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Clones

Given a set A.

O
(n)
A := A(An), OA :=

⋃
n∈N\{0}

O
(n)
A ,

Projections

eni ∈ O
(n)
A : (x1, . . . , xn) 7→ xi (where n ∈ N \ {0}, 1 ≤ i ≤ n).

JA denotes the set of all projections on A.

Clones

C ⊆ OA is called clone if

1 JA ⊆ C ,
2 it is closed with respect to composition.

Clone isomorphisms

A clone isomorphism between clones C and D is a bijection that preserves
projections and composition.
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Relational structures

Relational signatures

A relational signature is a pair Σ = (Σ, ar), where

Σ is a set of relational symbols,

ar : Σ→ N \ {0}.

Relational structures

A Σ-structure is a pair A = (A, (%A)%∈Σ), where

A is a set,

%A ⊆ Aar(%), for each % ∈ Σ.
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Polymorphism clones

Given a relational signature Σ, and a Σ-structure A.

Polymorphisms

f ∈ O
(n)
A is called n-ary polymorphism of A if

f : An → A.

The set of n-ary polymorphisms of A is denoted by Pol(n)(A).

Polymorphism clones

Pol(A) :=
⋃

n∈N\{0}
Pol(n)(A) is a clone.

It is called the polymorphism clone of A.
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Topology on clones

Given a set A, equipped with the discrete topology.

Topology on O
(n)
A

for every finite M ⊆ An and for every h : M → A:

ΦM,h := {f ∈ O
(n)
A | f �M = h}.

together all ΦM,h form the basis of a topology — the topology of

pointwise convergence on O
(n)
A ,

Topology on OA

OA can be considered as the topological sum of the O
(n)
A .

Composition of functions is continuous.
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Topology on clones (cont.)

Topology on clones

Every clone C ≤ OA can be considered as topological subspace of OA.
Thus, every clone is canonically equipped with a topology, with
respect to which the composition is continuous.

Metrization of the canonical topology on O
(n)
A when |A| = ω

Let w = (ai )i<ω be an enumeration of An.

Define Dw : O
(n)
A × O

(n)
A → ω + 1:

Dw (f , g) :=

{
min{i ∈ ω | f (ai ) 6= g(ai )} f 6= g

ω f = g .

Then the following defines an ultrametric on O
(n)
A :

dw (f , g) :=

{
2−Dn(f ,g) f 6= g

0 f = g .
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Reconstruction and automatic homeomorphicity

Let C ≤ OA be a closed clone.

Clones with reconstruction

C has reconstruction if whenever C is isomorphic to another closed
subclone D ≤ OA, then C and D are isomorphic as topological clones.

Definition (Bodirsky, Pinsker, Pongrácz)

C has automatic homeomorphicity if every clone isomorphism from C to
another closed clone on A is a homeomorphism.
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Some clones with automatic homeomorphicity

Theorem (Bodirsky, Pinsker, Pongrácz)

The following clones have automatic homeomorphicity:

1 every closed clone on A that contains O
(1)
A ,

2 the polymorphism clone of the Rado graph,

3 the Horn-clone (= the smallest clone on a countable set A that
contains all injective functions from OA).
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More examples

Theorem (CP+MP)

Let U be a countable homogeneous relational structure. If

1 Pol(U) contains all constant functions,

2 Age(U) has the free amalgamation property,

3 Age(U) is closed with respect to finite products,

4 Age(U) has the HAP,

then Pol(U) has automatic homeomorphicity.

HAP

A class C of structures has the HAP if for all A,B,C ∈ C,. . .

B

D

A C.
g

ι
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Age(U)

The age of a relational structure U is the class of all finite relational
structures of the same type as U, that embedd into U.

HAP

A class C of structures has the HAP if for all A,B,C ∈ C,. . .

B

D

A C.
g

ι

Reconstructing the topology of polymorphism clones of homogeneous structures Maja Pech



More examples

Theorem (CP+MP)

Let U be a countable homogeneous relational structure. If
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2 Age(U) has the free amalgamation property,

3 Age(U) is closed with respect to finite products,
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then Pol(U) has automatic homeomorphicity.

Free amalgamation

Age(U) has the free amalgamation property if it is closed with respect to
amalgamated free sums.

HAP

A class C of structures has the HAP if for all A,B,C ∈ C,. . .

B

D

A C.
g

ι
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More examples

Theorem (CP+MP)

Let U be a countable homogeneous relational structure. If

1 Pol(U) contains all constant functions,

2 Age(U) has the free amalgamation property,

3 Age(U) is closed with respect to finite products,

4 Age(U) has the HAP,

then Pol(U) has automatic homeomorphicity.

Example

The following structures have automatic homeomorphicity:

the Rado graph with all loops added,

the universal homogeneous digraph with all loops added.

Slightly changing the argument, it can be shown that also the countable
generic poset (P,≤) has automatic homeomorphicity.

HAP

A class C of structures has the HAP if for all A,B,C ∈ C,. . .

