On subsets of ℓ_∞ deciding the norm convergence of sequences in ℓ_1

Damian Sobota

Institute of Mathematics, Polish Academy of Sciences

SE|=OP 2016, Fruška Gora 2016

$$\ell_1 = \left\{ x \in \mathbb{R}^{\omega} \colon \|x\|_1 = \sum_n |x(n)| < \infty \right\}$$
$$\ell_{\infty} = \left\{ y \in \mathbb{R}^{\omega} \colon \|y\|_{\infty} = \sup_n |y(n)| < \infty \right\}$$
$$S_{\ell_{\infty}} = \left\{ y \in \ell_{\infty} \colon \|y\|_{\infty} = 1 \right\}$$

$$\ell_1 = \left\{ x \in \mathbb{R}^{\omega} \colon \|x\|_1 = \sum_n |x(n)| < \infty \right\}$$
$$\ell_\infty = \left\{ y \in \mathbb{R}^{\omega} \colon \|y\|_\infty = \sup_n |y(n)| < \infty \right\}$$
$$S_{\ell_\infty} = \left\{ y \in \ell_\infty \colon \|y\|_\infty = 1 \right\}$$

The action of ℓ_{∞} on ℓ_1 $x \in \ell_1, y \in \ell_{\infty} \longrightarrow \langle x, y \rangle = \sum_n x(n) \cdot y(n) \in \mathbb{R}$

$$\ell_1 = \left\{ x \in \mathbb{R}^{\omega} : \|x\|_1 = \sum_n |x(n)| < \infty \right\}$$
$$\ell_{\infty} = \left\{ y \in \mathbb{R}^{\omega} : \|y\|_{\infty} = \sup_n |y(n)| < \infty \right\}$$
$$S_{\ell_{\infty}} = \left\{ y \in \ell_{\infty} : \|y\|_{\infty} = 1 \right\}$$
The action of ℓ_{∞} on ℓ_1

$$x \in \ell_1, y \in \ell_\infty \longrightarrow \langle x, y \rangle = \sum_n x(n) \cdot y(n) \in \mathbb{R}$$

So, $\ell_\infty \cong \ell_1^*$ (the space of continuous linear functionals on ℓ_1)

$$\ell_1 = \left\{ x \in \mathbb{R}^{\omega} : \|x\|_1 = \sum_n |x(n)| < \infty \right\}$$
$$\ell_{\infty} = \left\{ y \in \mathbb{R}^{\omega} : \|y\|_{\infty} = \sup_n |y(n)| < \infty \right\}$$
$$S_{\ell_{\infty}} = \left\{ y \in \ell_{\infty} : \|y\|_{\infty} = 1 \right\}$$

The action of ℓ_{∞} on ℓ_1

$$x \in \ell_1, y \in \ell_\infty \longrightarrow \langle x, y \rangle = \sum_n x(n) \cdot y(n) \in \mathbb{R}$$

So, $\ell_{\infty} \cong \ell_1^*$ (the space of continuous linear functionals on ℓ_1) So, $||x||_1 = \sup \{ |\langle x, y \rangle| : y \in S_{\ell_{\infty}} \}$

$$\ell_1 = \left\{ x \in \mathbb{R}^{\omega} : \|x\|_1 = \sum_n |x(n)| < \infty \right\}$$
$$\ell_{\infty} = \left\{ y \in \mathbb{R}^{\omega} : \|y\|_{\infty} = \sup_n |y(n)| < \infty \right\}$$
$$S_{\ell_{\infty}} = \left\{ y \in \ell_{\infty} : \|y\|_{\infty} = 1 \right\}$$

The action of ℓ_{∞} on ℓ_1

$$x \in \ell_1, y \in \ell_\infty \longrightarrow \langle x, y \rangle = \sum_n x(n) \cdot y(n) \in \mathbb{R}$$

So, $\ell_{\infty} \cong \ell_1^*$ (the space of continuous linear functionals on ℓ_1) So, $\|x\|_1 = \sup \left\{ |\langle x, y \rangle| : y \in S_{\ell_{\infty}} \right\}$ So, for $(x_n)_{n \in \omega} \subseteq \ell_1$ we have $\|x_n\|_1 \to 0$ (*the norm convergence*)

$$\ell_1 = \left\{ x \in \mathbb{R}^{\omega} \colon \|x\|_1 = \sum_n |x(n)| < \infty \right\}$$
$$\ell_{\infty} = \left\{ y \in \mathbb{R}^{\omega} \colon \|y\|_{\infty} = \sup_n |y(n)| < \infty \right\}$$
$$S_{\ell_{\infty}} = \left\{ y \in \ell_{\infty} \colon \|y\|_{\infty} = 1 \right\}$$

