathbb{P}=\Pi\left(\omega_{n} \backslash \omega_{n-1}\right)$.

If $n \in \omega, f \in \mathbb{P}, \boldsymbol{A} \subset \omega$ let $G(n, f, A)=\bigcup_{m \geq n}\left(\left(\omega_{m} \backslash f(m)\right) \times \boldsymbol{A}\right)$.
Fix an independent family $\mathcal{A}=\left\{A_{n, f}: n \in \omega, f \in \mathbb{P}\right\} \subset[\omega]^{\omega}$.
Clopen subbase of $\tau:\left\{G\left(n, f, A_{n, f}\right): n \in \omega, f \in \mathbb{P}.\right\}$
If $\emptyset \neq U \subset \subset^{\text {open }} X$ then $G(n, f, A) \subset U$ for some $n \in \omega, f \in \Pi, A \in\langle\mathcal{A}\rangle$

- $X=\left\langle\omega_{\omega} \times \omega, \tau\right\rangle \bullet X_{n}=\left(\omega_{n} \backslash \omega_{n-1}\right) \times \omega . \bullet \mathbb{P}=\Pi\left(\omega_{n} \backslash \omega_{n-1}\right)$.

If $n \in \omega, f \in \mathbb{P}, A \subset \omega$ let $G(n, f, A)=\left(\bigcup_{m \geq n}\left(\omega_{m} \backslash f(m)\right)\right) \times A$.
Fix an independent family $\mathcal{A}=\left\{A_{n, f}: n \in \omega, f \in \mathbb{P}\right\} \subset[\omega]^{\omega}$.

$$
\text { Clopen subbase: }\left\{G\left(n, f, A_{n, f}\right): n \in \omega, f \in \mathbb{P} .\right\}
$$

If $\emptyset \neq U \subset{ }^{\text {open }} X$ then $G(n, f, A) \subset U$ for some $n \in \omega, f \in \Pi, A_{U} \in\langle\mathcal{A}\rangle$

- $X=\left\langle\omega_{\omega} \times \omega, \tau\right\rangle \bullet X_{n}=\left(\omega_{n} \backslash \omega_{n-1}\right) \times \omega . \bullet \mathbb{P}=\Pi\left(\omega_{n} \backslash \omega_{n-1}\right)$.

If $n \in \omega, f \in \mathbb{P}, A \subset \omega$ let $G(n, f, A)=\left(\bigcup_{m \geq n}\left(\omega_{m} \backslash f(m)\right)\right) \times A$.
Fix an independent family $\mathcal{A}=\left\{A_{n, f}: n \in \omega, f \in \mathbb{P}\right\} \subset[\omega]^{\omega}$.

Clopen subbase: $\left\{G\left(n, f, A_{n, f}\right): n \in \omega, f \in \mathbb{P}.\right\}$

If $\emptyset \neq U \subset{ }^{\text {open }} X$ then $G(n, f, A) \subset U$ for some $n \in \omega, f \in \Pi, A_{U} \in\langle\mathcal{A}\rangle$ Claim: $d(X)=\omega_{\omega}$.

- $X=\left\langle\omega_{\omega} \times \omega, \tau\right\rangle \bullet X_{n}=\left(\omega_{n} \backslash \omega_{n-1}\right) \times \omega . \bullet \mathbb{P}=\Pi\left(\omega_{n} \backslash \omega_{n-1}\right)$.

If $n \in \omega, f \in \mathbb{P}, A \subset \omega$ let $G(n, f, A)=\left(\bigcup_{m \geq n}\left(\omega_{m} \backslash f(m)\right)\right) \times A$.
Fix an independent family $\mathcal{A}=\left\{A_{n, f}: n \in \omega, f \in \mathbb{P}\right\} \subset[\omega]^{\omega}$.

Clopen subbase: $\left\{G\left(n, f, A_{n, f}\right): n \in \omega, f \in \mathbb{P}.\right\}$

If $\emptyset \neq U \subset{ }^{\text {open }} X$ then $G(n, f, A) \subset U$ for some $n \in \omega, f \in \Pi, A_{U} \in\langle\mathcal{A}\rangle$ Claim: $d(X)=\omega_{\omega}$.

- Assume $|D|<\omega_{\omega}$.
- $X=\left\langle\omega_{\omega} \times \omega, \tau\right\rangle \bullet X_{n}=\left(\omega_{n} \backslash \omega_{n-1}\right) \times \omega . \bullet \mathbb{P}=\Pi\left(\omega_{n} \backslash \omega_{n-1}\right)$.

If $n \in \omega, f \in \mathbb{P}, A \subset \omega$ let $G(n, f, A)=\left(\bigcup_{m \geq n}\left(\omega_{m} \backslash f(m)\right)\right) \times A$.
Fix an independent family $\mathcal{A}=\left\{A_{n, f}: n \in \omega, f \in \mathbb{P}\right\} \subset[\omega]^{\omega}$.

Clopen subbase: $\left\{G\left(n, f, A_{n, f}\right): n \in \omega, f \in \mathbb{P}.\right\}$

If $\emptyset \neq U \subset{ }^{\text {open }} X$ then $G(n, f, A) \subset U$ for some $n \in \omega, f \in \Pi, A_{U} \in\langle\mathcal{A}\rangle$ Claim: $d(X)=\omega_{\omega}$.

- Assume $|D|<\omega_{\omega}$.
- $|D|<\omega_{n}$ for some n
- $X=\left\langle\omega_{\omega} \times \omega, \tau\right\rangle \bullet X_{n}=\left(\omega_{n} \backslash \omega_{n-1}\right) \times \omega . \bullet \mathbb{P}=\Pi\left(\omega_{n} \backslash \omega_{n-1}\right)$.

If $n \in \omega, f \in \mathbb{P}, A \subset \omega$ let $G(n, f, A)=\left(\bigcup_{m \geq n}\left(\omega_{m} \backslash f(m)\right)\right) \times A$.
Fix an independent family $\mathcal{A}=\left\{A_{n, f}: n \in \omega, f \in \mathbb{P}\right\} \subset[\omega]^{\omega}$.

Clopen subbase: $\left\{G\left(n, f, A_{n, f}\right): n \in \omega, f \in \mathbb{P}.\right\}$

If $\emptyset \neq U \subset{ }^{\text {open }} X$ then $G(n, f, A) \subset U$ for some $n \in \omega, f \in \Pi, A_{U} \in\langle\mathcal{A}\rangle$ Claim: $d(X)=\omega_{\omega}$.

- Assume $|D|<\omega_{\omega}$.
- $|D|<\omega_{n}$ for some n
- there is $f \in \mathbb{P}$ such that $D \cap X_{m} \subset f(m) \times \omega$ for $m \geq n$.
- $X=\left\langle\omega_{\omega} \times \omega, \tau\right\rangle \bullet X_{n}=\left(\omega_{n} \backslash \omega_{n-1}\right) \times \omega . \bullet \mathbb{P}=\Pi\left(\omega_{n} \backslash \omega_{n-1}\right)$.

If $n \in \omega, f \in \mathbb{P}, A \subset \omega$ let $G(n, f, A)=\left(\bigcup_{m \geq n}\left(\omega_{m} \backslash f(m)\right)\right) \times A$.
Fix an independent family $\mathcal{A}=\left\{A_{n, f}: n \in \omega, f \in \mathbb{P}\right\} \subset[\omega]^{\omega}$.

