Regular families of small subsets of Polish spaces

<u>Robert Rałowski</u> and Szymon Żeberski Wrocław University of Technology

SE⊨OP, Serbia, 2016

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Let X is a Polish space and $I \subseteq \mathscr{P}(X)$ s.t

- I is σ-ideal with a Borel base and
- I contains all singletons,

then (X, I) is Polish ideal space Let $\mathcal{B}_+(I) = Borel(X) \setminus I$ be set of all *I*-positive Borel sets. *Perf*(X) stands for set of all perfect subsets of X

Let X is a Polish space and $I \subseteq \mathscr{P}(X)$ s.t

- I is σ-ideal with a Borel base and
- I contains all singletons,

then (X, I) is Polish ideal space Let $\mathcal{B}_+(I) = Borel(X) \setminus I$ be set of all *I*-positive Borel sets. *Perf*(X) stands for set of all perfect subsets of X

Let X is a Polish space and $I \subseteq \mathscr{P}(X)$ s.t

- I is σ-ideal with a Borel base and
- I contains all singletons,

then (X, I) is Polish ideal space Let $\mathcal{B}_+(I) = Borel(X) \setminus I$ be set of all *I*-positive Borel sets. *Perf*(X) stands for set of all perfect subsets of X

Let X is a Polish space and $I \subseteq \mathscr{P}(X)$ s.t

- I is σ-ideal with a Borel base and
- I contains all singletons,

then (X, I) is Polish ideal space

Let $\mathcal{B}_+(I) = Borel(X) \setminus I$ be set of all *I*-positive Borel sets. Perf(X) stands for set of all perfect subsets of X

Let X is a Polish space and $I \subseteq \mathscr{P}(X)$ s.t

- I is σ-ideal with a Borel base and
- I contains all singletons,

then (X, I) is Polish ideal space Let $\mathcal{B}_+(I) = Borel(X) \setminus I$ be set of all *I*-positive Borel sets. *Perf*(X) stands for set of all perfect subsets of X

Definition (Cardinal coefficients)

Let X - Polish space and $I \subseteq \mathscr{P}(X)$ be σ -ideal and $\mathscr{F} \subset I$ let

$$cov(\mathcal{F}) = min\{|\mathscr{A}| : \mathscr{A} \subset \mathcal{F} \land \bigcup \mathscr{A} = X\}$$
$$cov_h(\mathcal{F}) = min\{|\mathscr{A}| : \mathscr{A} \subset \mathcal{F} \land (\exists B \in \mathcal{B}_+(I)) \bigcup \mathscr{A} = B\}$$
$$cof(I) = min\{|\mathscr{B}| : \mathscr{B} \subseteq I \land (\forall A \in I)(\exists B \in \mathscr{B}) \land A \subseteq B\}$$
$$Cof(I) = min\{|\mathscr{B}| : \mathscr{B} \subseteq \mathcal{B}_+(I) \land (\forall A \in \mathcal{B}_+(I))(\exists B \in \mathscr{B})(B \subseteq A)\}$$

 \mathcal{N} σ -ideal of null sets and \mathcal{M} σ -ideal of all meager subsets of X. $cov(\mathcal{M}) = cov_h(\mathcal{M}), cov(\mathcal{N}) = cov_h(\mathcal{N}).$

Theorem (Cichoń-Pawlikowski) If I is c.c.c. σ -ideal with Borel base then cof(I) = Cof(I)

Definition (Cardinal coefficients)

Let X - Polish space and $I \subseteq \mathscr{P}(X)$ be σ -ideal and $\mathscr{F} \subset I$ let

$$cov(\mathcal{F}) = min\{|\mathscr{A}| : \mathscr{A} \subset \mathcal{F} \land \bigcup \mathscr{A} = X\}$$
$$cov_h(\mathcal{F}) = min\{|\mathscr{A}| : \mathscr{A} \subset \mathcal{F} \land (\exists B \in \mathcal{B}_+(I)) \bigcup \mathscr{A} = B\}$$
$$cof(I) = min\{|\mathscr{B}| : \mathscr{B} \subseteq I \land (\forall A \in I)(\exists B \in \mathscr{B}) \land A \subseteq B\}$$
$$Cof(I) = min\{|\mathscr{B}| : \mathscr{B} \subseteq \mathcal{B}_+(I) \land (\forall A \in \mathcal{B}_+(I))(\exists B \in \mathscr{B})(B \subseteq A)\}$$