The action of ℓ_{∞} on ℓ_1

$$x \in \ell_1, y \in \ell_\infty \longrightarrow \langle x, y \rangle = \sum_n x(n) \cdot y(n) \in \mathbb{R}$$

So, $\ell_{\infty} \cong \ell_1^*$ (the space of continuous linear functionals on ℓ_1) So, $||x||_1 = \sup \{ |\langle x, y \rangle| : y \in S_{\ell_{\infty}} \}$ So, for $(x_n)_{n \in \omega} \subseteq \ell_1$ we have $||x_n||_1 \to 0$ (the norm convergence) only if $\langle x_n, y \rangle \to 0$ for every $y \in S_{\ell_{\infty}}$ (the weak convergence)

$$\ell_1 = \left\{ x \in \mathbb{R}^{\omega} \colon \|x\|_1 = \sum_n |x(n)| < \infty \right\}$$
$$\ell_{\infty} = \left\{ y \in \mathbb{R}^{\omega} \colon \|y\|_{\infty} = \sup_n |y(n)| < \infty \right\}$$
$$S_{\ell_{\infty}} = \left\{ y \in \ell_{\infty} \colon \|y\|_{\infty} = 1 \right\}$$

The action of ℓ_{∞} on ℓ_1

$$x \in \ell_1, y \in \ell_\infty \longrightarrow \langle x, y \rangle = \sum_n x(n) \cdot y(n) \in \mathbb{R}$$

So, $\ell_{\infty} \cong \ell_1^*$ (the space of continuous linear functionals on ℓ_1) So, $||x||_1 = \sup \left\{ |\langle x, y \rangle| : y \in S_{\ell_{\infty}} \right\}$ So, for $(x_n)_{n \in \omega} \subseteq \ell_1$ we have $||x_n||_1 \to 0$ (the norm convergence) **only if** $\langle x_n, y \rangle \to 0$ for every $y \in S_{\ell_{\infty}}$ (the weak convergence) What about **if**? Does the weak convergence imply the norm one? Theorem (Schur, 1921)

Every weakly convergent sequence in ℓ_1 is norm convergent.

Theorem (Schur, 1921)

Every weakly convergent sequence in ℓ_1 is norm convergent.

$$c_0=\left\{x\in\ell_\infty\colon\ ext{lim}_n\,x(n)=0
ight\}$$
 with the sup norm $c_0^*\cong\ell_1$

Theorem (Schur, 1921)

Every weakly convergent sequence in ℓ_1 is norm convergent.

$$\begin{split} c_0 &= \left\{ x \in \ell_\infty \colon \lim_n x(n) = 0 \right\} \text{ with the sup norm} \\ c_0^* &\cong \ell_1 \\ \text{Let } e_n &= (0, \dots, 0, 1, 0, \dots) \in c_0 \\ \text{Then, } (e_n)_{n \in \omega} \text{ doesn't converge in norm} \\ \text{But for every } f &\in \ell_1, \ \langle e_n, f \rangle = f(n) \to 0 \\ \text{So, } (e_n)_{n \in \omega} \text{ converges weakly} \end{split}$$

ba denotes the Banach space of all measures on ω with the variation norm

ba denotes the Banach space of all measures on ω with the variation norm

 $\ell_1 \hookrightarrow \ell_1^{**} \cong \ell_\infty^*$

ba denotes the Banach space of all measures on ω with the variation norm

 $\ell_1 \hookrightarrow \ell_1^{**} \cong \ell_\infty^* \cong \mathrm{ba}$ (by Riesz's representation theorem)

ba denotes the Banach space of all measures on ω with the variation norm

 $\ell_1 \hookrightarrow \ell_1^{**} \cong \ell_\infty^* \cong \mathrm{ba}$ (by Riesz's representation theorem)

 $\ell_1 \ni x \mapsto \mu_x \in ba$ by the formula: $\mu_x(A) = \langle x, \chi_A \rangle = \sum_{n \in A} x(n)$ for every $A \in \wp(\omega)$