Clopen subbase: $\left\{G\left(n, f, A_{n, f}\right): n \in \omega, f \in \mathbb{P}.\right\}$

If $\emptyset \neq U \subset{ }^{\text {open }} X$ then $G(n, f, A) \subset U$ for some $n \in \omega, f \in \Pi, A_{U} \in\langle\mathcal{A}\rangle$ Claim: $d(X)=\omega_{\omega}$.

- Assume $|D|<\omega_{\omega}$.
- $|D|<\omega_{n}$ for some n
- there is $f \in \mathbb{P}$ such that $D \cap X_{m} \subset f(m) \times \omega$ for $m \geq n$.
- Then $G\left(n, f, A_{n, f}\right) \cap D=\emptyset$.
- $X=\left\langle\omega_{\omega} \times \omega, \tau\right\rangle \bullet X_{n}=\left(\omega_{n} \backslash \omega_{n-1}\right) \times \omega . \bullet \mathbb{P}=\Pi\left(\omega_{n} \backslash \omega_{n-1}\right)$.

If $n \in \omega, f \in \mathbb{P}, A \subset \omega$ let $G(n, f, A)=\left(\bigcup_{m \geq n}\left(\omega_{m} \backslash f(m)\right)\right) \times A$.
Fix an independent family $\mathcal{A}=\left\{A_{n, f}: n \in \omega, f \in \mathbb{P}\right\} \subset[\omega]^{\omega}$.

Clopen subbase: $\left\{G\left(n, f, A_{n, f}\right): n \in \omega, f \in \mathbb{P}.\right\}$

If $\emptyset \neq U \subset{ }^{\text {open }} X$ then $G(n, f, A) \subset U$ for some $n \in \omega, f \in \Pi, A_{U} \in\langle\mathcal{A}\rangle$ Claim: $d(X)=\omega_{\omega}$.

- Assume $|D|<\omega_{\omega}$.
- $|D|<\omega_{n}$ for some n
- there is $f \in \mathbb{P}$ such that $D \cap X_{m} \subset f(m) \times \omega$ for $m \geq n$.
- Then $G\left(n, f, A_{n, f}\right) \cap D=\emptyset$.
- Thus D is not dense.
- $X=\left\langle\omega_{\omega} \times \omega, \tau\right\rangle \bullet X_{n}=\left(\omega_{n} \backslash \omega_{n-1}\right) \times \omega . \bullet \mathbb{P}=\Pi\left(\omega_{n} \backslash \omega_{n-1}\right)$. If $n \in \omega, f \in \mathbb{P}, \boldsymbol{A} \subset \omega$ let $G(n, f, A)=\left(\bigcup_{m \geq n}\left(\omega_{m} \backslash f(m)\right)\right) \times \boldsymbol{A}$.
Fix an independent family $\mathcal{A}=\left\{A_{n, f}: n \in \omega, f \in \mathbb{P}\right\} \subset[\omega]^{\omega}$.
Clopen subbase: $\left\{G\left(n, f, A_{n, f}\right): n \in \omega, f \in \mathbb{P}.\right\}$
If $\emptyset \neq U \subset{ }^{\text {open }} X$ then $G(n, f, A) \subset U$ for some $n \in \omega, f \in \prod, A_{U} \in\langle\mathcal{A}\rangle$
- $X=\left\langle\omega_{\omega} \times \omega, \tau\right\rangle \bullet X_{n}=\left(\omega_{n} \backslash \omega_{n-1}\right) \times \omega . \bullet \mathbb{P}=\Pi\left(\omega_{n} \backslash \omega_{n-1}\right)$.

If $n \in \omega, f \in \mathbb{P}, A \subset \omega$ let $G(n, f, A)=\left(\bigcup_{m \geq n}\left(\omega_{m} \backslash f(m)\right)\right) \times A$.
Fix an independent family $\mathcal{A}=\left\{A_{n, f}: n \in \omega, f \in \mathbb{P}\right\} \subset[\omega]^{\omega}$.
Clopen subbase: $\left\{G\left(n, f, A_{n, f}\right): n \in \omega, f \in \mathbb{P}.\right\}$
If $\emptyset \neq U \subset{ }^{\text {open }} X$ then $G(n, f, A) \subset U$ for some $n \in \omega, f \in \Pi, A_{U} \in\langle\mathcal{A}\rangle$
Claim: $p d(X)=\omega$.

- $X=\left\langle\omega_{\omega} \times \omega, \tau\right\rangle \bullet X_{n}=\left(\omega_{n} \backslash \omega_{n-1}\right) \times \omega . \bullet \mathbb{P}=\Pi\left(\omega_{n} \backslash \omega_{n-1}\right)$.

If $n \in \omega, f \in \mathbb{P}, A \subset \omega$ let $G(n, f, A)=\left(\bigcup_{m \geq n}\left(\omega_{m} \backslash f(m)\right)\right) \times A$.
Fix an independent family $\mathcal{A}=\left\{A_{n, f}: n \in \omega, f \in \mathbb{P}\right\} \subset[\omega]^{\omega}$.
Clopen subbase: $\left\{G\left(n, f, A_{n, f}\right): n \in \omega, f \in \mathbb{P}.\right\}$
If $\emptyset \neq U \subset{ }^{\text {open }} X$ then $G(n, f, A) \subset U$ for some $n \in \omega, f \in \Pi, A_{U} \in\langle\mathcal{A}\rangle$
Claim: $p d(X)=\omega$.

- $U: X \rightarrow \tau$ be a NEA.
- $X=\left\langle\omega_{\omega} \times \omega, \tau\right\rangle \bullet X_{n}=\left(\omega_{n} \backslash \omega_{n-1}\right) \times \omega . \bullet \mathbb{P}=\prod\left(\omega_{n} \backslash \omega_{n-1}\right)$.

If $n \in \omega, f \in \mathbb{P}, \boldsymbol{A} \subset \omega$ let $G(n, f, A)=\left(\bigcup_{m \geq n}\left(\omega_{m} \backslash f(m)\right)\right) \times \boldsymbol{A}$.
Fix an independent family $\mathcal{A}=\left\{A_{n, f}: n \in \omega, f \in \mathbb{P}\right\} \subset[\omega]^{\omega}$.
Clopen subbase: $\left\{G\left(n, f, A_{n, f}\right): n \in \omega, f \in \mathbb{P}.\right\}$
If $\emptyset \neq U \subset{ }^{\text {open }} X$ then $G(n, f, A) \subset U$ for some $n \in \omega, f \in \prod, A_{U} \in\langle\mathcal{A}\rangle$
Claim: $p d(X)=\omega$.

- $U: X \rightarrow \tau$ be a NEA.
- Then $U(p) \supset G\left(n_{p}, f_{p}, A_{p}\right)$ for all $p \in X$
- $X=\left\langle\omega_{\omega} \times \omega, \tau\right\rangle \bullet X_{n}=\left(\omega_{n} \backslash \omega_{n-1}\right) \times \omega . \bullet \mathbb{P}=\prod\left(\omega_{n} \backslash \omega_{n-1}\right)$.

If $n \in \omega, f \in \mathbb{P}, A \subset \omega$ let $G(n, f, A)=\left(\bigcup_{m \geq n}\left(\omega_{m} \backslash f(m)\right)\right) \times A$.
Fix an independent family $\mathcal{A}=\left\{A_{n, f}: n \in \omega, f \in \mathbb{P}\right\} \subset[\omega]^{\omega}$.
Clopen subbase: $\left\{G\left(n, f, A_{n, f}\right): n \in \omega, f \in \mathbb{P}.\right\}$
If $\emptyset \neq U \subset{ }^{\text {open }} X$ then $G(n, f, A) \subset U$ for some $n \in \omega, f \in \prod, A_{U} \in\langle\mathcal{A}\rangle$
Claim: $p d(X)=\omega$.

