Definable discrete sets, Ramsey theory and forcing

David Schrittesser

University of Copenhagen (Denmark)

Novi Sad Conference in Set Theory and General Topology Fruška Gora, June 21, 2016

Theorem (Galvin, 1968)

Suppose X is a non-empty perfect Polish space and

 $c\colon X^2 \to \{0,1\}$

is symmetric and Baire measurable. Then there is a perfect set $C \subseteq X$ such that c is constant on

 $C^2 \setminus diag$

Sacks forcing is the set of *perfect trees* $p \subseteq 2^{<\omega}$, ordered by inclusion.

The branch set of p is

$$[\boldsymbol{\rho}] = \{ \boldsymbol{x} \in \boldsymbol{2}^{\omega} \mid (\forall \boldsymbol{k} \in \omega) \; \boldsymbol{x} \upharpoonright \boldsymbol{k} \in \boldsymbol{\rho} \}$$

Let $s \in 2^{<\omega}$.

$$\boldsymbol{\rho}_{\boldsymbol{s}} = \{t \in \boldsymbol{\rho} \mid t \subseteq \boldsymbol{s} \lor \boldsymbol{s} \subseteq t\}.$$

is a perfect tree *iff* $s \in p$.

 p_n is the *n*-th splitting level of *p*.

Galvin's Theorem phrased for Sacks forcing

We can phrase Galvin's Theorem in terms of Sacks forcing.

Theorem (Galvin's Theorem, equivalent form)

Let $p \in \mathbb{S}$ and

$$c\colon [p]^2 o \{0,1\}$$

be symmetric and Baire measurable. Then there is $q \in S$, $q \le p$ such that c is constant on

 $[q]^2 \setminus \text{diag}$

Question

Is there an analogue for iterated Sacks forcing?

- Let ℙ be an iteration of Sacks forcing with countable support, of length λ.
- For $\xi \leq \lambda$, denote by \mathbb{P}_{ξ} the initial segment of \mathbb{P} .
- Recall that ℙ consists of sequences p̄: λ → V such that
 - For each $\xi < \lambda$, $\bar{p}(\xi)$ is a \mathbb{P}_{ξ} -name for a perfect tree.

2 supp (\bar{p}) is countable, where

$$\operatorname{supp}(\bar{\boldsymbol{\rho}}) = \{\xi < \lambda \mid \bar{\boldsymbol{\rho}} \upharpoonright \xi \not\Vdash \bar{\boldsymbol{\rho}}(\xi) = \mathbf{2}^{<\omega}\}$$

• \mathbb{P} adds a sequence of length λ ,

$$ar{s}_G \in (2^\omega)^\lambda$$

such that $\bar{s}_G(\xi)$ is Sacks over $V[\bar{s}_G \upharpoonright \xi]$.

Galvin's Theorem for iterated Sacks forcing?

- Let $\bar{p} \in \mathbb{P}$. What is $[\bar{p}]$?
- Provided we can define [p
]...

Question:

```
Is there for every \bar{p} \in \mathbb{P} and every
```

$$c\colon [\bar{p}]^2 \to \{0,1\}$$

which is symmetric and *nice*, some $\bar{q} \in \mathbb{P}$, $\bar{q} \leq \bar{p}$ such that *c* is constant on $[\bar{q}]^2 \setminus \text{diag}$?

What do I mean by nice?

- Answer is 'yes' for continuous c (Geschke-Kojman-Kubiś-Schipperus)
- perhaps Baire measurable...?

What is $[\bar{p}]$?

Let \bar{p} be an iterated Sacks condition. Let $\bar{t}: \lambda \to 2^{<\omega}$ be finitely supported, i.e.

 $\{\xi \mid \overline{t}(\xi) \neq \emptyset\}$ is finite.

What is $\bar{p}_{\bar{t}}$?

Definition

Define *p
_t* by induction as the sequence of names *q* such that for each *ξ* < *λ*,

$$ar{q} \restriction \xi \in \mathbb{P}_{\xi} \Rightarrow ar{q} \restriction \xi \Vdash_{\mathbb{P}_{\xi}} ar{q}(\xi) = ar{p}(\xi)_{t(\xi)}$$

2 We say \bar{p} accepts \bar{t} iff $\bar{p}_t \in \mathbb{P}$.

Note that \bar{p} accepts \bar{t} iff at every step we have

$$\bar{\rho}_t \upharpoonright \xi \Vdash \bar{t}(\xi) \in \rho(\xi).$$

For a dense set of $\bar{p} \in \mathbb{P}$ we have:

0 There is $F_0: \bar{p}(0) \rightarrow \text{FINITE TREES}$ and $\sigma_1 \in \text{supp}(\bar{p})$ such that

$$(\forall n \in \omega)(\forall t \in p(0)_n) \ (\bar{p} \upharpoonright \sigma_1)_t \Vdash_{\mathbb{P}_{\sigma_1}} F_0(t) = \bar{p}(\sigma_1)_n$$