Note that $\chi_A \in S_{\ell_{\infty}}!$

Let $(\mu_n)_{n\in\omega} \subseteq \text{ba. If } \mu_n(A) \to 0$ for every $A \in \wp(\omega)$, then:

Let $(\mu_n)_{n\in\omega}\subseteq \text{ba.}$ If $\mu_n(A)\to 0$ for every $A\in\wp(\omega)$, then:

$$\lim_{n}\sum_{j\in\omega}\left|\mu_{n}(\{j\})\right|=0.$$

Let $(\mu_n)_{n\in\omega}\subseteq ext{ba.}$ If $\mu_n(A)\to 0$ for every $A\in\wp(\omega)$, then:

$$\lim_{n}\sum_{j\in\omega}|\mu_n(\{j\})|=0.$$

Let $(x_n)_{n\in\omega}\subseteq \ell_1$ be weakly convergent

Let $(\mu_n)_{n\in\omega} \subseteq \text{ba. If } \mu_n(A) \to 0$ for every $A \in \wp(\omega)$, then:

$$\lim_{n}\sum_{j\in\omega}\left|\mu_{n}(\{j\})\right|=0.$$

Let $(x_n)_{n \in \omega} \subseteq \ell_1$ be weakly convergent Then, $\langle x_n, \chi_A \rangle \to 0$ for every $A \in \wp(\omega)$

Let $(\mu_n)_{n \in \omega} \subseteq \text{ba. If } \mu_n(A) \to 0 \text{ for every } A \in \wp(\omega), \text{ then:}$ $\lim_n \sum_{j \in \omega} |\mu_n(\{j\})| = 0.$

Let $(x_n)_{n \in \omega} \subseteq \ell_1$ be weakly convergent Then, $\langle x_n, \chi_A \rangle \to 0$ for every $A \in \wp(\omega)$ Hence, $\mu_{x_n}(A) \to 0$ for every $A \in \wp(\omega)$

Let $(\mu_n)_{n \in \omega} \subseteq \text{ba. If } \mu_n(A) \to 0 \text{ for every } A \in \wp(\omega), \text{ then:}$ $\lim_n \sum_{j \in \omega} |\mu_n(\{j\})| = 0.$

Let $(x_n)_{n \in \omega} \subseteq \ell_1$ be weakly convergent Then, $\langle x_n, \chi_A \rangle \to 0$ for every $A \in \wp(\omega)$ Hence, $\mu_{x_n}(A) \to 0$ for every $A \in \wp(\omega)$ So by Phillips: $\lim_n \sum_{j \in \omega} |\mu_{x_n}(\{j\})| = 0$

Let $(\mu_n)_{n \in \omega} \subseteq \text{ba. If } \mu_n(A) \to 0 \text{ for every } A \in \wp(\omega), \text{ then:}$ $\lim_n \sum_{j \in \omega} |\mu_n(\{j\})| = 0.$

Let $(x_n)_{n\in\omega} \subseteq \ell_1$ be weakly convergent Then, $\langle x_n, \chi_A \rangle \to 0$ for every $A \in \wp(\omega)$ Hence, $\mu_{x_n}(A) \to 0$ for every $A \in \wp(\omega)$ So by Phillips: $\lim_n \sum_{j\in\omega} |\mu_{x_n}(\{j\})| = 0$ But this means exactly that: $\lim_n ||x_n||_1 = 0!$

Definition

A family $\mathcal{F} \subseteq \wp(\omega)$ is **Phillips** if for every sequence $(\mu_n)_{n \in \omega} \subseteq ba$ such that $\mu_n(A) \to 0$ for every $A \in \mathcal{F}$, we have

$$\lim_{n}\sum_{j\in\omega}|\mu_n(\{j\})|=0.$$

Definition

A family $\mathcal{F} \subseteq \wp(\omega)$ is **Phillips** if for every sequence $(\mu_n)_{n \in \omega} \subseteq ba$ such that $\mu_n(A) \to 0$ for every $A \in \mathcal{F}$, we have