- $U: X \rightarrow \tau$ be a NEA.
- Then $U(p) \supset G\left(n_{p}, f_{p}, A_{p}\right)$ for all $p \in X$
- there is $g \in \mathbb{P}$ s.t. $f_{p}<^{*} g$ for all $p \in X$.
- $X=\left\langle\omega_{\omega} \times \omega, \tau\right\rangle \bullet X_{n}=\left(\omega_{n} \backslash \omega_{n-1}\right) \times \omega . \bullet \mathbb{P}=\prod\left(\omega_{n} \backslash \omega_{n-1}\right)$.

If $n \in \omega, f \in \mathbb{P}, A \subset \omega$ let $G(n, f, A)=\left(\bigcup_{m \geq n}\left(\omega_{m} \backslash f(m)\right)\right) \times A$.
Fix an independent family $\mathcal{A}=\left\{A_{n, f}: n \in \omega, f \in \mathbb{P}\right\} \subset[\omega]^{\omega}$.
Clopen subbase: $\left\{G\left(n, f, A_{n, f}\right): n \in \omega, f \in \mathbb{P}.\right\}$
If $\emptyset \neq U \subset{ }^{\text {open }} X$ then $G(n, f, A) \subset U$ for some $n \in \omega, f \in \prod, A_{U} \in\langle\mathcal{A}\rangle$
Claim: $p d(X)=\omega$.

- $U: X \rightarrow \tau$ be a NEA.
- Then $U(p) \supset G\left(n_{p}, f_{p}, A_{p}\right)$ for all $p \in X$
- there is $g \in \mathbb{P}$ s.t. $f_{p}<^{*} g$ for all $p \in X$.
- $R=\{g(n): n \in \omega\} \times \omega$ pins down U
- $X=\left\langle\omega_{\omega} \times \omega, \tau\right\rangle \bullet X_{n}=\left(\omega_{n} \backslash \omega_{n-1}\right) \times \omega . \bullet \mathbb{P}=\prod\left(\omega_{n} \backslash \omega_{n-1}\right)$.

If $n \in \omega, f \in \mathbb{P}, \boldsymbol{A} \subset \omega$ let $G(n, f, A)=\left(\bigcup_{m \geq n}\left(\omega_{m} \backslash f(m)\right)\right) \times \boldsymbol{A}$.
Fix an independent family $\mathcal{A}=\left\{A_{n, f}: n \in \omega, f \in \mathbb{P}\right\} \subset[\omega]^{\omega}$.
Clopen subbase: $\left\{G\left(n, f, A_{n, f}\right): n \in \omega, f \in \mathbb{P}.\right\}$
If $\emptyset \neq U \subset{ }^{\text {open }} X$ then $G(n, f, A) \subset U$ for some $n \in \omega, f \in \prod, A_{U} \in\langle\mathcal{A}\rangle$
Claim: $p d(X)=\omega$.

- $U: X \rightarrow \tau$ be a NEA.
- Then $U(p) \supset G\left(n_{p}, f_{p}, A_{p}\right)$ for all $p \in X$
- there is $g \in \mathbb{P}$ s.t. $f_{p}<^{*} g$ for all $p \in X$.
- $R=\{g(n): n \in \omega\} \times \omega$ pins down U
- Let $p \in X$. Then $U(p) \supset G\left(n_{p}, f_{p}, A_{p}\right)$.
- $X=\left\langle\omega_{\omega} \times \omega, \tau\right\rangle \bullet X_{n}=\left(\omega_{n} \backslash \omega_{n-1}\right) \times \omega . \bullet \mathbb{P}=\prod\left(\omega_{n} \backslash \omega_{n-1}\right)$.

If $n \in \omega, f \in \mathbb{P}, \boldsymbol{A} \subset \omega$ let $G(n, f, A)=\left(\bigcup_{m \geq n}\left(\omega_{m} \backslash f(m)\right)\right) \times \boldsymbol{A}$.
Fix an independent family $\mathcal{A}=\left\{A_{n, f}: n \in \omega, f \in \mathbb{P}\right\} \subset[\omega]^{\omega}$.
Clopen subbase: $\left\{G\left(n, f, A_{n, f}\right): n \in \omega, f \in \mathbb{P}.\right\}$
If $\emptyset \neq U \subset{ }^{\text {open }} X$ then $G(n, f, A) \subset U$ for some $n \in \omega, f \in \prod, A_{U} \in\langle\mathcal{A}\rangle$
Claim: $p d(X)=\omega$.

- $U: X \rightarrow \tau$ be a NEA.
- Then $U(p) \supset G\left(n_{p}, f_{p}, A_{p}\right)$ for all $p \in X$
- there is $g \in \mathbb{P}$ s.t. $f_{p}<^{*} g$ for all $p \in X$.
- $R=\{g(n): n \in \omega\} \times \omega$ pins down U
- Let $p \in X$. Then $U(p) \supset G\left(n_{p}, f_{p}, A_{p}\right)$.
- $\exists n \geq n_{p}$ s.t. $f_{p}(n)<g(n)$
- $X=\left\langle\omega_{\omega} \times \omega, \tau\right\rangle \bullet X_{n}=\left(\omega_{n} \backslash \omega_{n-1}\right) \times \omega . \bullet \mathbb{P}=\prod\left(\omega_{n} \backslash \omega_{n-1}\right)$.

If $n \in \omega, f \in \mathbb{P}, A \subset \omega$ let $G(n, f, A)=\left(\bigcup_{m \geq n}\left(\omega_{m} \backslash f(m)\right)\right) \times A$.
Fix an independent family $\mathcal{A}=\left\{A_{n, f}: n \in \omega, f \in \mathbb{P}\right\} \subset[\omega]^{\omega}$.
Clopen subbase: $\left\{G\left(n, f, A_{n, f}\right): n \in \omega, f \in \mathbb{P}.\right\}$
If $\emptyset \neq U \subset{ }^{\text {open }} X$ then $G(n, f, A) \subset U$ for some $n \in \omega, f \in \prod, A_{U} \in\langle\mathcal{A}\rangle$
Claim: $p d(X)=\omega$.

- $U: X \rightarrow \tau$ be a NEA.
- Then $U(p) \supset G\left(n_{p}, f_{p}, A_{p}\right)$ for all $p \in X$
- there is $g \in \mathbb{P}$ s.t. $f_{p}<^{*} g$ for all $p \in X$.
- $R=\{g(n): n \in \omega\} \times \omega$ pins down U
- Let $p \in X$. Then $U(p) \supset G\left(n_{p}, f_{p}, A_{p}\right)$.
- $\exists n \geq n_{p}$ s.t. $f_{p}(n)<g(n)$

- $X=\left\langle\omega_{\omega} \times \omega, \tau\right\rangle \bullet X_{n}=\left(\omega_{n} \backslash \omega_{n-1}\right) \times \omega . \bullet \mathbb{P}=\prod\left(\omega_{n} \backslash \omega_{n-1}\right)$.

