Reconstructing the topology of polymorphism clones of homogeneous structures

Maja Pech

Institute of Algebra TU Dresden Germany

Department of Mathematics and Informatics University of Novi Sad Serbia

22.06.2016

joint work with Christian Pech

Reconstructing the topology of polymorphism clones of homogeneous structures

Maja Pech

- 4 週 ト - 4 三 ト - 4 三 ト

Clones

Given a set A.

Reconstructing the topology of polymorphism clones of homogeneous structures

Maja Pech

Clones

Given a set A. $O_A^{(n)} := A^{(A^n)}, \qquad O_A := \bigcup_{n \in \mathbb{N} \setminus \{0\}} O_A^{(n)},$

Projections

$$e^n_i\in O^{(n)}_A:(x_1,\ldots,x_n)\mapsto x_i$$
 (where $n\in\mathbb{N}\setminus\{0\},\ 1\leq i\leq n).$

 J_A denotes the set of all projections on A.

Clones

$$C \subseteq O_A$$
 is called clone if

•
$$J_A \subseteq C$$
,
• it is closed with respect to c

It is closed with respect to composition.

Clone isomorphisms

A clone isomorphism between clones C and D is a bijection that preserves projections and composition.

Reconstructing the topology of polymorphism clones of homogeneous structures

Relational structures

Relational signatures

A relational signature is a pair $\underline{\Sigma} = (\Sigma, ar)$, where

- Σ is a set of relational symbols,
- ar : $\Sigma \to \mathbb{N} \setminus \{0\}$.

Relational structures

A
$$\underline{\Sigma}$$
-structure is a pair $\mathbf{A} = (A, (\varrho^{\mathbf{A}})_{\varrho \in \Sigma})$, where

A is a set,

•
$$\varrho^{\mathbf{A}} \subseteq A^{\operatorname{ar}(\varrho)}$$
, for each $\varrho \in \Sigma$.

3

・ 伺 ト ・ ヨ ト ・ ヨ ト

Polymorphism clones

Given a relational signature $\underline{\Sigma}$, and a $\underline{\Sigma}$ -structure **A**.

Polymorphisms

 $f \in O_A^{(n)}$ is called *n*-ary polymorphism of **A** if

 $f: \mathbf{A}^n \to \mathbf{A}.$

The set of *n*-ary polymorphisms of **A** is denoted by $Pol^{(n)}(\mathbf{A})$.

Polymorphism clones

$$\mathsf{Pol}(\mathbf{A}) := igcup_{n \in \mathbb{N} \setminus \{0\}} \mathsf{Pol}^{(n)}(\mathbf{A})$$
 is a clone.
It is called the polymorphism clone of **A**

< □→ < □→ < □→

Topology on clones

Given a set A, equipped with the discrete topology.

Topology on $O_A^{(n)}$

• for every finite $M \subseteq A^n$ and for every $h: M \to A$:

$$\Phi_{M,h} := \{ f \in O_A^{(n)} \mid f \upharpoonright_M = h \}.$$

• together all $\Phi_{M,h}$ form the basis of a topology — the topology of pointwise convergence on $O_A^{(n)}$,

Topology on O_A

- O_A can be considered as the topological sum of the $O_A^{(n)}$.
- Composition of functions is continuous.

イロト 不得 トイヨト イヨト

Topology on clones (cont.)

Topology on clones

- Every clone $C \leq O_A$ can be considered as topological subspace of O_A .
- Thus, every clone is canonically equipped with a topology, with respect to which the composition is continuous.

Metrization of the canonical topology on $O_A^{(n)}$ when $|A| = \omega$ • Let $\overline{w} = (\overline{a}_i)_{i < \omega}$ be an enumeration of A^n . • Define $D_{\overline{w}} : O_A^{(n)} \times O_A^{(n)} \to \omega + 1$: $D_{\overline{w}}(f,g) := \begin{cases} \min\{i \in \omega \mid f(\overline{a}_i) \neq g(\overline{a}_i)\} & f \neq g \\ \omega & f = g. \end{cases}$ • Then the following defines an ultrametric on $O_A^{(n)}$:

$$d_{\overline{w}}(f,g) := egin{cases} 2^{-D_n(f,g)} & f
eq g \ 0 & f = g. \end{cases}$$

Reconstruction and automatic homeomorphicity

Let $C \leq O_A$ be a closed clone.