 \mathcal{N} σ -ideal of null sets and \mathcal{M} σ -ideal of all meager subsets of X. $cov(\mathcal{M}) = cov_h(\mathcal{M}), \ cov(\mathcal{N}) = cov_h(\mathcal{N}).$

Theorem (Cichoń-Pawlikowski) If I is c.c.c. σ -ideal with Borel base then cof(I) = Cof(I)

Definition (Cardinal coefficients)

Let X - Polish space and $I \subseteq \mathscr{P}(X)$ be σ -ideal and $\mathscr{F} \subset I$ let

$$cov(\mathcal{F}) = min\{|\mathscr{A}| : \mathscr{A} \subset \mathcal{F} \land \bigcup \mathscr{A} = X\}$$
$$cov_h(\mathcal{F}) = min\{|\mathscr{A}| : \mathscr{A} \subset \mathcal{F} \land (\exists B \in \mathcal{B}_+(I)) \bigcup \mathscr{A} = B\}$$
$$cof(I) = min\{|\mathscr{B}| : \mathscr{B} \subseteq I \land (\forall A \in I)(\exists B \in \mathscr{B}) \land A \subseteq B\}$$
$$Cof(I) = min\{|\mathscr{B}| : \mathscr{B} \subseteq \mathcal{B}_+(I) \land (\forall A \in \mathcal{B}_+(I))(\exists B \in \mathscr{B})(B \subseteq A)\}$$

 \mathcal{N} σ -ideal of null sets and \mathcal{M} σ -ideal of all meager subsets of X. $cov(\mathcal{M}) = cov_h(\mathcal{M}), \ cov(\mathcal{N}) = cov_h(\mathcal{N}).$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem (Cichoń-Pawlikowski) If I is c.c.c. σ -ideal with Borel base then cof(I) = Cof(I)

Complete I-nonmeasurability

Definition

Let (X, I) be Polish ideal space. We say that $A \subseteq X$ is completely *I*-nonmeasurable in X iff

$(\forall B \in \mathcal{B}_+(I)) A \cap B \neq \emptyset \land A^c \cap B \neq \emptyset.$

- A ⊆ X is complete [X]^{≤ω}-nonmeasurable iff A is Bernstein subset of X,
- $A \subseteq [0,1]$ is complete \mathscr{N} -nonmeasurable iff $\lambda_*(A) = 0$ and $\lambda^*(B) = 1$,
- $A \subseteq X$ is complete \mathcal{M} -nonmeasurable if $\emptyset \neq U \subseteq X$ then $A \cap U$ does not have Baire property.

Complete I-nonmeasurability

Definition

Let (X, I) be Polish ideal space. We say that $A \subseteq X$ is completely *I*-nonmeasurable in X iff

$$(\forall B \in \mathcal{B}_+(I)) A \cap B \neq \emptyset \land A^c \cap B \neq \emptyset.$$

- A ⊆ X is complete [X]^{≤ω}-nonmeasurable iff A is Bernstein subset of X,
- $A \subseteq [0,1]$ is complete \mathscr{N} -nonmeasurable iff $\lambda_*(A) = 0$ and $\lambda^*(B) = 1$,
- ▶ $A \subseteq X$ is complete \mathcal{M} -nonmeasurable if $\emptyset \neq U \subseteq X$ then $A \cap U$ does not have Baire property.

Cichoń, Morayne, RR, Ryll-Nardzewski, Żeberski

Theorem (1)

Let X be an uncountable Polish space, $I \subseteq P(X)$ be σ -ideal with Borel base. Let $\mathcal{A} \subseteq I$ be a family of subsets of the space X such that

1.
$$X \setminus \bigcup A \in I$$
,
2. $(\forall x \in X) (\bigcup \{A \in A : x \in A\} \in I)$,
3. $cov_h(\{\bigcup \{A \in A : x \in A\} : x \in X\}) \ge Cof(I)$.
Then there exists $A' \subseteq A$ such that $\bigcup A'$ is completely
I-nonmeasurable in space X .

J. Cichoń, M. Morayne, R. Rałowski, Cz. Ryll-Nardzewski, Sz. Żeberski, On nonmeasurable unions, Topology and its Applications, 154 (2007), pp.884-893,

Regular families

Theorem (RR and Zeberski)

Let X and Y be a Polish space and I be an c.c.c. σ -ideal with a Borel base. Let $F \subseteq X \times Y$ be an analytic relation such that

►
$$X \setminus \{x \in X : (\exists y \in Y) ((x, y) \in F)\} \in I$$
,

•
$$(\forall y \in Y) (\{x \in X : (x, y) \in F\} \in I),$$

$$\blacktriangleright (\forall x \in X) (|\{y \in Y : (x, y) \in F\}| < \aleph_0).$$

Then there exists $Z \subseteq Y$ such that $\{x \in X : (\exists y \in Z) : (x, y) \in F\}$ is completely I-nonmeasurable in X.