If $n \in \omega, f \in \mathbb{P}, A \subset \omega$ let $G(n, f, A)=\left(\bigcup_{m \geq n}\left(\omega_{m} \backslash f(m)\right)\right) \times A$.
Fix an independent family $\mathcal{A}=\left\{A_{n, f}: n \in \omega, f \in \mathbb{P}\right\} \subset[\omega]^{\omega}$.
Clopen subbase: $\left\{G\left(n, f, A_{n, f}\right): n \in \omega, f \in \mathbb{P}.\right\}$
If $\emptyset \neq U \subset{ }^{\text {open }} X$ then $G(n, f, A) \subset U$ for some $n \in \omega, f \in \prod, A_{U} \in\langle\mathcal{A}\rangle$
Claim: $p d(X)=\omega$.

- $U: X \rightarrow \tau$ be a NEA.
- Then $U(p) \supset G\left(n_{p}, f_{p}, A_{p}\right)$ for all $p \in X$
- there is $g \in \mathbb{P}$ s.t. $f_{p}<^{*} g$ for all $p \in X$.
- $R=\{g(n): n \in \omega\} \times \omega$ pins down U
- Let $p \in X$. Then $U(p) \supset G\left(n_{p}, f_{p}, A_{p}\right)$.
- $\exists n \geq n_{p}$ s.t. $f_{p}(n)<g(n)$

- $X=\left\langle\omega_{\omega} \times \omega, \tau\right\rangle \bullet X_{n}=\left(\omega_{n} \backslash \omega_{n-1}\right) \times \omega . \bullet \mathbb{P}=\Pi\left(\omega_{n} \backslash \omega_{n-1}\right)$.

If $n \in \omega, f \in \mathbb{P}, A \subset \omega$ let $G(n, f, A)=\left(\bigcup_{m \geq n}\left(\omega_{m} \backslash f(m)\right)\right) \times A$.
Fix an independent family $\mathcal{A}=\left\{A_{n, f}: n \in \omega, f \in \mathbb{P}\right\} \subset[\omega]^{\omega}$.
Clopen subbase: $\left\{G\left(n, f, A_{n, f}\right): n \in \omega, f \in \mathbb{P}.\right\}$
If $\emptyset \neq U \subset{ }^{\text {open }} X$ then $G(n, f, A) \subset U$ for some $n \in \omega, f \in \prod, A_{U} \in\langle\mathcal{A}\rangle$
Claim: $p d(X)=\omega$.

- $U: X \rightarrow \tau$ be a NEA.
- Then $U(p) \supset G\left(n_{p}, f_{p}, A_{p}\right)$ for all $p \in X$
- there is $g \in \mathbb{P}$ s.t. $f_{p}<* g$ for all $p \in X$.
- $R=\{g(n): n \in \omega\} \times \omega$ pins down U
- Let $p \in X$. Then $U(p) \supset G\left(n_{p}, f_{p}, A_{p}\right)$.
- $\exists n \geq n_{p}$ s.t. $f_{p}(n)<g(n)$

- $X=\left\langle\omega_{\omega} \times \omega, \tau\right\rangle \bullet X_{n}=\left(\omega_{n} \backslash \omega_{n-1}\right) \times \omega . \bullet \mathbb{P}=\Pi\left(\omega_{n} \backslash \omega_{n-1}\right)$.

If $n \in \omega, f \in \mathbb{P}, A \subset \omega$ let $G(n, f, A)=\left(\bigcup_{m \geq n}\left(\omega_{m} \backslash f(m)\right)\right) \times A$.
Fix an independent family $\mathcal{A}=\left\{A_{n, f}: n \in \omega, f \in \mathbb{P}\right\} \subset[\omega]^{\omega}$.
Clopen subbase: $\left\{G\left(n, f, A_{n, f}\right): n \in \omega, f \in \mathbb{P}.\right\}$
If $\emptyset \neq U \subset{ }^{\text {open }} X$ then $G(n, f, A) \subset U$ for some $n \in \omega, f \in \prod, A_{U} \in\langle\mathcal{A}\rangle$
Claim: $p d(X)=\omega$.

- $U: X \rightarrow \tau$ be a NEA.
- Then $U(p) \supset G\left(n_{p}, f_{p}, A_{p}\right)$ for all $p \in X$
- there is $g \in \mathbb{P}$ s.t. $f_{p}<^{*} g$ for all $p \in X$.
- $R=\{g(n): n \in \omega\} \times \omega$ pins down U
- Let $p \in X$. Then $U(p) \supset G\left(n_{p}, f_{p}, A_{p}\right)$.
- $\exists n \geq n_{p}$ s.t. $f_{p}(n)<g(n)$

- $X=\left\langle\omega_{\omega} \times \omega, \tau\right\rangle \bullet X_{n}=\left(\omega_{n} \backslash \omega_{n-1}\right) \times \omega . \bullet \mathbb{P}=\Pi\left(\omega_{n} \backslash \omega_{n-1}\right)$.

If $n \in \omega, f \in \mathbb{P}, A \subset \omega$ let $G(n, f, A)=\left(\bigcup_{m \geq n}\left(\omega_{m} \backslash f(m)\right)\right) \times A$.
Fix an independent family $\mathcal{A}=\left\{A_{n, f}: n \in \omega, f \in \mathbb{P}\right\} \subset[\omega]^{\omega}$.
Clopen subbase: $\left\{G\left(n, f, A_{n, f}\right): n \in \omega, f \in \mathbb{P}.\right\}$
If $\emptyset \neq U \subset{ }^{\text {open }} X$ then $G(n, f, A) \subset U$ for some $n \in \omega, f \in \prod, A_{U} \in\langle\mathcal{A}\rangle$
Claim: $p d(X)=\omega$.

- $U: X \rightarrow \tau$ be a NEA.
- Then $U(p) \supset G\left(n_{p}, f_{p}, A_{p}\right)$ for all $p \in X$
- there is $g \in \mathbb{P}$ s.t. $f_{p}<^{*} g$ for all $p \in X$.
- $R=\{g(n): n \in \omega\} \times \omega$ pins down U
- Let $p \in X$. Then $U(p) \supset G\left(n_{p}, f_{p}, A_{p}\right)$.
- $\exists n \geq n_{p}$ s.t. $f_{p}(n)<g(n)$

- $X=\left\langle\omega_{\omega} \times \omega, \tau\right\rangle \bullet X_{n}=\left(\omega_{n} \backslash \omega_{n-1}\right) \times \omega . \bullet \mathbb{P}=\Pi\left(\omega_{n} \backslash \omega_{n-1}\right)$.

If $n \in \omega, f \in \mathbb{P}, A \subset \omega$ let $G(n, f, A)=\left(\bigcup_{m \geq n}\left(\omega_{m} \backslash f(m)\right)\right) \times A$.
Fix an independent family $\mathcal{A}=\left\{A_{n, f}: n \in \omega, f \in \mathbb{P}\right\} \subset[\omega]^{\omega}$.
Clopen subbase: $\left\{G\left(n, f, A_{n, f}\right): n \in \omega, f \in \mathbb{P}.\right\}$
If $\emptyset \neq U \subset{ }^{\text {open }} X$ then $G(n, f, A) \subset U$ for some $n \in \omega, f \in \prod, A_{U} \in\langle\mathcal{A}\rangle$
Claim: $p d(X)=\omega$.

- $U: X \rightarrow \tau$ be a NEA.
- Then $U(p) \supset G\left(n_{p}, f_{p}, A_{p}\right)$ for all $p \in X$
- there is $g \in \mathbb{P}$ s.t. $f_{p}<^{*} g$ for all $p \in X$.
- $R=\{g(n): n \in \omega\} \times \omega$ pins down U
- Let $p \in X$. Then $U(p) \supset G\left(n_{p}, f_{p}, A_{p}\right)$.
- $\exists n \geq n_{p}$ s.t. $f_{p}(n)<g(n)$

- Then $R \cap X_{n} \cap G\left(n_{p}, f_{p}, A_{p}\right) \neq \emptyset$.