1 There is a function F_1 and $\sigma_2 \in \text{supp}(\bar{p})$ such that (letting $\sigma_0 = 0$)

$$\begin{array}{l} (\forall n \in \omega)(\forall \overline{t} \colon \{\sigma_0, \sigma_1\} \to 2^{<\omega}) \\ (\overline{t}(0) \in p(0)_n \wedge \overline{t}(1) \in F_0(t_0)) \Rightarrow \\ (\overline{p} \upharpoonright \sigma_2)_{\overline{t}} \Vdash_{\mathbb{P}_{\sigma_1}} F_1(\overline{t}) = \overline{p}(\sigma_2)_n \end{array}$$

ω And so on: There exists sequences $F_0, ..., F_k, ...$ and $σ_0, ..., σ_k, ...$ with $σ_0 = 0$ such that the analogous holds for each k ∈ ω and

$$\{\sigma_{\boldsymbol{k}} \mid \boldsymbol{k} \in \omega\} = \operatorname{supp}(\bar{\boldsymbol{p}})$$

Fix \bar{p} and F_0, F_1, \ldots as in the previous slide.

Define a partial function

by

$$egin{aligned} F_k^*\colon (2^\omega)^{\{\sigma_0,...,\sigma_k\}}& o ext{ PERFECT TREES}\ &&F_k^*(ar x)=igcup F_k(ar x\restriction n) \end{aligned}$$

Then $[\bar{p}]$ is the subspace of $(2^{\omega})^{\lambda}$ consisting of

$$\bar{x}$$
: supp $(\bar{p}) \rightarrow 2^{\omega}$

 $n \in \omega$

such that for each $n \in \omega$

$$\bar{x}(n) \in F_n^*(\bar{x} \upharpoonright n)$$

Let $\bar{p} \in \mathbb{P}$. Fix $\xi < \lambda$.

Define a symmetric Borel function

$$c\colon [\bar{p}]^2 \to \{0,1\}$$

by

$$m{c}(ar{x}_0,ar{x}_1) = egin{cases} 1 & ext{if }ar{x}_0(\xi)
eq ar{x}_1(\xi) \ 0 & ext{otherwise} \end{cases}$$

Note:

Every q̄ ≤ p̄ will meet both colours
c⁻¹(1) is open, c⁻¹(0) is closed.

For $\bar{x}_0, \bar{x}_1 \in [\bar{p}]$, let

 $\Delta(\bar{x}_0, \bar{x}_1)$ = the least ξ such that $\bar{x}_0(\xi) \neq \bar{x}_1(\xi)$.

Let

$$\Delta_{\xi} = \{ (\bar{x}_0, \bar{x}_1) \in [\bar{\rho}]^2 \mid \Delta(\bar{x}_0, \bar{x}_1) = \xi \}$$

Question:

Can we show: For every $\bar{p} \in \mathbb{P}$ and for evey *nice* symmetric *c*,

$$c\colon [\bar{p}]^2 \to \{0,1\}$$

there is $\bar{q} \in \mathbb{P}$, $\bar{q} \leq \bar{p}$ such that *c* only depends on $\Delta(\cdot, \cdot)$ on $[\bar{q}]^2 \setminus \text{diag}$?

Let me restate the previous question:

Question:

Can we show: For every $\bar{p} \in \mathbb{P}$ and for evey *nice* symmetric

$$c\colon [\bar{p}]^2 o \{0,1\}$$

there is $\bar{q} \in \mathbb{P}$, $\bar{q} \leq \bar{p}$ such that *c* is constant on $\Delta_{\xi} \cap [\bar{q}]^2 \setminus \text{diag}$?

- Δ_0 is comeager in $[\bar{p}]^2$
- So nice must be more restrictive than Baire measurable!
- otherwise: take *c* arbitrary on Δ_{ξ} , $\xi > 0$ (a meager set!)

Another counterexample:

Fix a bijection $G: \operatorname{supp}(\bar{p}) \setminus \{0\} \to \omega$. Define a symmetric function

$$c\colon [\bar{p}]^2 o \{0,1\}$$

as follows. Given (\bar{x}_0, \bar{x}_1) , let \bar{x}_i be such that for $\xi = \Delta(\bar{x}_0, \bar{x}_1)$

$$\bar{x}_i(\xi) <_{\mathsf{lex}} \bar{x}_{1-i}(\xi)$$

If $\xi \in \operatorname{supp}(\bar{\rho})$ and $G(\xi) = k$, set

$$c(\bar{x}_0,\bar{x}_1)=\bar{x}_i(0)(k).$$

(When $\xi \in \text{supp}(\bar{p})$ fails, set *c* to be 0; this case is irrelevant)

Suppose $ar{q} \in \mathbb{P}$ is such that

 $(\forall \xi \in \operatorname{supp}(\bar{q})) c$ has constant value $I(\xi)$ on $\Delta_{\xi} \cap [\bar{q}]^2 \setminus \operatorname{diag}$.