$$\lim_{n}\sum_{j\in\omega}|\mu_n(\{j\})|=0.$$

Definition

A family $\mathcal{F} \subseteq \wp(\omega)$ is **Schur** if for every sequence $(x_n)_{n \in \omega} \subseteq \ell_1$ such that $\langle x_n, \chi_A \rangle \to 0$ for every $A \in \mathcal{F}$, we have

$$\lim_n \left\|x_n\right\|_1 = 0.$$

Definition

A family $\mathcal{F} \subseteq \wp(\omega)$ is **Phillips** if for every sequence $(\mu_n)_{n \in \omega} \subseteq ba$ such that $\mu_n(A) \to 0$ for every $A \in \mathcal{F}$, we have

$$\lim_{n}\sum_{j\in\omega}|\mu_n(\{j\})|=0.$$

Definition

A family $\mathcal{F} \subseteq \wp(\omega)$ is **Schur** if for every sequence $(x_n)_{n \in \omega} \subseteq \ell_1$ such that $\langle x_n, \chi_A \rangle \to 0$ for every $A \in \mathcal{F}$, we have

$$\lim_n \left\|x_n\right\|_1 = 0.$$

Every Phillips family is Schur

Definition

A family $\mathcal{F} \subseteq \wp(\omega)$ is **Phillips** if for every sequence $(\mu_n)_{n \in \omega} \subseteq ba$ such that $\mu_n(A) \to 0$ for every $A \in \mathcal{F}$, we have

$$\lim_{n}\sum_{j\in\omega}|\mu_n(\{j\})|=0.$$

Definition

A family $\mathcal{F} \subseteq \wp(\omega)$ is **Schur** if for every sequence $(x_n)_{n \in \omega} \subseteq \ell_1$ such that $\langle x_n, \chi_A \rangle \to 0$ for every $A \in \mathcal{F}$, we have

$$\lim_n \left\|x_n\right\|_1 = 0.$$

Every Phillips family is Schur $\wp(\omega)$ is Phillips

Question

Is it consistent that there exists a Phillips family of cardinality strictly smaller than $\mathfrak{c}?$

Assume $MA_{\kappa}(\sigma$ -centered) for some cardinal number κ . Let $\mathcal{F} \subseteq \wp(\omega)$ be such that $|\mathcal{F}| \leq \kappa$.

Assume $MA_{\kappa}(\sigma\text{-centered})$ for some cardinal number κ . Let $\mathcal{F} \subseteq \wp(\omega)$ be such that $|\mathcal{F}| \leq \kappa$. Then, there exists $(x_n)_{n \in \omega} \subseteq \ell_1$ such that $\sup_n ||x_n||_1 = \infty$ and $\lim_n \langle x_n, \chi_A \rangle = 0$ for every $A \in \mathcal{F}$. In particular, \mathcal{F} is not Schur (and hence not Phillips).

A family $\mathcal{F} \subseteq [\omega]^{\omega}$ has the strong finite intersection property (the SFIP) if $\bigcap \mathcal{G}$ is infinite for every finite $\mathcal{G} \subseteq \mathcal{F}$.

A set $A \in [\omega]^{\omega}$ is a **pseudo-intersecton** of \mathcal{F} if $A \setminus B$ is finite for every $B \in \mathcal{F}$.

 $\mathfrak{p} = \min \left\{ |\mathcal{F}|: \ \mathcal{F} \subseteq [\omega]^{\omega} \text{ has SFIP but no pseudo-intersection} \right\}$

A family $\mathcal{F} \subseteq [\omega]^{\omega}$ has the strong finite intersection property (the SFIP) if $\bigcap \mathcal{G}$ is infinite for every finite $\mathcal{G} \subseteq \mathcal{F}$.

A set $A \in [\omega]^{\omega}$ is a **pseudo-intersecton** of \mathcal{F} if $A \setminus B$ is finite for every $B \in \mathcal{F}$.

 $\mathfrak{p} = \min\left\{|\mathcal{F}|: \ \mathcal{F} \subseteq [\omega]^{\omega} \ \text{has SFIP but no pseudo-intersection}\right\}$

Theorem (Bell 1981)

 $\mathfrak{p} > \kappa$ if and only if $MA_{\kappa}(\sigma$ -centered) holds.

A family $\mathcal{F} \subseteq [\omega]^{\omega}$ has the strong finite intersection property (the SFIP) if $\bigcap \mathcal{G}$ is infinite for every finite $\mathcal{G} \subseteq \mathcal{F}$.