Clones with reconstruction

C has reconstruction if whenever *C* is isomorphic to another closed subclone $D \le O_A$, then *C* and *D* are isomorphic as topological clones.

Definition (Bodirsky, Pinsker, Pongrácz)

C has automatic homeomorphicity if every clone isomorphism from C to another closed clone on A is a homeomorphism.

・ 同 ト ・ 三 ト ・ 三 ト

Some clones with automatic homeomorphicity

Theorem (Bodirsky, Pinsker, Pongrácz)

The following clones have automatic homeomorphicity:

- every closed clone on A that contains $O_A^{(1)}$,
- 2 the polymorphism clone of the Rado graph,
- Ithe Horn-clone (= the smallest clone on a countable set A that contains all injective functions from O_A).

• • = • • = •

Theorem (CP+MP)

Let ${f U}$ be a countable homogeneous relational structure. If

- Pol(U) contains all constant functions,
- Age(U) has the free amalgamation property,
- S Age(U) is closed with respect to finite products,
- Age(U) has the HAP,

then Pol(U) has automatic homeomorphicity.

・ 日 ・ ・ ヨ ・ ・ ヨ ・

Theorem (CP+MP)

Let ${f U}$ be a countable homogeneous relational structure. If

- Pol(U) contains all constant functions,
- Age(U) has the free amalgamation property,
- Solution Age(U) is closed with respect to finite products,
- Age(U) has the HAP,

then Pol(U) has automatic homeomorphicity.

Homogeneity

 ${\bf U}$ is homogeneous if every local isomorphism of ${\bf U}$ extends to an automorphism of ${\bf U}.$

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (CP+MP)

Let ${\boldsymbol{\mathsf{U}}}$ be a countable homogeneous relational structure. If

- Pol(U) contains all constant functions,
- Age(U) has the free amalgamation property,
- Solution Age(U) is closed with respect to finite products,
- Age(U) has the HAP,

then Pol(U) has automatic homeomorphicity.

$Age(\boldsymbol{U})$

The age of a relational structure \mathbf{U} is the class of all finite relational structures of the same type as \mathbf{U} , that embedd into \mathbf{U} .

・ 同 ト ・ ヨ ト ・ ヨ ト …

Theorem (CP+MP)

Let ${f U}$ be a countable homogeneous relational structure. If

- Pol(U) contains all constant functions,
- Age(U) has the free amalgamation property,
- Solution Age(U) is closed with respect to finite products,
- Age(U) has the HAP,

then Pol(U) has automatic homeomorphicity.

Free amalgamation

 $Age(\mathbf{U})$ has the free amalgamation property if it is closed with respect to amalgamated free sums.

・ 何 ト ・ ヨ ト ・ ヨ ト

Theorem (CP+MP)

Let ${f U}$ be a countable homogeneous relational structure. If

- Pol(U) contains all constant functions,
- Age(U) has the free amalgamation property,
- S Age(U) is closed with respect to finite products,
- Age(U) has the HAP,

then Pol(U) has automatic homeomorphicity.

HAP

A class $\mathcal C$ of structures has the HAP $\,$ if for all $\bm A, \bm B, \bm C \in \mathcal C, \ldots$

Reconstructing the topology of polymorphism clones of homogeneous structures

Theorem (CP+MP)

Let ${f U}$ be a countable homogeneous relational structure. If

- Pol(U) contains all constant functions,
- Age(U) has the free amalgamation property,
- Solution Age(U) is closed with respect to finite products,
- Age(U) has the HAP,

then Pol(U) has automatic homeomorphicity.