We reach a contradiction:

- pick \bar{x}_0 as follows:
 - $\bar{x}_0(0)$ is **arbitrary** in $[\bar{q}(0)]$
 - 2 $\bar{x}_0(\xi)$ for $\xi > 0$ always picks the left-most branch
- For every $\xi > 0$, we can pick \bar{x}_1^{ξ} such that

 - 2 $\bar{x}_1^{\xi}(\xi)$ is lexicographically after $\bar{x}_0(\xi)$
- Thus, for each $\xi \in \operatorname{supp}(\bar{\rho})$,

$$\bar{x}_0(0)(G(\xi)) = c(\bar{x}_0, \bar{x}_1^{\xi}) = I(\xi),$$

completely determining $\bar{x}(0)$; contradiction.

Theorem (Galvin's Theorem for iterated Sacks forcing)

For every $\bar{p} \in \mathbb{P}$ and every symmetric universally Baire

$$c\colon [\bar{p}]^2 \to \{0,1\}$$

there is $\bar{q} \in \mathbb{P}$, $\bar{q} \leq \bar{p}$, with an enumeration $\langle \sigma_k | k \in \omega \rangle$ of supp (\bar{q}) and a function N: supp $(\bar{q}) \rightarrow \omega$ such that for $(\bar{x}_0, \bar{x}_1) \in [\bar{q}]^2 \setminus \text{diag}$, the value of $c(\bar{x}_0, \bar{x}_1)$ only depends on

$$\xi = \Delta(\bar{x}_0, \bar{x}_1)$$

and the following (finite) piece of information:

 $(\bar{x}_0 \upharpoonright K, \bar{x}_1 \upharpoonright K)$

where $K = \{\sigma_0, \ldots, \sigma_{N(\xi)}\} \times N(\xi)$.

An application: maximal discrete sets

Let $\mathcal{R} \subseteq X^2$ (i.e. a binary relation on some set *X*).

Definition

We say a set $A \subseteq X$ is \mathcal{R} -discrete \iff

$$(\forall x, y \in A) \ x \neq y \Rightarrow \neg (x \mathcal{R} y).$$

Definition

We call such a set **maximal discrete** if it is not a proper subset of any discrete set.

 \mathcal{R} is maximal discrete *iff* $(\forall x \in X)(\exists a \in A) (x \mathcal{R} a) \lor (a \mathcal{R} a)$.

Example: Orthogonality of measures

- Let *X* be a standard Borel space.
- Consider *P*(*X*), the standard Borel space of Borel probability measures on *X*.
- Two measures $\mu, \nu \in P(X)$ are said to be orthogonal, written

 $\mu \perp \nu$

exactly if: there is a Borel set $A \subseteq X$ such that

$$\mu(A) = 1$$

and

$$\nu(A) = 0.$$

• We abbreviate "maximal orthogonal family" by "mof".

• We restrict our attention to the case $X = 2^{\omega}$ from now on.

• Note that $P(2^{\omega})$ is an effective Polish space.

Question (Mauldin, circa 1980)

Can a **mof** in $P(2^{\omega})$ be analytic?

The answer turned out to be 'no':

Theorem (Preiss-Rataj, 1985)

There is no analytic **mof** in $P(2^{\omega})$.

This is optimal, in a sense:

Theorem (Fischer-Törnqust, 2009)

In L, there is a Π_1^1 mof in $P(2^{\omega})$.

Mofs and forcing

Mofs are fragile creatures:

Facts

- Adding any real destroys maximality of mofs from the groundmodel (observed by Ben Miller; not restricted to forcing extensions)
- If there is a Cohen real over L, there are no Σ¹₂ mofs in P(2^ω) (F-T, 2009)
- The same holds if there is a random real over L (Fischer-Friedman-Törnquist, 2010).
- The same holds if there is a Mathias real over L (S-Törnquist, 2014).

Question (F-T, 2009)

If there is a Π_1^1 mof, does it follow that $\mathcal{P}(\omega) \subseteq \mathbf{L}$?

Theorem (S-Törnquist, 2014)

If s is Sacks over L there is a (lightface!) Π_1^1 mof in L[s].

Theorem (S 2015)

The statement 'there is a Π_1^1 **mof** ' is consistent with $2^{\omega} = \omega_2$.

In fact :

Theorem (S 2015)

Let \mathcal{R} be a Σ_1^1 relation on an effective Polish space X. If \bar{s} is generic for iterated Sacks forcing over L, there is a (lightface) Δ_2^1 maximal \mathcal{R} -discrete set in $L[\bar{s}]$.

Thank You!