A set $A \in [\omega]^{\omega}$ is a **pseudo-intersecton** of \mathcal{F} if $A \setminus B$ is finite for every $B \in \mathcal{F}$.

 $\mathfrak{p} = \min\left\{|\mathcal{F}|: \ \mathcal{F} \subseteq [\omega]^{\omega} \ \text{has SFIP but no pseudo-intersection}\right\}$

Theorem (Bell 1981)

 $\mathfrak{p} > \kappa$ if and only if $MA_{\kappa}(\sigma$ -centered) holds.

Theorem

• Every Schur family is of cardinality at least p.

A family $\mathcal{F} \subseteq [\omega]^{\omega}$ has the strong finite intersection property (the SFIP) if $\bigcap \mathcal{G}$ is infinite for every finite $\mathcal{G} \subseteq \mathcal{F}$.

A set $A \in [\omega]^{\omega}$ is a **pseudo-intersecton** of \mathcal{F} if $A \setminus B$ is finite for every $B \in \mathcal{F}$.

 $\mathfrak{p} = \min\left\{|\mathcal{F}|: \ \mathcal{F} \subseteq [\omega]^{\omega} \ \text{has SFIP but no pseudo-intersection}\right\}$

Theorem (Bell 1981)

 $\mathfrak{p} > \kappa$ if and only if $MA_{\kappa}(\sigma$ -centered) holds.

Theorem

- Every Schur family is of cardinality at least p.
- ² Under Martin's axiom, every Schur family is of cardinality c.

 ${\cal N}$ denotes the Lebesgue null ideal

 $\operatorname{cof}(\mathcal{N}) = \min \left\{ |\mathcal{F}| \colon \ \mathcal{F} \subseteq \mathcal{N} \And (\forall A \in \mathcal{N} \exists B \in \mathcal{F} \colon \ A \subseteq B) \right\}$

 $\ensuremath{\mathcal{N}}$ denotes the Lebesgue null ideal

 $\operatorname{cof}(\mathcal{N}) = \min \left\{ |\mathcal{F}| \colon \ \mathcal{F} \subseteq \mathcal{N} \And (\forall A \in \mathcal{N} \exists B \in \mathcal{F} \colon \ A \subseteq B) \right\}$

Theorem

There exists a Phillips family of cardinality $cof(\mathcal{N})$.

 $\ensuremath{\mathcal{N}}$ denotes the Lebesgue null ideal

 $\operatorname{cof}(\mathcal{N}) = \min \left\{ |\mathcal{F}| \colon \ \mathcal{F} \subseteq \mathcal{N} \And (\forall A \in \mathcal{N} \exists B \in \mathcal{F} \colon \ A \subseteq B) \right\}$

Theorem

There exists a Phillips family of cardinality $cof(\mathcal{N})$.

Bartoszyński–Judah characterization of cof(N), 1995

Let C denote the family of all subsets of ω^{ω} of the form $\prod_n T_n$ such that $T_n \in [\omega]^{n+1}$ for all $n \in \omega$. Then,

$$\operatorname{cof}(\mathcal{N}) = \min \{ |\mathcal{F}| : \mathcal{F} \subseteq \mathcal{C} \& \bigcup \mathcal{F} = \omega^{\omega} \}.$$

The existence of a Phillips (or Schur) family of cardinality strictly less than c is independent of ZFC+ \neg CH.

Let $D \subseteq S_{\ell_{\infty}}$. A sequence $(x_n)_{n \in \omega}$ is:

• pointwise bounded on D if $\sup_n |\langle x_n, y \rangle| < \infty$ for every $y \in D$

Let $D \subseteq S_{\ell_{\infty}}$. A sequence $(x_n)_{n \in \omega}$ is:

- pointwise bounded on D if $\sup_n |\langle x_n, y \rangle| < \infty$ for every $y \in D$
- uniformly bounded if $\sup_n ||x_n||_1 < \infty$.

Let $D \subseteq S_{\ell_{\infty}}$. A sequence $(x_n)_{n \in \omega}$ is:

- pointwise bounded on D if $\sup_n |\langle x_n, y \rangle| < \infty$ for every $y \in D$
- uniformly bounded if $\sup_n ||x_n||_1 < \infty$.