Some observations

Some observations
If $\mathrm{pd}(X)<\mathrm{d}(X)$, then $\exists Y \subset{ }^{\text {open }} X$ s.t. $\mathrm{pd}(Y)<\mathrm{d}(Y)$ and $\Delta(Y)=|Y|$.

Some observations
If $\mathrm{pd}(X)<\mathrm{d}(X)$, then $\exists Y \subset{ }^{\text {open }} X$ s.t. $\mathrm{pd}(Y)<\mathrm{d}(Y)$ and $\Delta(Y)=|Y|$.

First examples:

$$
\operatorname{pd}(X)=\operatorname{cf}(|X|)<\mathrm{d}(X)=\Delta(X)=|X| .
$$

Some observations
If $\mathrm{pd}(X)<\mathrm{d}(X)$, then $\exists Y \subset{ }^{\text {open }} X$ s.t. $\mathrm{pd}(Y)<\mathrm{d}(Y)$ and $\Delta(Y)=|Y|$.

First examples:

$$
\operatorname{pd}(X)=\operatorname{cf}(|X|)<\mathrm{d}(X)=\Delta(X)=|X| .
$$

Questions

- Can $\mathrm{d}(X)$ be a regular cardinal?
- Can $|X|$ be a regular cardinal?

Some observations
If $\mathrm{pd}(X)<\mathrm{d}(X)$, then $\exists Y \subset{ }^{\text {open }} X$ s.t. $\mathrm{pd}(Y)<\mathrm{d}(Y)$ and $\Delta(Y)=|Y|$.

First examples:

$$
\operatorname{pd}(X)=\operatorname{cf}(|X|)<\mathrm{d}(X)=\Delta(X)=|X| .
$$

Questions

- Can $\mathrm{d}(X)$ be a regular cardinal?
- Can $|X|$ be a regular cardinal?

Modified construction:

$$
\operatorname{pd}(X)=\operatorname{cf}(|X|)<\mathrm{d}(X)=\operatorname{cf}(\mathrm{d}(X))<\Delta(X)=|X|
$$

Shelah's Strong Hypothesis

Shelah's Strong Hypothesis

- $\mu>\operatorname{cf}(\mu)$

Shelah's Strong Hypothesis

- $\mu>\operatorname{cf}(\mu)$
- $S(\mu)=\left\{a \in[\mu \cap \mathfrak{R e g}]^{\text {cf(}}(\mu): \sup a=\mu\right\}$

Shelah's Strong Hypothesis

- $\mu>\operatorname{cf}(\mu)$
- $S(\mu)=\left\{a \in[\mu \cap \mathfrak{R e g}]^{\text {ct }(\mu)}: \sup a=\mu\right\}$
- $\mathcal{U}(a)=\left\{D: D\right.$ is an ultrafilter on $\left.a, D \cap J^{b d}[a]=\emptyset\right\}$.

Shelah's Strong Hypothesis

- $\mu>\operatorname{cf}(\mu)$
- $S(\mu)=\left\{a \in[\mu \cap \mathfrak{R e g}]^{\text {ct }(\mu)}: \sup a=\mu\right\}$
- $\mathcal{U}(a)=\left\{D: D\right.$ is an ultrafilter on $\left.a, D \cap J^{b d}[a]=\emptyset\right\}$.
- $\operatorname{pp}(\mu)=\sup \{\operatorname{cf}(\Pi a / D): a \in S(\mu), D \in \mathcal{U}(a))\}$

Shelah's Strong Hypothesis

- $\mu>\operatorname{cf}(\mu)$
- $S(\mu)=\left\{a \in[\mu \cap \mathfrak{R e g}]^{\text {cof }(\mu)}: \sup a=\mu\right\}$
- $\mathcal{U}(a)=\left\{D: D\right.$ is an ultrafilter on $\left.a, D \cap J^{b d}[a]=\emptyset\right\}$.
- $\operatorname{pp}(\mu)=\sup \{\operatorname{cf}(\Pi a / D): a \in S(\mu), D \in \mathcal{U}(a))\}$

Shelah's Strong Hypothesis:

$$
\operatorname{pp}(\mu)=\mu^{+} \text {for all singular cardinal } \mu \text {. }
$$

An equiconsistency result

An equiconsistency result

Theorem (I. Juhász, L.S., Z. Szentmiklóssy)
The following three statements are equiconsistent:
(i) There is a singular cardinal λ with $p p(\lambda)>\lambda^{+}$, i.e. Shelah's Strong Hypothesis fails;
(ii) there is a 0-dimensional Hausdorff space X such that $|X|=\Delta(X)$ is a regular cardinal and $p d(X)<d(X)$;
(iii) there is a topological space X such that $|X|=\Delta(X)$ is a regular cardinal and $p d(X)<d(X)$.

An equiconsistency result

Theorem (I. Juhász, L.S., Z. Szentmiklóssy)
The following three statements are equiconsistent:
(i) There is a singular cardinal λ with $p p(\lambda)>\lambda^{+}$, i.e. Shelah's Strong Hypothesis fails;
(ii) there is a 0-dimensional Hausdorff space X such that $|X|=\Delta(X)$ is a regular cardinal and $p d(X)<d(X)$;
(iii) there is a topological space X such that $|X|=\Delta(X)$ is a regular cardinal and $p d(X)<d(X)$.

No equivalence:
Con(failure of SSH + the limit cardinals are strong limit)

Connected and locally connected spaces

Connected and locally connected spaces
Theorem (I. Juhász,J. van Mill, L.S., Z. Szentmiklóssy)
T:F.A.E:
(1) $2^{\kappa}<\kappa^{+\omega}$ for each cardinal κ,
(2) $\operatorname{pd}(X)=\mathrm{d}(X)$ for each T_{2} space X,
(3) $\operatorname{pd}(X)=\mathrm{d}(X)$ for each 0-dimensional T_{2} space X.

Connected and locally connected spaces
Theorem (I. Juhász,J. van Mill, L.S., Z. Szentmiklóssy)
T:F.A.E:
(1) $2^{\kappa}<\kappa^{+\omega}$ for each cardinal κ,
(2) $\operatorname{pd}(X)=\mathrm{d}(X)$ for each T_{2} space X,
(3) $\operatorname{pd}(X)=\mathrm{d}(X)$ for each 0-dimensional T_{2} space X.
(4) $\operatorname{pd}(X)=\mathrm{d}(X)$ for all connected, locally connected regular spaces.
(5) $\operatorname{pd}(X)=\mathrm{d}(X)$ for all Abelian topological groups.

Connected and locally connected spaces
Theorem (I. Juhász,J. van Mill, L.S., Z. Szentmiklóssy)
T:F.A.E:
(1) $2^{\kappa}<\kappa^{+\omega}$ for each cardinal κ,
(2) $\operatorname{pd}(X)=\mathrm{d}(X)$ for each T_{2} space X,
(3) $\operatorname{pd}(X)=\mathrm{d}(X)$ for each 0-dimensional T_{2} space X.
(4) $\operatorname{pd}(X)=\mathrm{d}(X)$ for all connected, locally connected regular spaces.
(5) $\operatorname{pd}(X)=\mathrm{d}(X)$ for all Abelian topological groups.

What about connected Tychonoff spaces?