Rałowski, R., Żeberski, Sz., Complete nonmeasurability in regular families. Houston Journal of Mathematics, Vol. 34 No. 3 (2008), 773–780.

Proof

Choose $\mathcal{F} = \{F^y : y \in Y\}$ - is point finite. *F* is analytic then

$$(\forall B \in Bor(X) \setminus I) \ B \subseteq [\bigcup \mathcal{F}]_I \to |\{A \in \mathcal{F} : B \cap A \neq \emptyset\}| = \mathfrak{c}.$$

If $D \subseteq X$ then $]D[_I$ is maximal (mod I) Borel set contained in D. Define $\{\mathcal{A}_{\xi} \subseteq \mathcal{F} : \xi < \gamma\}$ such that

•
$$|\mathcal{A}_{\xi}| < \mathfrak{c},$$

•
$$\mathcal{A}_{\xi} \subseteq \mathcal{F} \setminus \bigcup_{\eta < \xi} \mathcal{A}_{\eta}$$
,

▶] $\bigcup \mathcal{A}_{\xi}[I \text{ is maximal element of}$ {] $\bigcup \mathcal{A}[I: \mathcal{A} \subset \mathcal{F} \setminus (\bigcup_{\eta < \xi} \mathcal{A}_{\eta}) \land |\mathcal{A}| < \mathfrak{c}$ }

I is *c.c.c.* then $] \bigcup A_{\xi}[I]$ exists.

Because $\{\mathcal{A}_{\xi}\subseteq \mathcal{F}:\xi<\gamma\}$ is such that

•
$$|\mathcal{A}_{\xi}| < \mathfrak{c}$$
 ,

•
$$\mathcal{A}_{\xi} \subseteq \mathcal{F} \setminus \bigcup_{\eta < \xi} \mathcal{A}_{\eta}$$
,

▶]
$$\bigcup \mathcal{A}_{\xi}[I \text{ is maximal element of}$$

{] $\bigcup \mathcal{A}[I: \mathcal{A} \subset \mathcal{F} \setminus (\bigcup_{\eta < \xi} \mathcal{A}_{\eta}) \land |\mathcal{A}| < \mathfrak{c}$ }

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Then

• if
$$\eta < \xi$$
 then $] \bigcup \mathcal{A}_{\xi} [\subseteq] \mathcal{A}_{\eta} [I]$

•
$$\mathcal{F}$$
 is point finite then $]\mathcal{A}_{\omega}[I = \emptyset]$.

Set
$$\mathcal{F}_0 = \mathcal{F} \setminus \bigcup_{n \in \omega} \mathcal{A}_n$$
. Because
 $(\forall B \in Bor(X) \setminus I) \ B \subseteq [\bigcup \mathcal{F}]_I \rightarrow |\{A \in \mathcal{F} : B \cap A \neq \emptyset\}| = \mathfrak{c}.$

▲□▶ ▲□▶ ▲三▶ ▲三▶ ▲□ ● ● ●

•
$$[\bigcup \mathcal{F}_0]_I = [\bigcup \mathcal{F}]_I$$
 and
• $(\forall B \in Bor(X) \setminus I)(\forall \mathcal{A} \subseteq \mathcal{F}_0) \ B \subseteq \bigcup \mathcal{A} \to |\mathcal{A}| = \mathfrak{c}$

Enumerate $\{B^{0}_{\xi}: \xi < \mathfrak{c}\} = \{B \in Bor(X) \setminus I : B \subseteq [\bigcup \mathcal{F}_{0}]_{I} \setminus] \bigcup \mathcal{F}_{0}[_{I}\} \text{ and } \{B^{1}_{\xi}: \xi < \mathfrak{c}\} = \{B \in Bor(X) \setminus I : B \subseteq] \bigcup \mathcal{F}_{0}[_{I}\}.$ Define $\{(F^0_{\xi}, F^1_{\xi}, d_{\xi}) \in \mathcal{F} \times \mathcal{F} \times] \bigcup \mathcal{F}_0[I: \xi < \mathfrak{c}\}$ ► $F^0_{\varepsilon} \cap B^0_{\varepsilon} \neq \emptyset$, ► $F^1_{\varepsilon} \cap B^1_{\varepsilon} \neq \emptyset$, ► $d_{\xi} \in B^1_{\xi}$, $\blacktriangleright \{d_{\eta}: \eta < \xi\} \cap \bigcup_{n < \xi} (F_n^0 \cup F_n^1) = \emptyset.$ Set $\mathcal{F}' = \{F^0_{\mathcal{E}} : \xi < \mathfrak{c}\} \cup \{F^1_{\mathcal{E}} : \xi < \mathfrak{c}\}$ then $\bigcup \mathcal{F}'$ is completely *I*-nonmeasurable in $[[]\mathcal{F}]_I$.

