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A space of countable extent, also called an ω1-
compact space, is one in which every closed discrete
subspace is countable.

Here is one interesting unsolved problem about
these concepts:

Problem 1. Is there a ZFC example of a locally
compact, ω1-compact space of cardinality ℵ1 that is
not σ-countably compact? one that is normal?

More generally, there is the question of what is
the minimum cardinality of such spaces in ZFC. Ex-
amples of cardinality c were obtained in 1975 by
Erik van Douwen [vD] but the following improve-
ment seems to be new:

Theorem 1. [Ny2] There is a locally compact, nor-
mal, ω1-compact space of cardinality b that is not
σ-countably compact.
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Higher separation axioms tell a different story.

Theorem 2. [Ny1] In MM(S)[S] models, every lo-
cally compact, hereditarily normal, ω1-compact space
is σ-countably compact, i.e., the union of countably
many countably compact subspaces.

In stark contrast, we also have:

Theorem 3. [Ny1] If ♣, then there exists a locally
compact, locally countable (hence first countable, and
scattered) ω1-compact, monotonically normal space
of cardinality ℵ1 that is not σ-countably compact.

MM(S)[S] models require large cardinal axioms,
whereas♣ does not, and monotonically normal spaces
are hereditarily collectionwise normal and hereditar-
ily countably paracompact. The questions suggested
by the following problem are all unanswered:

Problem 2. Which of the numerous independence
results implied by Theorems 2 and 3 requires large
cardinal axioms?
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Corollary 1. Perhaps modulo large cardinals, it is
ZFC-independent whether every locally compact, mono-
tonically normal, ω1-compact space is σ-countably
compact.

Of course, one could add “locally countable” and
“of cardinality ℵ1” to the listed properties. In the
opposite direction, we can substitute the much weaker
“hereditarily normal” for “monotonically normal” in
this corollary.

Corollary 1 is unusual in that most independence
results on monotonically normal spaces depend on
whether Souslin’s Hypothesis (SH) is true, and do
not depend on large cardinal axioms. Here, it is not
known whether either SH or its negation affect either
direction in this independence result, nor whether its
reliance on large cardials can be dropped.
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Definition 1. A space X is monotonically normal
provided that there is an operator G( , ) assigning
to each ordered pair 〈F0, F1〉 of disjoint closed sub-
sets an open set G(F0, F1) such that
(a) F0 ⊂ G(F0, F1)
(b) If F0 ⊂ F ′

0 and F ′

1 ⊂ F1 then G(F0, F1) ⊂
G(F ′

0, F
′

1)
(c) G(F0, F1) ∩G(F1, F0) = ∅.
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Theorem 2 is one of three related results in the
next theorem, which uses the following concepts:

Definition 2. Given a subset D of a set X, an ex-
pansion of D is a family {Ud : d ∈ D} of subsets
of X such that Ud ∩ D = d for all d ∈ D. A space
X is [strongly] collectionwise Hausdorff (abbrevi-
ated [s]cwH) if every closed discrete subspace has an
expansion to a disjoint [resp. discrete] collection of
open sets.

The properties of ω1-[s]cwH only require taking
care of those D that are of cardinality ≤ ω1.

A well-known, almost trivial fact is that every
normal, [ω1]-cwH space is [ω1]-scwH.



6

The following generalization of Theorem 2 has a
slight abuse of language with the expressions PFA(S)[S]
and MM(S)[S] as though they were axioms.

Theorem 3+. Let X be a locally compact, ω1-compact
space. If either

(1) X is monotonically normal and the LCT axiom
holds, or

(2) X is hereditarily ω1-scwH, in a model of either
PFA or PFA(S)[S] or MM(S)[S], or

(3) X is hereditarily normal, in a model of MM(S)[S],

then X is σ-countably compact, and is either Lin-
delöf or contains a copy of ω1.
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Let X be a locally compact, ω1-compact space. If
(1) X is monotonically normal and the LCT ax-

iom holds

then X is σ-countably compact, and is either Lin-
delöf or contains a copy of ω1.

The LCT axiom is a purely topological axiom:

The Locally Compact Trichotomy
(LCT) axiom.

Every locally compact space has either:

(i) A countable collection of ω-bounded subspaces
whose union is the whole space OR

(ii) An uncountable closed discrete subspace or

(iii) A countable subset with non-Lindelöf closure.

An ω-bounded space is one in which every count-
able subset has compact closure, and clearly such a
space is countably compact.

The first conclusion for (1) follows from the fact
that, in a monotonically normal space, every count-
able subset has Lindelöf closure [O]. This is also true
of hereditarily ω1-scwH spaces under MA(ω1) and
MA(S)[S], and hence PFA, PFA(S)[S] and MM(S)[S].
Only the last requires large cardinal axioms.
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It is only for the consistency of the LCT axiom
and for Theorem 2 — (3) in Theorem 2+ — that
large cardinals seem to be unavoidable. The LCT
axiom is shown in [EN] to be a consequence of the
Prime Ideal Dichotomy (PID) axiom, which uses the
following concept:

Definition 3. A P-ideal of countable sets is a family
P of sets such that, for every countable subfamily Q
of P, there exists P ∈ P such that Q ⊂∗ P for every
Q ∈ Q. Here Q ⊂∗ P means that Q \ P is finite.
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The PID states that, for every P-ideal I of subsets
of a set X, either

(1) there is an uncountable A ⊂ X such that every
countable subset of A is in I, or

(2) X is the union of countably many sets {Bn :
n ∈ ω} such that Bn ∩ I is finite for all n and all
I ∈ I.

The PID was shown to imply the LCA in [EN]. In
particular, (i) goes with (2), (ii) goes with (1), and
(iii) goes with the collection of all countable closed
discrete subspaces failing to form a P-ideal.

LCT: Every locally compact space has either:

(i) A countable collection of ω-bounded subspaces
whose union is the whole space OR

(ii) An uncountable closed discrete subspace or

(iii) A countable subset with non-Lindelöf closure.
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Theorem 3. Let X be a locally compact, ω1-compact,
normal, hereditarily ω1-scwH space. If either PFA or
PFA(S)[S] holds, then X is countably paracompact.

Proof. A normal space X is countably paracompact
if, and only if, for each descending sequence of closed
sets 〈Fn〉

∞

n=1 with empty intersection, there is a se-
quence of open sets 〈Un〉

∞

n=1 with empty intersection,
with Fn ⊂ Un for all n [W, 21.3]. If X is a count-
able union of countably compact subsets Cm, then in
such a sequence of closed sets Fn, we can only have
Fn ∩Cm 6= ∅ for finitely many n. [Otherwise, count-
able compactness of Cm implies

⋂
∞

n=1
Cm ∩Fn 6= ∅.]

In any Tychonoff space, every pseudocompact sub-
space, and hence every countably compact subspace,
has pseudocompact closure, and every normal, pseu-
docompact space is countably compact [W, 17J 3.];
and so the complements of the sets Cm form the de-
sired sequence of open sets. �
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The equivalence in the preceding proof is due to
Dowker, who also showed its equivalence with X ×
[0, 1] being normal. In honor of his pioneering work,
normal spaces that are not countably paracompact
are called “Dowker spaces.” This results in a bit of
economy of wording. For instance, Theorem 3 gives
the consistency of the statement that every locally
compact hereditarily ω1-scwH Dowker space has an
uncountable discrete subspace. This makes a nice
companion to the following recent theorem of Dow
and Tall:

Theorem. If MM(S)[S], then every locally compact
Dowker space of Lindelöf number ≤ A1 includes a
perfect preimage of ω1.