Connected and locally connected spaces
Theorem (I. Juhász,J. van Mill, L.S., Z. Szentmiklóssy)
T:F.A.E:
(1) $2^{\kappa}<\kappa^{+\omega}$ for each cardinal κ,
(2) $\operatorname{pd}(X)=\mathrm{d}(X)$ for each T_{2} space X,
(3) $\operatorname{pd}(X)=\mathrm{d}(X)$ for each 0-dimensional T_{2} space X.
(4) $\operatorname{pd}(X)=\mathrm{d}(X)$ for all connected, locally connected regular spaces.
(5) $\operatorname{pd}(X)=\mathrm{d}(X)$ for all Abelian topological groups.

What about connected Tychonoff spaces?
Theorem (JvMSSz)
It is consistent that

Connected and locally connected spaces
Theorem (I. Juhász,J. van Mill, L.S., Z. Szentmiklóssy)
T:F.A.E:
(1) $2^{\kappa}<\kappa^{+\omega}$ for each cardinal κ,
(2) $\operatorname{pd}(X)=\mathrm{d}(X)$ for each T_{2} space X,
(3) $\operatorname{pd}(X)=\mathrm{d}(X)$ for each 0-dimensional T_{2} space X.
(4) $\operatorname{pd}(X)=\mathrm{d}(X)$ for all connected, locally connected regular spaces.
(5) $\operatorname{pd}(X)=\mathrm{d}(X)$ for all Abelian topological groups.

What about connected Tychonoff spaces?
Theorem (JvMSSz)
It is consistent that

- there is a 0 -dimensional space X with $\operatorname{pd}(X)<\mathrm{d}(X)$

Connected and locally connected spaces
Theorem (I. Juhász,J. van Mill, L.S., Z. Szentmiklóssy)
T:F.A.E:
(1) $2^{\kappa}<\kappa^{+\omega}$ for each cardinal κ,
(2) $\operatorname{pd}(X)=\mathrm{d}(X)$ for each T_{2} space X,
(3) $\operatorname{pd}(X)=\mathrm{d}(X)$ for each 0-dimensional T_{2} space X.
(4) $\operatorname{pd}(X)=\mathrm{d}(X)$ for all connected, locally connected regular spaces.
(5) $\operatorname{pd}(X)=\mathrm{d}(X)$ for all Abelian topological groups.

What about connected Tychonoff spaces?
Theorem (JvMSSz)
It is consistent that

- there is a 0-dimensional space X with $\mathrm{pd}(X)<\mathrm{d}(X)$
- $\operatorname{pd}(X)=\mathrm{d}(X)$ for all connected Tychonoff spaces.

A connected, locally connected Tychonoff example

A connected, locally connected Tychonoff example

If X is a connected, Tychonoff space then $|X| \geq 2^{\omega}$.

A connected, locally connected Tychonoff example

If X is a connected, Tychonoff space then $|X| \geq 2^{\omega}$.
Theorem (I. Juhász,J. van Mill, L.S., Z. Szentmiklóssy)
T:F.A.E:
(1) There is a singular cardinal $\mu \geq 2^{\omega}$ which is not a strong limit cardinal.
(2) There is a connected, locally connected Tychonoff space X with $\Delta(X)=|X|$ and $\operatorname{pd}(X)<\mathrm{d}(X)$.

A connected, locally connected Tychonoff example

If X is a connected, Tychonoff space then $|X| \geq 2^{\omega}$.
Theorem (I. Juhász,J. van Mill, L.S., Z. Szentmiklóssy)
T:F.A.E:
(1) There is a singular cardinal $\mu \geq 2^{\omega}$ which is not a strong limit cardinal.
(2) There is a connected, locally connected Tychonoff space X with $\Delta(X)=|X|$ and $\operatorname{pd}(X)<\mathrm{d}(X)$.
(3) There is a pathwise connected, locally pathwise connected Tychonoff Abelian topological group X with $\Delta(X)=|X|$ and $\operatorname{pd}(X)<\mathrm{d}(X)$.

Embedding theorem

Embedding theorem

- μ is a singular cardinal $\mu \geq 2^{\omega}$, not a strong limit cardinal.

Embedding theorem

- μ is a singular cardinal $\mu \geq 2^{\omega}$, not a strong limit cardinal.
- Need pathwise connected, locally pathwise connected Tychonoff Abelian topological group H with $\Delta(H)=|H|$ and $\mathrm{pd}(H)<\mathrm{d}(H)$.

Embedding theorem

- μ is a singular cardinal $\mu \geq 2^{\omega}$, not a strong limit cardinal.
- Need pathwise connected, locally pathwise connected Tychonoff Abelian topological group H with $\Delta(H)=|H|$ and $\mathrm{pd}(H)<\mathrm{d}(H)$.
- there is a 0 -dimensional neat space X such that $\mathrm{pd}(X)<\mathrm{d}(X)$ and $|X| \geq 2^{\omega}$.

Embedding theorem

- μ is a singular cardinal $\mu \geq 2^{\omega}$, not a strong limit cardinal.
- Need pathwise connected, locally pathwise connected Tychonoff Abelian topological group H with $\Delta(H)=|H|$ and $\mathrm{pd}(H)<\mathrm{d}(H)$.
- there is a 0 -dimensional neat space X such that $\mathrm{pd}(X)<\mathrm{d}(X)$ and $|X| \geq 2^{\omega}$.

Theorem
Let X be a $T_{3.5}$ neat space such that $|X| \geq 2^{\omega}$. Then X has a closed embedding into a $T_{3.5}$ Abelian topological group H such that

Embedding theorem

- μ is a singular cardinal $\mu \geq 2^{\omega}$, not a strong limit cardinal.
- Need pathwise connected, locally pathwise connected Tychonoff Abelian topological group H with $\Delta(H)=|H|$ and $\mathrm{pd}(H)<\mathrm{d}(H)$.
- there is a 0-dimensional neat space X such that $\mathrm{pd}(X)<\mathrm{d}(X)$ and $|X| \geq 2^{\omega}$.

Theorem
Let X be a $T_{3.5}$ neat space such that $|X| \geq 2^{\omega}$. Then X has a closed embedding into a $T_{3.5}$ Abelian topological group H such that

1. $d(X)=d(H)$,
2. $p d(X)=p d(H)$,
3. H is neat,
4. H is pathwise connected and locally pathwise connected.

Step 1: embedding into a group

Step 1: embedding into a group
If X is a $T_{3.5}$-space, then $F(X)$ and $A(X)$ denote the free topological group and the free abelian topological group on X.

Step 1: embedding into a group
If X is a $T_{3.5}$-space, then $F(X)$ and $A(X)$ denote the free topological group and the free abelian topological group on X.
$F(X)$ is a topological group containing (a homeomorphic copy of) X such that

1. X generates $F(X)$ algebraically,
2. every continuous function $f: X \rightarrow H$, where H is any topological group, can be extended to a continuous homomorphism $\bar{f}: F(X) \rightarrow H$.

Step 1: embedding into a group
If X is a $T_{3.5}$-space, then $F(X)$ and $A(X)$ denote the free topological group and the free abelian topological group on X.
$F(X)$ is a topological group containing (a homeomorphic copy of) X such that

1. X generates $F(X)$ algebraically,
2. every continuous function $f: X \rightarrow H$, where H is any topological group, can be extended to a continuous homomorphism $\bar{f}: F(X) \rightarrow H$.
Similarly for $A(X)$.