B D

A C.

h

g

ι κ
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Strong gate coverings (simplified definition)

Definition

Let U be a countable homogeneous structure.
A strong gate covering of Pol(U) consists of a family (fn)n∈N+ such that
for all n ∈ N+:

fn ∈ Pol(n)(U),
for each convergent sequence (gj)j∈N in Pol(n)(U) there exists a
convergent sequence (ιj)j∈N in Emb(U), such that for all
(x1, . . . , xn) ∈ Un we have

gj(x1, . . . , xn) = fn(ιj(x1), . . . , ιj(xn))).

Which structures have strong gate coverings?
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Existence of strong gate coverings

Proposition (CP+MP)

Let U be a countable homogeneous structure. If

1 Age(U) has the free amalgamation property,

2 Age(U) is closed with respect to finite products,

3 Age(U) has the HAP,

then Pol(U) has a strong gate covering

Remark

The proof uses axiomatic Fräıssé-theory to show the existence of universal
homogeneous polymorphisms of every arity. From this the existence of a
strong gate covering follows at once.

Thus, all mentioned polymorphism clones have a strong gate covering.
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Automatic homeomorphicity from strong gate coverings

Proposition (CP+MP)

Let U be a countable homogeneous structure such that Pol(U) has a
strong gate covering. Then Pol(U) has automatic homeomorphicity iff
every clone isomorphism from Pol(U) to another closed clone on U is open.

Proposition (Bodirsky, Pinsker, Pongrácz)

Let U be a relational structure such that Pol(U) contains all constant
functions. Then every isomorphism from Pol(U) to another closed clone
on U is open.

Thus the theorem is proved.
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Even more examples

Theorem (CP+MP)

Let U be a countable homogeneous relational structure. If

1 Aut(U) acts oligomorphically and transitively on U,
2 Emb(U) has automatic homeomorphicity,
3 Age(U) has the free amalgamation property,
4 Age(U) is closed with respect to finite products,
5 Age(U) has the HAP,

then Pol(U) has automatic homeomorphicity.

Example

The following structures have automatic homeomorphicity:

the Rado graph (already known from BPP),
the universal homogeneous digraph,
the universal homogeneous k-uniform hypergraph (for all k ≥ 2).
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Sketch of the proof

Let

C := Pol(U),

D ≤ OU a closed clone,

h : C → D a clone isomorphism.

Structure of the proof

h is continuous:

Emb(U) has automatic homeomorphicity.
Thus, h�Emb(U) is continuous.
We need to “lift” continuity from h�Emb(U) to h.
This is achieved using strong gate coverings.

h is open:

This uses the topological Birkhoff Theorem by Bodirsky
and Pinsker.
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Lifting the continuity

Lemma (Bodirsky, Pinsker, Pongrácz)

Given

a countable homogeneous structure U,

a countable structure V,

ξ : Pol(U)→ Pol(V), such that ξ�Emb(U) is continuous.

If Pol(U) has a strong gate covering, then ξ is continuous.

Thus, our particular h is continuous.

We still need to show that h is open.
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How to obtain openness?

Proposition (CP+MP)

Let U be a countable homogeneous relational structure. If

1 Aut(U) acts oligomorphically and transitively on U,
2 U has quantifier elimination for primitive positive formulae (QEPPF),
3 Age(U) has the free amalgamation property,
4 Age(U) is closed with respect to finite products,

then every continuous isomorphism from Pol(U) to another closed clone
D ≤ OU is open.

Remark

The proof generalizes a neat idea from the proof of automatic
homeomorphicity for the polymorphism clone of the Rado-graph in
BPP.
It uses a topological Birkhoff Theorem due to Bodirsky and Pinsker.
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Showing QEPPF

It only remains, to show QEPPF.

First observation:

Theorem (Romov)

A countable ω-categorical relational structure U has quantifier elimination
for primitive positive formulae if and only if it is polymorphism
homogeneous.

Remark

U is polymorphism homogeneous if every partial polymorphism of U with
finite domain extends to a global polymorphism.
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Showing QEPPF (2)

Second observation:

Lemma (folklore)

U is polymorphism homogeneous if and only if Un is homomorphism
homogeneous, for every n ≥ 1.

Third observation:

Theorem (Dolinka)

A countable homogeneous structure U is homomorphism homogeneous if
and only if Age(U) has the HAP.

Fourth obervation

Lemma (folklore)

Retracts of homomorphism homogeneous structures are homomorphism
homogeneous, too.
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Showing QEPPF (3)

Proposition (CP+MP)

Let U be a countable homogeneous structure. If

1 Age(U) has the free amalgamation property,

2 Age(U) is closed with respect to finite products,

3 Age(U) has the HAP,

then Un is isomorphic to a retract of U, for every n > 1.

Remark

The proof of this uses axiomatic Fräıssé-theory in order to show the
existence of universal homogeneous retractions from U to Un.

Thus our particular structure U has QEPPF.
It follows that our particular h is open.
This finishes proof of the second theorem.
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Open problems

1 Does the polymorphism clone of the rational Urysohn space have a
strong gate covering (and hence automatic homeomorphicity)?

2 What about the polymorphism clone of rationals?

I (Q,≤) has automatic homeomorphicity - proved by Behrisch, Truss
and Vargas

I For (Q, <) it is still not known.
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