HAP

A class $\mathcal C$ of structures has the HAP $\,$ if for all $\bm A, \bm B, \bm C \in \mathcal C, \ldots$

Reconstructing the topology of polymorphism clones of homogeneous structures

Theorem (CP+MP)

Let ${\boldsymbol{\mathsf{U}}}$ be a countable homogeneous relational structure. If

- Pol(U) contains all constant functions,
- Q Age(U) has the free amalgamation property,
- Solution Age(U) is closed with respect to finite products,
- Age(U) has the HAP,

then Pol(U) has automatic homeomorphicity.

Example

The following structures have automatic homeomorphicity:

- the Rado graph with all loops added,
- the universal homogeneous digraph with all loops added.

Slightly changing the argument, it can be shown that also the countable generic poset (\mathbb{P}, \leq) has automatic homeomorphicity.

Strong gate coverings (simplified definition)

Definition

Let $\boldsymbol{\mathsf{U}}$ be a countable homogeneous structure.

A strong gate covering of $Pol(\mathbf{U})$ consists of a family $(f_n)_{n \in \mathbb{N}_+}$ such that for all $n \in \mathbb{N}_+$:

- $f_n \in \mathsf{Pol}^{(n)}(\mathbf{U})$,
- for each convergent sequence (g_j)_{j∈N} in Pol⁽ⁿ⁾(U) there exists a convergent sequence (ι_j)_{j∈N} in Emb(U), such that for all (x₁,..., x_n) ∈ Uⁿ we have

$$g_j(x_1,\ldots,x_n)=f_n(\iota_j(x_1),\ldots,\iota_j(x_n))).$$

Which structures have strong gate coverings?

▲□ → ▲ □ → ▲ □ → □

Existence of strong gate coverings

Proposition (CP+MP)

Let $\boldsymbol{\mathsf{U}}$ be a countable homogeneous structure. If

- Age(U) has the free amalgamation property,
- Age(U) is closed with respect to finite products,
- Sec(U) has the HAP,

then $\mathsf{Pol}(\mathbf{U})$ has a strong gate covering

Remark

The proof uses axiomatic Fraissé-theory to show the existence of universal homogeneous polymorphisms of every arity. From this the existence of a strong gate covering follows at once.

Thus, all mentioned polymorphism clones have a strong gate covering.

소리가 소문가 소문가 소문가 ...

Automatic homeomorphicity from strong gate coverings

Proposition (CP+MP)

Let **U** be a countable homogeneous structure such that Pol(U) has a strong gate covering. Then Pol(U) has automatic homeomorphicity iff every clone isomorphism from Pol(U) to another closed clone on U is open.

Proposition (Bodirsky, Pinsker, Pongrácz)

Let **U** be a relational structure such that Pol(U) contains all constant functions. Then every isomorphism from Pol(U) to another closed clone on U is open.

Thus the theorem is proved.

イロト イポト イヨト イヨト

Even more examples

Theorem (CP+MP)

Let ${f U}$ be a countable homogeneous relational structure. If

- Aut(**U**) acts oligomorphically and transitively on U,
- Emb(U) has automatic homeomorphicity,
- Age(U) has the free amalgamation property,
- Age(U) is closed with respect to finite products,
- Sec(U) has the HAP,

then Pol(**U**) has automatic homeomorphicity.

Example

The following structures have automatic homeomorphicity:

- the Rado graph (already known from BPP),
- the universal homogeneous digraph,
- the universal homogeneous k-uniform hypergraph (for all $k \ge 2$).

イロト 不得 トイヨト イヨト

Sketch of the proof

Let

- C := Pol(**U**),
- $D \leq O_U$ a closed clone,
- $h: C \rightarrow D$ a clone isomorphism.

Structure of the proof

h is continuous:

- $\bullet~\mathsf{Emb}(U)$ has automatic homeomorphicity.
- Thus, $h \upharpoonright_{\mathsf{Emb}(\mathbf{U})}$ is continuous.
- We need to "lift" continuity from $h_{\text{Emb}(\mathbf{U})}$ to h.
- This is achieved using strong gate coverings.

h is open:

• This uses the topological Birkhoff Theorem by Bodirsky and Pinsker.