Regular families

Theorem (RR and Żeberski)

Let X be a Polish space and be an I σ -ideal with Borel base with the following property

 $(\forall B \in Bor(X) \setminus I)(\exists P \in Perf(X) \setminus I)(P \subseteq B).$

Let $\mathcal{A} \subseteq I$ be a partition of X such that

 $(\forall P \in Perf(X)) (\bigcup \{A \in \mathcal{A} : A \cap F \neq \emptyset\} \in Bor(X)).$

Then there exists subfamily $\mathcal{A}' \subseteq \mathcal{A}$ such that $\bigcup \mathcal{A}'$ is completely *I*-nonmeasurable set in space *X*.

Rałowski, R., Żeberski, Sz., Complete nonmeasurability in regular families. Houston Journal of Mathematics, Vol. 34 No. 3 (2008), 773–780.

Translations of small sets

Theorem Let $P \subseteq \mathbb{R}$ be a null set such that

$$\{x \in \mathbb{R} : \bigcup \{t + P : x \in t + P\} \notin \mathcal{N}\} \in \mathcal{N}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Then there exists $T \subseteq \mathbb{R}$ such that T + P is completely \mathcal{N} -nonmeasurable.

For any real number t let us define $Z_t = \bigcup \{x + P : t \in x + P\}$ which is null by our assumption. Next, let us define

$$Z = \bigcup \{\{t\} \times Z_t : t \in \mathbb{R}\}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Claim. Z is null in real plane \mathbb{R}^2

Proof.

Let observe that for any $t \in \mathbb{R}$ we have

$$t + Z_0 = t + \bigcup \{x + P : 0 \in x + P\} = \bigcup \{(t + x) + P : 0 \in x + P\}$$
$$= \bigcup \{(t + x) + P : t \in (t + x) + P\}$$
$$= \bigcup \{y + P : t \in y + P\} = Z_t.$$

 $\mathbb{R}^2(t,s)\mapsto arphi(t,s)=(t,t+s)\in \mathbb{R}^2$ is homeomorphism

Wlog Z_0 is null G_{δ} then $Z = \varphi[\mathbb{R} \times Z_0]$ is G_{δ} in \mathbb{R}^2 Because Z is G_{δ} set and all sections Z_t are null in \mathbb{R} for every $t \in \mathbb{R}$, then by the Fubini Theorem Z is null subset of the real plane \mathbb{R}^2 . Claim. $cov_h(\{Z_t: t \in \mathbb{R}\}) = \mathfrak{c}$

Proof.

Let $B \in Bor(\mathbb{R}) \setminus \mathcal{N}$ then $Z_B = B^2 \cap Z$ is null subset of \mathbb{R}^2 . By Mycielski Theorem there is a perfect $Q \subseteq B$ s.t. $Q^2 \setminus \{(x, x) : x \in \mathbb{R}\} \subseteq B^2 \setminus Z$. Then

$$(\forall s,s'\in Q)(s
eq s'
ightarrow Z_s\cap Z_{s'}=\emptyset)$$

and then $cov_h(\{Z_t: t \in \mathbb{R}\}) = \mathfrak{c}$

end of proof

Set $\mathcal{A} = \{t + P : t \in \mathbb{R}\}$ then $\blacktriangleright \bigcup \mathcal{A} = \mathbb{R},$ $\flat (\forall x) \bigcup \{A \in \mathcal{A} : x \in A\} = Z_x \in \mathcal{N}$ $\flat cov_h(\{\bigcup \{A \in \mathcal{A} : x \in A\} : x \in X\}) = cov_h(\{Z_t : t \in \mathbb{R}\}) = \mathfrak{c}.$ Finally by Theorem (1) there is $\mathcal{A}' \subseteq \mathcal{A}$ s.t. $\bigcup \mathcal{A}'$ is complete \mathcal{N} -nonmeasurable.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Thank You