Step 1: embedding into a group
If X is a $T_{3.5}$-space, then $F(X)$ and $A(X)$ denote the free topological group and the free abelian topological group on X.
$F(X)$ is a topological group containing (a homeomorphic copy of) X such that

1. X generates $F(X)$ algebraically,
2. every continuous function $f: X \rightarrow H$, where H is any topological group, can be extended to a continuous homomorphism $\bar{f}: F(X) \rightarrow H$.
Similarly for $A(X)$.
The existence of these groups was proved by Markov.

Step 1: embedding into a group
If X is a $T_{3.5}$-space, then $F(X)$ and $A(X)$ denote the free topological group and the free abelian topological group on X.
$F(X)$ is a topological group containing (a homeomorphic copy of) X such that

1. X generates $F(X)$ algebraically,
2. every continuous function $f: X \rightarrow H$, where H is any topological group, can be extended to a continuous homomorphism

$$
\vec{f}: F(X) \rightarrow H
$$

Similarly for $A(X)$.
The existence of these groups was proved by Markov.
Theorem (JvMSSz)
Let X be a $T_{3.5}$-space. Then

$$
d(X)=d(F(X))=d(A(X))
$$

If X is neat, then so are $A(X)$ and $F(X)$, and

$$
p d(X)=p d(A(X))=p d(F(X)) .
$$

Step 2: embedding a group into a pathwise connected one

Step 2: embedding a group into a pathwise connected one

- Hartman Mycielski construction

Step 2: embedding a group into a pathwise connected one

- Hartman Mycielski construction
- Let (G, \cdot, e) be a Tychonoff topological group.

$$
\begin{aligned}
G^{\bullet}= & \left\{f \in{ }^{[0,1)} G:\right. \\
& \text { for some sequence } 0=a_{0}<a_{1}<\cdots<a_{n}=1
\end{aligned}
$$

$$
\left.f \text { is constant on }\left[a_{k}, a_{k+1}\right] \text { for every } k=0, \ldots, n-1\right\} .
$$

Step 2: embedding a group into a pathwise connected one

- Hartman Mycielski construction
- Let (G, \cdot, e) be a Tychonoff topological group.

$$
\begin{aligned}
G^{\bullet}= & \left\{f \in \in^{[0,1)} G:\right. \\
& \text { for some sequence } 0=a_{0}<a_{1}<\cdots<a_{n}=1
\end{aligned}
$$

f is constant on $\left[a_{k}, a_{k+1}\right)$ for every $\left.k=0, \ldots, n-1\right\}$.

- Define $*$ on G^{\bullet} by $(f * g)(x)=f(x) \cdot g(x)$ for all $f, g \in G^{\bullet}$ and $x \in[0,1)$.

Step 2: embedding a group into a pathwise connected one

- Hartman Mycielski construction
- Let (G, \cdot, e) be a Tychonoff topological group.

$$
\begin{aligned}
G^{\bullet}= & \left\{f \in \in^{[0,1)} G:\right. \\
& \text { for some sequence } 0=a_{0}<a_{1}<\cdots<a_{n}=1
\end{aligned}
$$

f is constant on $\left[a_{k}, a_{k+1}\right)$ for every $\left.k=0, \ldots, n-1\right\}$.

- Define $*$ on G^{\bullet} by $(f * g)(x)=f(x) \cdot g(x)$ for all $f, g \in G^{\bullet}$ and $x \in[0,1)$.
- $\left(G^{\bullet}, *, e^{\bullet}\right)$ is a group, where $e^{\bullet}(r)=e$ for each $r \in[0,1)$.

Step 2: embedding a group into a pathwise connected one

- Hartman Mycielski construction
- Let (G, \cdot, e) be a Tychonoff topological group.

$$
\begin{aligned}
G^{\bullet}= & \left\{f \in \in^{[0,1)} G:\right. \\
& \text { for some sequence } 0=a_{0}<a_{1}<\cdots<a_{n}=1
\end{aligned}
$$

f is constant on $\left[a_{k}, a_{k+1}\right)$ for every $\left.k=0, \ldots, n-1\right\}$.

- Define $*$ on G^{\bullet} by $(f * g)(x)=f(x) \cdot g(x)$ for all $f, g \in G^{\bullet}$ and $x \in[0,1)$.
- $\left(G^{\bullet}, *, e^{\bullet}\right)$ is a group, where $e^{\bullet}(r)=e$ for each $r \in[0,1)$.
- G embeds into G^{\bullet} via $x \mapsto x^{\bullet}$, where $x^{\bullet}(r)=x$ for every $r \in[0,1)$.

Step 2: embedding a group into a pathwise connected one

- Hartman Mycielski construction
- Let (G, \cdot, e) be a Tychonoff topological group.

$$
\begin{aligned}
G^{\bullet}= & \left\{f \in{ }^{[0,1)} G:\right. \\
& \text { for some sequence } 0=a_{0}<a_{1}<\cdots<a_{n}=1
\end{aligned}
$$

f is constant on $\left[a_{k}, a_{k+1}\right)$ for every $\left.k=0, \ldots, n-1\right\}$.

- Define $*$ on G^{\bullet} by $(f * g)(x)=f(x) \cdot g(x)$ for all $f, g \in G^{\bullet}$ and $x \in[0,1)$.
- $\left(G^{\bullet}, *, e^{\bullet}\right)$ is a group, where $e^{\bullet}(r)=e$ for each $r \in[0,1)$.
- G embeds into G^{\bullet} via $x \mapsto x^{\bullet}$, where $x^{\bullet}(r)=x$ for every $r \in[0,1)$.
- For $e \in V \in \tau_{G}$ and $\varepsilon>0$, put

$$
\left.O(V, \varepsilon)=\left\{f \in G^{\bullet}: \lambda(\{r \in[0,1): f(r) \notin V\})\right\}<\varepsilon\right\}
$$

Step 2: embedding a group into a pathwise connected one

- Hartman Mycielski construction
- Let (G, \cdot, e) be a Tychonoff topological group.

$$
\begin{aligned}
G^{\bullet}= & \left\{f \in \in^{[0,1)} G:\right. \\
& \text { for some sequence } 0=a_{0}<a_{1}<\cdots<a_{n}=1
\end{aligned}
$$

f is constant on $\left[a_{k}, a_{k+1}\right)$ for every $\left.k=0, \ldots, n-1\right\}$.

- Define $*$ on G^{\bullet} by $(f * g)(x)=f(x) \cdot g(x)$ for all $f, g \in G^{\bullet}$ and $x \in[0,1)$.
- $\left(G^{\bullet}, *, e^{\bullet}\right)$ is a group, where $e^{\bullet}(r)=e$ for each $r \in[0,1)$.
- G embeds into G^{\bullet} via $x \mapsto x^{\bullet}$, where $x^{\bullet}(r)=x$ for every $r \in[0,1)$.
- For $\boldsymbol{e} \in V \in \tau_{G}$ and $\varepsilon>0$, put

$$
\left.O(V, \varepsilon)=\left\{f \in G^{\bullet}: \lambda(\{r \in[0,1): f(r) \notin V\})\right\}<\varepsilon\right\}
$$

- The $O(V, \varepsilon)$ are the neighborhoods of the element e^{\bullet} of G^{\bullet} that generate the topology.

Properties of Hartman Mycielski extension G^{\bullet}

Properties of Hartman Mycielski extension ${ }^{\bullet}$

Theorem
G^{\bullet} is a topological group and is pathwise connected and locally pathwise connected.
$d\left(G^{\bullet}\right) \leq d(G)$.