Lifting the continuity

Lemma (Bodirsky, Pinsker, Pongrácz)

Given

- a countable homogeneous structure U,
- a countable structure V,
- $\xi : Pol(\mathbf{U}) \to Pol(\mathbf{V})$, such that $\xi \upharpoonright_{Emb(\mathbf{U})}$ is continuous.

If $Pol(\mathbf{U})$ has a strong gate covering, then ξ is continuous.

Thus, our particular h is continuous.

We still need to show that h is open.

A D A D A D A

How to obtain openness?

Proposition (CP+MP)

Let ${\boldsymbol{\mathsf{U}}}$ be a countable homogeneous relational structure. If

- Aut(**U**) acts oligomorphically and transitively on U,
- **2 U** has quantifier elimination for primitive positive formulae (QEPPF),
- Age(U) has the free amalgamation property,
- Age(U) is closed with respect to finite products,

then every continuous isomorphism from $Pol(\mathbf{U})$ to another closed clone $D \leq O_U$ is open.

Remark

- The proof generalizes a neat idea from the proof of automatic homeomorphicity for the polymorphism clone of the Rado-graph in BPP.
- It uses a topological Birkhoff Theorem due to Bodirsky and Pinsker.

3

イロト 不得 トイヨト イヨト

Showing **QEPPF**

It only remains, to show QEPPF.

First observation:

Theorem (Romov)

A countable ω -categorical relational structure **U** has quantifier elimination for primitive positive formulae if and only if it is polymorphism homogeneous.

Remark

 ${\bf U}$ is polymorphism homogeneous if every partial polymorphism of ${\bf U}$ with finite domain extends to a global polymorphism.

・ 同 ト ・ ヨ ト ・ ヨ ト

Showing QEPPF (2)

Second observation:

Lemma (folklore)

U is polymorphism homogeneous if and only if \mathbf{U}^n is homomorphism homogeneous, for every $n \ge 1$.

Third observation:

Theorem (Dolinka)

A countable homogeneous structure U is homomorphism homogeneous if and only if Age(U) has the HAP.

Fourth obervation

Lemma (folklore)

Retracts of homomorphism homogeneous structures are homomorphism homogeneous, too.

3

Showing QEPPF (3)

Proposition (CP+MP)

Let $\boldsymbol{\mathsf{U}}$ be a countable homogeneous structure. If

- Age(U) has the free amalgamation property,
- Age(U) is closed with respect to finite products,
- Sec(U) has the HAP,

then \mathbf{U}^n is isomorphic to a retract of \mathbf{U} , for every n > 1.

Remark

The proof of this uses axiomatic Fraissé-theory in order to show the existence of universal homogeneous retractions from U to U^n .

Thus our particular structure **U** has QEPPF. It follows that our particular h is open. This finishes proof of the second theorem.

< 回 ト < 三 ト < 三 ト

Does the polymorphism clone of the rational Urysohn space have a strong gate covering (and hence automatic homeomorphicity)?

・ロン ・四 と ・ 回 と ・

- Does the polymorphism clone of the rational Urysohn space have a strong gate covering (and hence automatic homeomorphicity)?
- What about the polymorphism clone of rationals?

(1日) (1日) (1日)

- Does the polymorphism clone of the rational Urysohn space have a strong gate covering (and hence automatic homeomorphicity)?
- What about the polymorphism clone of rationals?
 - ▶ (\mathbb{Q}, \leq) has automatic homeomorphicity proved by Behrisch, Truss and Vargas

イロト 不得 トイヨト イヨト

- Does the polymorphism clone of the rational Urysohn space have a strong gate covering (and hence automatic homeomorphicity)?
- What about the polymorphism clone of rationals?
 - \blacktriangleright (\mathbb{Q},\leq) has automatic homeomorphicity proved by Behrisch, Truss and Vargas
 - ▶ For (Q, <) it is still not known.</p>

・ロト ・四ト ・ヨト ・ヨト