Definition

A set $D \subseteq S_{\ell_{\infty}}$ is weak* Banach–Steinhaus if every pointwise bounded on D sequence $(x_n)_{n \in \omega} \subseteq \ell_1$ is uniformly bounded.

Let $D \subseteq S_{\ell_{\infty}}$. A sequence $(x_n)_{n \in \omega}$ is:

- pointwise bounded on D if $\sup_n |\langle x_n, y \rangle| < \infty$ for every $y \in D$
- uniformly bounded if $\sup_n ||x_n||_1 < \infty$.

Definition

A set $D \subseteq S_{\ell_{\infty}}$ is **weak* Banach–Steinhaus** if every pointwise bounded on *D* sequence $(x_n)_{n \in \omega} \subseteq \ell_1$ is uniformly bounded.

S_{ℓ_∞} is weak* Banach–Steinhaus

Let $D \subseteq S_{\ell_{\infty}}$. A sequence $(x_n)_{n \in \omega}$ is:

- pointwise bounded on D if $\sup_n |\langle x_n, y \rangle| < \infty$ for every $y \in D$
- uniformly bounded if $\sup_n ||x_n||_1 < \infty$.

Definition

A set $D \subseteq S_{\ell_{\infty}}$ is **weak* Banach–Steinhaus** if every pointwise bounded on D sequence $(x_n)_{n \in \omega} \subseteq \ell_1$ is uniformly bounded.

S_{ℓ_∞} is weak* Banach–Steinhaus

Weak* Banach–Steinhaus sets are uncountable and linearly weak* dense in ℓ_∞

Assume $MA_{\kappa}(\sigma\text{-centered})$ for some cardinal number κ . Let $D \subseteq S_{\ell_{\infty}}$ be such that $|D| \leq \kappa$. Then, there exists $(x_n)_{n \in \omega} \subseteq \ell_1$ such that $\sup_n ||x_n||_1 = \infty$ and $\lim_n \langle x_n, y \rangle = 0$ for every $y \in D$. In particular, D is not weak* Banach–Steinhaus in ℓ_{∞} .

Assume $\operatorname{MA}_{\kappa}(\sigma\text{-centered})$ for some cardinal number κ . Let $D \subseteq S_{\ell_{\infty}}$ be such that $|D| \leq \kappa$. Then, there exists $(x_n)_{n \in \omega} \subseteq \ell_1$ such that $\sup_n ||x_n||_1 = \infty$ and $\lim_n \langle x_n, y \rangle = 0$ for every $y \in D$. In particular, D is not weak* Banach–Steinhaus in ℓ_{∞} .

Theorem

 Every weak* Banach−Steinhaus set in l_∞ is of cardinality at least p.

Assume $\operatorname{MA}_{\kappa}(\sigma\text{-centered})$ for some cardinal number κ . Let $D \subseteq S_{\ell_{\infty}}$ be such that $|D| \leq \kappa$. Then, there exists $(x_n)_{n \in \omega} \subseteq \ell_1$ such that $\sup_n ||x_n||_1 = \infty$ and $\lim_n \langle x_n, y \rangle = 0$ for every $y \in D$. In particular, D is not weak* Banach–Steinhaus in ℓ_{∞} .

Theorem

- Every weak* Banach−Steinhaus set in l_∞ is of cardinality at least p.
- Output in the second second

Proposition

If $\mathcal{F} \subseteq \wp(\omega)$ is a Schur family, then $\{\chi_A \colon A \in \mathcal{F}\}$ is weak* Banach–Steinhaus.

Proposition

If $\mathcal{F} \subseteq \wp(\omega)$ is a Schur family, then $\{\chi_A \colon A \in \mathcal{F}\}$ is weak* Banach–Steinhaus.

Theorem

There exists a weak* Banach–Steinhaus set in ℓ_{∞} of cardinality $cof(\mathcal{N})$.

Proposition

If $\mathcal{F} \subseteq \wp(\omega)$ is a Schur family, then $\{\chi_A \colon A \in \mathcal{F}\}$ is weak* Banach–Steinhaus.

Theorem

There exists a weak* Banach–Steinhaus set in ℓ_{∞} of cardinality $cof(\mathcal{N})$.

Theorem

The existence of a weak* Banach–Steinhaus set in ℓ_{∞} of cardinality strictly less than c is independent of ZFC+ \neg CH.

Thank you for the attention!