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Little `-spaces

`1 =
{
x ∈ Rω : ‖x‖1 =

∑
n |x(n)| <∞

}
`∞ =

{
y ∈ Rω : ‖y‖∞ = supn |y(n)| <∞

}
S`∞ =

{
y ∈ `∞ : ‖y‖∞ = 1

}

The action of `∞ on `1
x ∈ `1, y ∈ `∞ −→ 〈x , y〉 =

∑
n x(n) · y(n) ∈ R

So, `∞ ∼= `∗1 (the space of continuous linear functionals on `1)

So, ‖x‖1 = sup
{∣∣〈x , y〉∣∣ : y ∈ S`∞

}
So, for (xn)n∈ω ⊆ `1 we have

∥∥xn∥∥1 → 0 (the norm convergence)
only if 〈xn, y〉 → 0 for every y ∈ S`∞ (the weak convergence)

What about if? Does the weak convergence imply the norm one?
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Schur’s theorem

Theorem (Schur, 1921)

Every weakly convergent sequence in `1 is norm convergent.

c0 =
{
x ∈ `∞ : limn x(n) = 0

}
with the sup norm

c∗0
∼= `1

Let en =
(
0, . . . , 0, 1, 0, . . .

)
∈ c0

Then, (en)n∈ω doesn’t converge in norm

But for every f ∈ `1, 〈en, f 〉 = f (n)→ 0

So, (en)n∈ω converges weakly
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Measures on ω

A signed bounded finitely additive function µ : ℘(ω)→ R is a
measure on ω

ba denotes the Banach space of all measures on ω with the
variation norm

`1 ↪→ `∗∗1
∼= `∗∞

∼= ba (by Riesz’s representation theorem)

`1 3 x 7→ µx ∈ ba

by the formula:

µx(A) = 〈x , χA〉 =
∑

n∈A x(n)

for every A ∈ ℘(ω)

Note that χA ∈ S`∞!
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Phillips’s lemma

Theorem (Phillips, 1948)

Let (µn)n∈ω ⊆ ba. If µn(A)→ 0 for every A ∈ ℘(ω), then:

lim
n

∑
j∈ω

∣∣µn({j})∣∣ = 0.

Let (xn)n∈ω ⊆ `1 be weakly convergent

Then, 〈xn, χA〉 → 0 for every A ∈ ℘(ω)

Hence, µxn(A)→ 0 for every A ∈ ℘(ω)

So by Phillips: limn
∑

j∈ω
∣∣µxn({j})∣∣ = 0

But this means exactly that: limn

∥∥xn∥∥1 = 0!
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Phillips and Schur families

Definition

A family F ⊆ ℘(ω) is Phillips if for every sequence (µn)n∈ω ⊆ ba
such that µn(A)→ 0 for every A ∈ F , we have

lim
n

∑
j∈ω

∣∣µn({j})∣∣ = 0.

Definition

A family F ⊆ ℘(ω) is Schur if for every sequence (xn)n∈ω ⊆ `1
such that 〈xn, χA〉 → 0 for every A ∈ F , we have

lim
n

∥∥xn∥∥1 = 0.

Every Phillips family is Schur

℘(ω) is Phillips
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Quest for small Phillips families

Question

Is it consistent that there exists a Phillips family of cardinality
strictly smaller than c?



Martin’s axiom and Schur families

Theorem

Assume MAκ(σ-centered) for some cardinal number κ. Let
F ⊆ ℘(ω) be such that |F| ¬ κ.

Then, there exists (xn)n∈ω ⊆ `1
such that supn

∥∥xn∥∥1 =∞ and limn〈xn, χA〉 = 0 for every A ∈ F .

In particular, F is not Schur (and hence not Phillips).
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Martin’s axiom and Schur families

Definition

A family F ⊆ [ω]ω has the strong finite intersection property
(the SFIP) if

⋂
G is infinite for every finite G ⊆ F .

A set A ∈ [ω]ω is a pseudo-intersecton of F if A \ B is finite for
every B ∈ F .

p = min
{
|F| : F ⊆ [ω]ω has SFIP but no pseudo-intersection

}

Theorem (Bell 1981)

p > κ if and only if MAκ(σ-centered) holds.

Theorem
1 Every Schur family is of cardinality at least p.
2 Under Martin’s axiom, every Schur family is of cardinality c.
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cof(N ) and Phillips families

Definition

N denotes the Lebesgue null ideal

cof(N ) = min
{
|F| : F ⊆ N &

(
∀A ∈ N∃B ∈ F : A ⊆ B

)}

Theorem

There exists a Phillips family of cardinality cof(N ).

Bartoszyński–Judah characterization of cof(N ), 1995

Let C denote the family of all subsets of ωω of the form
∏

n Tn

such that Tn ∈ [ω]n+1 for all n ∈ ω. Then,

cof(N ) = min
{
|F| : F ⊆ C &

⋃
F = ωω

}
.
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Undecidability

Theorem

The existence of a Phillips (or Schur) family of cardinality strictly
less than c is independent of ZFC+¬CH.



Weak* Banach–Steinhaus sets in `∞

Definition

Let D ⊆ S`∞ . A sequence (xn)n∈ω is:

pointwise bounded on D if supn

∣∣〈xn, y〉∣∣ <∞ for every
y ∈ D

uniformly bounded if supn

∥∥xn∥∥1 <∞.

Definition

A set D ⊆ S`∞ is weak* Banach–Steinhaus if every pointwise
bounded on D sequence (xn)n∈ω ⊆ `1 is uniformly bounded.

S`∞ is weak* Banach–Steinhaus

Weak* Banach–Steinhaus sets are uncountable and linearly weak*
dense in `∞
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A set D ⊆ S`∞ is weak* Banach–Steinhaus if every pointwise
bounded on D sequence (xn)n∈ω ⊆ `1 is uniformly bounded.

S`∞ is weak* Banach–Steinhaus

Weak* Banach–Steinhaus sets are uncountable and linearly weak*
dense in `∞



Martin’s axiom and weak* Banach–Steinhaus sets in `∞

Theorem

Assume MAκ(σ-centered) for some cardinal number κ. Let
D ⊆ S`∞ be such that |D| ¬ κ. Then, there exists (xn)n∈ω ⊆ `1
such that supn

∥∥xn∥∥1 =∞ and limn〈xn, y〉 = 0 for every y ∈ D.

In particular, D is not weak* Banach–Steinhaus in `∞.

Theorem
1 Every weak* Banach–Steinhaus set in `∞ is of cardinality at
least p.

2 Under Martin’s axiom, every weak* Banach–Steinhaus set is
of cardinality c.
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Schur families and weak* Banach–Steinhaus sets in `∞

Proposition

If F ⊆ ℘(ω) is a Schur family, then
{
χA : A ∈ F

}
is weak*

Banach–Steinhaus.

Theorem

There exists a weak* Banach–Steinhaus set in `∞ of cardinality
cof(N ).

Theorem

The existence of a weak* Banach–Steinhaus set in `∞ of
cardinality strictly less than c is independent of ZFC+¬CH.
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Thank you for the attention!