Properties of Hartman Mycielski extension ${ }^{\bullet}$

Theorem
G^{\bullet} is a topological group and is pathwise connected and locally pathwise connected.
$d\left(G^{\bullet}\right) \leq d(G)$.
Theorem (JvMSSz)

- $d(G)=d\left(G^{\bullet}\right)$.
- If G is neat, and $|G| \geq 2^{\omega}$, then G^{\bullet} is neat and $p d\left(G^{\bullet}\right)=p d(G)$.

Positive results

Positive results

Theorem
If X is compact then $p d(X)=\mathrm{d}(X)$.

Positive results

Theorem
If X is compact then $p d(X)=\mathrm{d}(X)$.
Proof.

Positive results

Theorem
If X is compact then $p d(X)=\mathrm{d}(X)$.
Proof.

- Spec. case: $\Delta(X)=|X|$.

Positive results

Theorem
If X is compact then $p d(X)=\mathrm{d}(X)$.
Proof.

- Spec. case: $\Delta(X)=|X|$.
- X compact, so $w(X) \leq|X|=\Delta(X)$

Positive results

Theorem
If X is compact then $p d(X)=\mathrm{d}(X)$.
Proof.

- Spec. case: $\Delta(X)=|X|$.
- X compact, so $w(X) \leq|X|=\Delta(X)$
- $\exists U \in \operatorname{NEA}(X)$ s.t. $\{U(y): y \in X\}$ is a base.

Positive results

Theorem
If X is compact then $p d(X)=\mathrm{d}(X)$.
Proof.

- Spec. case: $\Delta(X)=|X|$.
- X compact, so $w(X) \leq|X|=\Delta(X)$
- $\exists U \in \operatorname{NEA}(X)$ s.t. $\{U(y): y \in X\}$ is a base.
- If A pins down U, then A is dense.

Positive results

Theorem
If X is compact then $p d(X)=\mathrm{d}(X)$.
Proof.

- Spec. case: $\Delta(X)=|X|$.
- X compact, so $w(X) \leq|X|=\Delta(X)$
- $\exists U \in \operatorname{NEA}(X)$ s.t. $\{U(y): y \in X\}$ is a base.
- If A pins down U, then A is dense.

Question (JSSz)

- What about (regular) Lindelöf spaces?
- What about (regular) countably compact spaces?

Positive results

Theorem
If X is compact then $p d(X)=\mathrm{d}(X)$.
Proof.

- Spec. case: $\Delta(X)=|X|$.
- X compact, so $w(X) \leq|X|=\Delta(X)$
- $\exists U \in \operatorname{NEA}(X)$ s.t. $\{U(y): y \in X\}$ is a base.
- If A pins down U, then A is dense.

Question (JSSz)

- What about (regular) Lindelöf spaces?
- What about (regular) countably compact spaces?

Theorem (Juhász,van Mill, S, Szentmiklóssy) It is consistent that $\mathrm{pd}(X)<\mathrm{d}(X)$ for some hereditarily Lindelöf regular space X.

Estimate $\mathrm{d}(X)$ using $\mathrm{pd}(X)$

Estimate $\mathrm{d}(X)$ using $\mathrm{pd}(X)$

Theorem (JSSz) $\mathrm{d}(X) \leq 2^{\operatorname{pd}(X)}$.

Estimate $\mathrm{d}(X)$ using $\mathrm{pd}(X)$

Theorem (JSSz) $\mathrm{d}(X) \leq 2^{\operatorname{pd}(X)}$. Sharp?

Estimate $\mathrm{d}(X)$ using $\mathrm{pd}(X)$

Theorem (JSSz) $\mathrm{d}(X) \leq 2^{\operatorname{pd}(X)}$. Sharp?

Theorem (JSSz) $\mathrm{d}(X)<2^{\mathrm{pd}(X)}$.

Estimate $\mathrm{d}(X)$ using $\mathrm{pd}(X)$

Theorem (JSSz) $\mathrm{d}(X) \leq 2^{\operatorname{pd}(X)}$. Sharp?

Theorem (JSSz)
$\mathrm{d}(X)<2^{\mathrm{pd}(X)}$.
Sharp?

Estimate $\mathrm{d}(X)$ using $\mathrm{pd}(X)$

Theorem (JSSz) $\mathrm{d}(X) \leq 2^{\operatorname{pd}(X)}$.

Sharp?

Theorem (JSSz)
$\mathrm{d}(X)<2^{\mathrm{pd}(X)}$.
Sharp?
Yes.
It is consistent that $2^{\operatorname{pd}(X)}$ is as large as you wish and $\mathrm{d}(X)^{+}=2^{\operatorname{pd}(X)}$.

Inequalities

- Pospisil: $|X| \leq 2^{2^{\mathrm{d}(x)}}$ for T_{2} spaces
- $\mathrm{w}(x) \leq 2^{\mathrm{d}(x)}$ for T_{3} spaces

Inequalities

- Pospisil: $|X| \leq 2^{2^{\mathrm{d}(x)}}$ for T_{2} spaces
- $\mathrm{w}(x) \leq 2^{\mathrm{d}(x)}$ for T_{3} spaces

Theorem (JSSz)
$|X| \leq 2^{2^{\mathrm{pd}(X)}}$ for T_{2} spaces.

Inequalities

- Pospisil: $|X| \leq 2^{2^{d(X)}}$ for T_{2} spaces
- $\mathrm{w}(x) \leq 2^{\mathrm{d}(x)}$ for T_{3} spaces

Theorem (JSSz)
$|X| \leq 2^{2^{\mathrm{pd}(X)}}$ for T_{2} spaces.
Theorem (JSSz)
If $|X|=\Delta(X)$, then

Inequalities

- Pospisil: $|X| \leq 2^{2^{d(X)}}$ for T_{2} spaces
- $\mathrm{w}(x) \leq 2^{\mathrm{d}(x)}$ for T_{3} spaces

Theorem (JSSz)
$|X| \leq 2^{2^{\operatorname{pd}(X)}}$ for T_{2} spaces.
Theorem (JSSz)
If $|X|=\Delta(X)$, then

- either $p d(X)=d(X)$ and $|X| \leq 2^{2^{\mathrm{pd}(X)}}$, or

Inequalities

- Pospisil: $|X| \leq 2^{2^{d(X)}}$ for T_{2} spaces
- $\mathrm{w}(x) \leq 2^{\mathrm{d}(x)}$ for T_{3} spaces

Theorem (JSSz)
$|X| \leq 2^{2^{\operatorname{pd}(X)}}$ for T_{2} spaces.
Theorem (JSSz)
If $|X|=\Delta(X)$, then

- either $p d(X)=d(X)$ and $|X| \leq 2^{2^{\mathrm{pd}(X)}}$, or
- $\operatorname{pd}(X)<d(X)$ and $|X|<2^{\operatorname{pd}(X)}$.

Inequalities

- Pospisil: $|X| \leq 2^{2^{\mathrm{d}(X)}}$ for T_{2} spaces
- $\mathrm{w}(x) \leq 2^{\mathrm{d}(x)}$ for T_{3} spaces

Theorem (JSSz)
$|X| \leq 2^{2^{\mathrm{pd}(X)}}$ for T_{2} spaces.
Theorem (JSSz)
If $|X|=\Delta(X)$, then

- either $p d(X)=d(X)$ and $|X| \leq 2^{2^{\mathrm{pd}(X)}}$, or
- $\operatorname{pd}(X)<d(X)$ and $|X|<2^{\operatorname{pd}(X)}$.

Problem

Does $\mathrm{w}(x) \leq 2^{\operatorname{pd}(x)}$ hold for regular spaces?

